1803 lines (1802 with data), 88.6 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.ensemble import RandomForestClassifier \n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import classification_report"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"master_data.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 59125500 entries, 0 to 59125499\n",
"Data columns (total 10 columns):\n",
"target int64\n",
"subject int64\n",
"chest_ACC_x float64\n",
"chest_ACC_y float64\n",
"chest_ACC_z float64\n",
"chest_ECG float64\n",
"chest_EMG float64\n",
"chest_EDA float64\n",
"chest_Temp float64\n",
"chest_Resp float64\n",
"dtypes: float64(8), int64(2)\n",
"memory usage: 4.4 GB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"6 4825799\n",
"3 4400200\n",
"4 4393200\n",
"5 4250400\n",
"2 4165000\n",
"17 4022201\n",
"16 3826200\n",
"13 3794000\n",
"14 3763200\n",
"10 3740100\n",
"8 3719799\n",
"15 3576300\n",
"7 3563700\n",
"11 3556701\n",
"9 3528700\n",
"Name: subject, dtype: int64"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['subject'].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"feature_importances_list = []"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"6\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9981689328947815\n",
" precision recall f1-score support\n",
"\n",
" 0 1.00 1.00 1.00 902929\n",
" 1 1.00 1.00 1.00 271725\n",
" 2 1.00 1.00 1.00 150059\n",
" 3 1.00 0.99 1.00 86152\n",
" 4 1.00 1.00 1.00 181649\n",
"\n",
" accuracy 1.00 1592514\n",
" macro avg 1.00 1.00 1.00 1592514\n",
"weighted avg 1.00 1.00 1.00 1592514\n",
"\n",
"11\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9880933312430988\n",
" precision recall f1-score support\n",
"\n",
" 0 0.99 0.99 0.99 475759\n",
" 1 1.00 1.00 1.00 272833\n",
" 2 1.00 0.99 1.00 157039\n",
" 3 0.98 0.98 0.98 85341\n",
" 4 0.98 0.98 0.98 182740\n",
"\n",
" accuracy 0.99 1173712\n",
" macro avg 0.99 0.99 0.99 1173712\n",
"weighted avg 0.99 0.99 0.99 1173712\n",
"\n",
"14\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9876434948979592\n",
" precision recall f1-score support\n",
"\n",
" 0 0.99 0.99 0.99 543791\n",
" 1 1.00 1.00 1.00 272719\n",
" 2 0.98 0.98 0.98 155792\n",
" 3 0.98 0.97 0.97 85954\n",
" 4 0.99 0.99 0.99 183600\n",
"\n",
" accuracy 0.99 1241856\n",
" macro avg 0.99 0.98 0.98 1241856\n",
"weighted avg 0.99 0.99 0.99 1241856\n",
"\n",
"8\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.99311057779255\n",
" precision recall f1-score support\n",
"\n",
" 0 0.99 0.99 0.99 533239\n",
" 1 1.00 1.00 1.00 270630\n",
" 2 0.99 0.99 0.99 155051\n",
" 3 0.99 0.99 0.99 85349\n",
" 4 0.99 0.99 0.99 183265\n",
"\n",
" accuracy 0.99 1227534\n",
" macro avg 0.99 0.99 0.99 1227534\n",
"weighted avg 0.99 0.99 0.99 1227534\n",
"\n",
"15\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9935704668529096\n",
" precision recall f1-score support\n",
"\n",
" 0 0.99 0.99 0.99 481153\n",
" 1 1.00 1.00 1.00 271736\n",
" 2 1.00 1.00 1.00 158288\n",
" 3 0.99 0.99 0.99 85801\n",
" 4 1.00 1.00 1.00 183201\n",
"\n",
" accuracy 0.99 1180179\n",
" macro avg 0.99 0.99 0.99 1180179\n",
"weighted avg 0.99 0.99 0.99 1180179\n",
"\n",
"9\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9942205516496332\n",
" precision recall f1-score support\n",
"\n",
" 0 0.99 0.99 0.99 473496\n",
" 1 1.00 1.00 1.00 272821\n",
" 2 1.00 1.00 1.00 148833\n",
" 3 0.98 0.99 0.99 86077\n",
" 4 0.99 0.99 0.99 183244\n",
"\n",
" accuracy 0.99 1164471\n",
" macro avg 0.99 0.99 0.99 1164471\n",
"weighted avg 0.99 0.99 0.99 1164471\n",
"\n",
"10\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9887095872497332\n",
" precision recall f1-score support\n",
"\n",
" 0 0.99 0.98 0.99 524557\n",
" 1 1.00 1.00 1.00 272919\n",
" 2 0.99 0.99 0.99 167514\n",
" 3 0.97 0.98 0.98 85925\n",
" 4 0.98 0.99 0.99 183318\n",
"\n",
" accuracy 0.99 1234233\n",
" macro avg 0.99 0.99 0.99 1234233\n",
"weighted avg 0.99 0.99 0.99 1234233\n",
"\n",
"2\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9942551566080978\n",
" precision recall f1-score support\n",
"\n",
" 0 0.99 0.99 0.99 707930\n",
" 1 1.00 1.00 1.00 264291\n",
" 2 0.99 0.99 0.99 141472\n",
" 3 0.99 0.99 0.99 83882\n",
" 4 0.99 0.99 0.99 176875\n",
"\n",
" accuracy 0.99 1374450\n",
" macro avg 0.99 0.99 0.99 1374450\n",
"weighted avg 0.99 0.99 0.99 1374450\n",
"\n",
"16\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9909420375940683\n",
" precision recall f1-score support\n",
"\n",
" 0 0.99 0.99 0.99 566286\n",
" 1 1.00 1.00 1.00 273173\n",
" 2 1.00 0.99 1.00 155403\n",
" 3 0.97 0.97 0.97 84900\n",
" 4 0.99 0.99 0.99 182884\n",
"\n",
" accuracy 0.99 1262646\n",
" macro avg 0.99 0.99 0.99 1262646\n",
"weighted avg 0.99 0.99 0.99 1262646\n",
"\n",
"4\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9948501678903209\n",
" precision recall f1-score support\n",
"\n",
" 0 1.00 0.99 1.00 763459\n",
" 1 1.00 1.00 1.00 267545\n",
" 2 1.00 1.00 1.00 147129\n",
" 3 0.97 0.99 0.98 86069\n",
" 4 1.00 1.00 1.00 185554\n",
"\n",
" accuracy 0.99 1449756\n",
" macro avg 0.99 0.99 0.99 1449756\n",
"weighted avg 0.99 0.99 0.99 1449756\n",
"\n",
"13\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9953618951773934\n",
" precision recall f1-score support\n",
"\n",
" 0 0.99 1.00 0.99 554003\n",
" 1 1.00 1.00 1.00 273008\n",
" 2 1.00 1.00 1.00 153832\n",
" 3 0.99 0.99 0.99 88025\n",
" 4 1.00 0.99 1.00 183152\n",
"\n",
" accuracy 1.00 1252020\n",
" macro avg 1.00 0.99 0.99 1252020\n",
"weighted avg 1.00 1.00 1.00 1252020\n",
"\n",
"3\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9984215593506081\n",
" precision recall f1-score support\n",
"\n",
" 0 1.00 1.00 1.00 774757\n",
" 1 1.00 1.00 1.00 263230\n",
" 2 1.00 1.00 1.00 147381\n",
" 3 1.00 1.00 1.00 86832\n",
" 4 1.00 1.00 1.00 179866\n",
"\n",
" accuracy 1.00 1452066\n",
" macro avg 1.00 1.00 1.00 1452066\n",
"weighted avg 1.00 1.00 1.00 1452066\n",
"\n",
"17\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9960514628271707\n",
" precision recall f1-score support\n",
"\n",
" 0 1.00 1.00 1.00 632614\n",
" 1 1.00 1.00 1.00 273250\n",
" 2 1.00 1.00 1.00 167191\n",
" 3 0.99 0.99 0.99 85889\n",
" 4 0.99 0.99 0.99 168383\n",
"\n",
" accuracy 1.00 1327327\n",
" macro avg 0.99 1.00 1.00 1327327\n",
"weighted avg 1.00 1.00 1.00 1327327\n",
"\n",
"5\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9962292319011686\n",
" precision recall f1-score support\n",
"\n",
" 0 1.00 1.00 1.00 706523\n",
" 1 1.00 1.00 1.00 276704\n",
" 2 0.99 0.99 0.99 149255\n",
" 3 1.00 1.00 1.00 86753\n",
" 4 1.00 1.00 1.00 183397\n",
"\n",
" accuracy 1.00 1402632\n",
" macro avg 1.00 1.00 1.00 1402632\n",
"weighted avg 1.00 1.00 1.00 1402632\n",
"\n",
"7\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9961871429166657\n",
" precision recall f1-score support\n",
"\n",
" 0 1.00 1.00 1.00 486045\n",
" 1 1.00 1.00 1.00 274312\n",
" 2 1.00 1.00 1.00 147644\n",
" 3 0.99 0.99 0.99 85832\n",
" 4 1.00 1.00 1.00 182188\n",
"\n",
" accuracy 1.00 1176021\n",
" macro avg 1.00 1.00 1.00 1176021\n",
"weighted avg 1.00 1.00 1.00 1176021\n",
"\n",
"CPU times: user 1h 2min 21s, sys: 35.1 s, total: 1h 2min 56s\n",
"Wall time: 1h 2min 56s\n"
]
}
],
"source": [
"%%time\n",
"for subject in df['subject'].unique():\n",
" print (subject)\n",
" temp = df[df['subject'] == subject]\n",
" y = temp['target']\n",
" X = temp.drop('target', 1)\n",
" \n",
" rf = RandomForestClassifier() \n",
" \n",
" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\n",
" \n",
" rf.fit(X_train, y_train)\n",
" print (rf.score(X_test, y_test))\n",
" \n",
" print(classification_report(y_test, rf.predict(X_test)))\n",
" \n",
" feature_importances = pd.DataFrame(rf.feature_importances_,index = X_train.columns,columns=[str(subject)])\n",
" feature_importances_dict = feature_importances.to_dict()\n",
" feature_importances_list.append(feature_importances_dict)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'6': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.1300669764504841,\n",
" 'chest_ACC_y': 0.1968860170043269,\n",
" 'chest_ACC_z': 0.24581151008517166,\n",
" 'chest_ECG': 0.0032265901153278563,\n",
" 'chest_EMG': 0.0036803586156519685,\n",
" 'chest_EDA': 0.24669042461389065,\n",
" 'chest_Temp': 0.15944455526109153,\n",
" 'chest_Resp': 0.014193567854055431}},\n",
" {'11': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.04024757292461694,\n",
" 'chest_ACC_y': 0.1565318618203392,\n",
" 'chest_ACC_z': 0.11830625071942938,\n",
" 'chest_ECG': 0.007922838269133713,\n",
" 'chest_EMG': 0.006348978002092723,\n",
" 'chest_EDA': 0.36328293249601246,\n",
" 'chest_Temp': 0.2618496659465971,\n",
" 'chest_Resp': 0.045509899821778596}},\n",
" {'14': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.10375227203200195,\n",
" 'chest_ACC_y': 0.1853095383931324,\n",
" 'chest_ACC_z': 0.215453524103329,\n",
" 'chest_ECG': 0.008595033425546683,\n",
" 'chest_EMG': 0.0051670030825727055,\n",
" 'chest_EDA': 0.25382475947777666,\n",
" 'chest_Temp': 0.2077869105964587,\n",
" 'chest_Resp': 0.020110958889181855}},\n",
" {'8': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.14347363122864362,\n",
" 'chest_ACC_y': 0.24065811924766892,\n",
" 'chest_ACC_z': 0.267762938257923,\n",
" 'chest_ECG': 0.005711548638591734,\n",
" 'chest_EMG': 0.003918487469962929,\n",
" 'chest_EDA': 0.2387070057305599,\n",
" 'chest_Temp': 0.08413531983996998,\n",
" 'chest_Resp': 0.01563294958667973}},\n",
" {'15': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.11231814251034679,\n",
" 'chest_ACC_y': 0.08220255608689836,\n",
" 'chest_ACC_z': 0.20822479510318542,\n",
" 'chest_ECG': 0.0030866105842708154,\n",
" 'chest_EMG': 0.002597678771338352,\n",
" 'chest_EDA': 0.41319383692544054,\n",
" 'chest_Temp': 0.1684332696165509,\n",
" 'chest_Resp': 0.009943110401968736}},\n",
" {'9': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.12561607603440622,\n",
" 'chest_ACC_y': 0.09702573688756252,\n",
" 'chest_ACC_z': 0.24384679962004108,\n",
" 'chest_ECG': 0.003995169023835594,\n",
" 'chest_EMG': 0.0054176080210714085,\n",
" 'chest_EDA': 0.36880376616830607,\n",
" 'chest_Temp': 0.14303779961937815,\n",
" 'chest_Resp': 0.012257044625398936}},\n",
" {'10': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.22882102161026965,\n",
" 'chest_ACC_y': 0.04732657436997019,\n",
" 'chest_ACC_z': 0.2322145246566627,\n",
" 'chest_ECG': 0.004801462002461738,\n",
" 'chest_EMG': 0.0045123477972814855,\n",
" 'chest_EDA': 0.31158122644140307,\n",
" 'chest_Temp': 0.1581155419253945,\n",
" 'chest_Resp': 0.012627301196556704}},\n",
" {'2': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.11668464543524892,\n",
" 'chest_ACC_y': 0.13597111186938743,\n",
" 'chest_ACC_z': 0.24675670252898294,\n",
" 'chest_ECG': 0.0049927372104148,\n",
" 'chest_EMG': 0.0024869718274109194,\n",
" 'chest_EDA': 0.22587860975496904,\n",
" 'chest_Temp': 0.25156271388019963,\n",
" 'chest_Resp': 0.015666507493386436}},\n",
" {'16': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.07922301732289758,\n",
" 'chest_ACC_y': 0.06155434121985866,\n",
" 'chest_ACC_z': 0.2439000711979064,\n",
" 'chest_ECG': 0.012125844832497342,\n",
" 'chest_EMG': 0.003252002142311649,\n",
" 'chest_EDA': 0.4108674411007088,\n",
" 'chest_Temp': 0.1740060304072016,\n",
" 'chest_Resp': 0.0150712517766179}},\n",
" {'4': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.1888912770202422,\n",
" 'chest_ACC_y': 0.1515329160303108,\n",
" 'chest_ACC_z': 0.23782728420548904,\n",
" 'chest_ECG': 0.003605102562460383,\n",
" 'chest_EMG': 0.002869069393522499,\n",
" 'chest_EDA': 0.2525019555539589,\n",
" 'chest_Temp': 0.1498092548768111,\n",
" 'chest_Resp': 0.012963140357205296}},\n",
" {'13': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.07803417203388363,\n",
" 'chest_ACC_y': 0.09974802002465204,\n",
" 'chest_ACC_z': 0.1777006613688301,\n",
" 'chest_ECG': 0.0034168687514631547,\n",
" 'chest_EMG': 0.0034440563788113777,\n",
" 'chest_EDA': 0.37400948926186695,\n",
" 'chest_Temp': 0.2460262689411883,\n",
" 'chest_Resp': 0.017620463239304454}},\n",
" {'3': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.07188722001251066,\n",
" 'chest_ACC_y': 0.061859702055979716,\n",
" 'chest_ACC_z': 0.33898272660534673,\n",
" 'chest_ECG': 0.002533408376087527,\n",
" 'chest_EMG': 0.012332865584837815,\n",
" 'chest_EDA': 0.22347187550642342,\n",
" 'chest_Temp': 0.2792589111675616,\n",
" 'chest_Resp': 0.009673290691252574}},\n",
" {'17': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.18044989325378819,\n",
" 'chest_ACC_y': 0.07736863340070056,\n",
" 'chest_ACC_z': 0.20479809095955676,\n",
" 'chest_ECG': 0.003415233725763734,\n",
" 'chest_EMG': 0.0025323836092819166,\n",
" 'chest_EDA': 0.39464251796388494,\n",
" 'chest_Temp': 0.12339909371098787,\n",
" 'chest_Resp': 0.013394153376035991}},\n",
" {'5': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.20167807887040695,\n",
" 'chest_ACC_y': 0.08914038474449766,\n",
" 'chest_ACC_z': 0.2014025757829614,\n",
" 'chest_ECG': 0.004351308801137371,\n",
" 'chest_EMG': 0.004152757849246086,\n",
" 'chest_EDA': 0.37152507620617825,\n",
" 'chest_Temp': 0.10902969536748346,\n",
" 'chest_Resp': 0.01872012237808883}},\n",
" {'7': {'subject': 0.0,\n",
" 'chest_ACC_x': 0.07199023148411884,\n",
" 'chest_ACC_y': 0.0738758141531722,\n",
" 'chest_ACC_z': 0.2306827752142297,\n",
" 'chest_ECG': 0.004528291130553968,\n",
" 'chest_EMG': 0.003471923752608401,\n",
" 'chest_EDA': 0.22224281102614607,\n",
" 'chest_Temp': 0.3742280348025795,\n",
" 'chest_Resp': 0.0189801184365914}}]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"feature_importances_list"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"15"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(feature_importances_list)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"list_df = []\n",
"for val in feature_importances_list:\n",
" list_df.append(pd.DataFrame.from_dict(val).T)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 6 0.130067 0.196886 0.245812 0.003227 0.24669 0.00368 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 6 0.014194 0.159445 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 11 0.040248 0.156532 0.118306 0.007923 0.363283 0.006349 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 11 0.04551 0.26185 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 14 0.103752 0.18531 0.215454 0.008595 0.253825 0.005167 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 14 0.020111 0.207787 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 8 0.143474 0.240658 0.267763 0.005712 0.238707 0.003918 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 8 0.015633 0.084135 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 15 0.112318 0.082203 0.208225 0.003087 0.413194 0.002598 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 15 0.009943 0.168433 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 9 0.125616 0.097026 0.243847 0.003995 0.368804 0.005418 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 9 0.012257 0.143038 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 10 0.228821 0.047327 0.232215 0.004801 0.311581 0.004512 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 10 0.012627 0.158116 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 2 0.116685 0.135971 0.246757 0.004993 0.225879 0.002487 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 2 0.015667 0.251563 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 16 0.079223 0.061554 0.2439 0.012126 0.410867 0.003252 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 16 0.015071 0.174006 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 4 0.188891 0.151533 0.237827 0.003605 0.252502 0.002869 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 4 0.012963 0.149809 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 13 0.078034 0.099748 0.177701 0.003417 0.374009 0.003444 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 13 0.01762 0.246026 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 3 0.071887 0.06186 0.338983 0.002533 0.223472 0.012333 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 3 0.009673 0.279259 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 17 0.18045 0.077369 0.204798 0.003415 0.394643 0.002532 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 17 0.013394 0.123399 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 5 0.201678 0.08914 0.201403 0.004351 0.371525 0.004153 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 5 0.01872 0.10903 0.0 ,\n",
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
" 7 0.07199 0.073876 0.230683 0.004528 0.222243 0.003472 \n",
" \n",
" chest_Resp chest_Temp subject \n",
" 7 0.01898 0.374228 0.0 ]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list_df"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"feature_importance_all_subjects = pd.concat(list_df)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>chest_ACC_x</th>\n",
" <th>chest_ACC_y</th>\n",
" <th>chest_ACC_z</th>\n",
" <th>chest_ECG</th>\n",
" <th>chest_EDA</th>\n",
" <th>chest_EMG</th>\n",
" <th>chest_Resp</th>\n",
" <th>chest_Temp</th>\n",
" <th>subject</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>0.130067</td>\n",
" <td>0.196886</td>\n",
" <td>0.245812</td>\n",
" <td>0.003227</td>\n",
" <td>0.246690</td>\n",
" <td>0.003680</td>\n",
" <td>0.014194</td>\n",
" <td>0.159445</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>0.040248</td>\n",
" <td>0.156532</td>\n",
" <td>0.118306</td>\n",
" <td>0.007923</td>\n",
" <td>0.363283</td>\n",
" <td>0.006349</td>\n",
" <td>0.045510</td>\n",
" <td>0.261850</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>0.103752</td>\n",
" <td>0.185310</td>\n",
" <td>0.215454</td>\n",
" <td>0.008595</td>\n",
" <td>0.253825</td>\n",
" <td>0.005167</td>\n",
" <td>0.020111</td>\n",
" <td>0.207787</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>0.143474</td>\n",
" <td>0.240658</td>\n",
" <td>0.267763</td>\n",
" <td>0.005712</td>\n",
" <td>0.238707</td>\n",
" <td>0.003918</td>\n",
" <td>0.015633</td>\n",
" <td>0.084135</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>0.112318</td>\n",
" <td>0.082203</td>\n",
" <td>0.208225</td>\n",
" <td>0.003087</td>\n",
" <td>0.413194</td>\n",
" <td>0.002598</td>\n",
" <td>0.009943</td>\n",
" <td>0.168433</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>0.125616</td>\n",
" <td>0.097026</td>\n",
" <td>0.243847</td>\n",
" <td>0.003995</td>\n",
" <td>0.368804</td>\n",
" <td>0.005418</td>\n",
" <td>0.012257</td>\n",
" <td>0.143038</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>0.228821</td>\n",
" <td>0.047327</td>\n",
" <td>0.232215</td>\n",
" <td>0.004801</td>\n",
" <td>0.311581</td>\n",
" <td>0.004512</td>\n",
" <td>0.012627</td>\n",
" <td>0.158116</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0.116685</td>\n",
" <td>0.135971</td>\n",
" <td>0.246757</td>\n",
" <td>0.004993</td>\n",
" <td>0.225879</td>\n",
" <td>0.002487</td>\n",
" <td>0.015667</td>\n",
" <td>0.251563</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>0.079223</td>\n",
" <td>0.061554</td>\n",
" <td>0.243900</td>\n",
" <td>0.012126</td>\n",
" <td>0.410867</td>\n",
" <td>0.003252</td>\n",
" <td>0.015071</td>\n",
" <td>0.174006</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.188891</td>\n",
" <td>0.151533</td>\n",
" <td>0.237827</td>\n",
" <td>0.003605</td>\n",
" <td>0.252502</td>\n",
" <td>0.002869</td>\n",
" <td>0.012963</td>\n",
" <td>0.149809</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>0.078034</td>\n",
" <td>0.099748</td>\n",
" <td>0.177701</td>\n",
" <td>0.003417</td>\n",
" <td>0.374009</td>\n",
" <td>0.003444</td>\n",
" <td>0.017620</td>\n",
" <td>0.246026</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.071887</td>\n",
" <td>0.061860</td>\n",
" <td>0.338983</td>\n",
" <td>0.002533</td>\n",
" <td>0.223472</td>\n",
" <td>0.012333</td>\n",
" <td>0.009673</td>\n",
" <td>0.279259</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>0.180450</td>\n",
" <td>0.077369</td>\n",
" <td>0.204798</td>\n",
" <td>0.003415</td>\n",
" <td>0.394643</td>\n",
" <td>0.002532</td>\n",
" <td>0.013394</td>\n",
" <td>0.123399</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>0.201678</td>\n",
" <td>0.089140</td>\n",
" <td>0.201403</td>\n",
" <td>0.004351</td>\n",
" <td>0.371525</td>\n",
" <td>0.004153</td>\n",
" <td>0.018720</td>\n",
" <td>0.109030</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>0.071990</td>\n",
" <td>0.073876</td>\n",
" <td>0.230683</td>\n",
" <td>0.004528</td>\n",
" <td>0.222243</td>\n",
" <td>0.003472</td>\n",
" <td>0.018980</td>\n",
" <td>0.374228</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n",
"6 0.130067 0.196886 0.245812 0.003227 0.246690 0.003680 \n",
"11 0.040248 0.156532 0.118306 0.007923 0.363283 0.006349 \n",
"14 0.103752 0.185310 0.215454 0.008595 0.253825 0.005167 \n",
"8 0.143474 0.240658 0.267763 0.005712 0.238707 0.003918 \n",
"15 0.112318 0.082203 0.208225 0.003087 0.413194 0.002598 \n",
"9 0.125616 0.097026 0.243847 0.003995 0.368804 0.005418 \n",
"10 0.228821 0.047327 0.232215 0.004801 0.311581 0.004512 \n",
"2 0.116685 0.135971 0.246757 0.004993 0.225879 0.002487 \n",
"16 0.079223 0.061554 0.243900 0.012126 0.410867 0.003252 \n",
"4 0.188891 0.151533 0.237827 0.003605 0.252502 0.002869 \n",
"13 0.078034 0.099748 0.177701 0.003417 0.374009 0.003444 \n",
"3 0.071887 0.061860 0.338983 0.002533 0.223472 0.012333 \n",
"17 0.180450 0.077369 0.204798 0.003415 0.394643 0.002532 \n",
"5 0.201678 0.089140 0.201403 0.004351 0.371525 0.004153 \n",
"7 0.071990 0.073876 0.230683 0.004528 0.222243 0.003472 \n",
"\n",
" chest_Resp chest_Temp subject \n",
"6 0.014194 0.159445 0.0 \n",
"11 0.045510 0.261850 0.0 \n",
"14 0.020111 0.207787 0.0 \n",
"8 0.015633 0.084135 0.0 \n",
"15 0.009943 0.168433 0.0 \n",
"9 0.012257 0.143038 0.0 \n",
"10 0.012627 0.158116 0.0 \n",
"2 0.015667 0.251563 0.0 \n",
"16 0.015071 0.174006 0.0 \n",
"4 0.012963 0.149809 0.0 \n",
"13 0.017620 0.246026 0.0 \n",
"3 0.009673 0.279259 0.0 \n",
"17 0.013394 0.123399 0.0 \n",
"5 0.018720 0.109030 0.0 \n",
"7 0.018980 0.374228 0.0 "
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"feature_importance_all_subjects"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"6 1.0\n",
"11 1.0\n",
"14 1.0\n",
"8 1.0\n",
"15 1.0\n",
"9 1.0\n",
"10 1.0\n",
"2 1.0\n",
"16 1.0\n",
"4 1.0\n",
"13 1.0\n",
"3 1.0\n",
"17 1.0\n",
"5 1.0\n",
"7 1.0\n",
"dtype: float64"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"feature_importance_all_subjects.sum(axis = 1, skipna = True) "
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style type=\"text/css\" >\n",
" #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col0 {\n",
" background-color: #6dbc6d;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col1 {\n",
" background-color: #2e992e;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col2 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col3 {\n",
" background-color: #e3fee3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col5 {\n",
" background-color: #e3fee3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col6 {\n",
" background-color: #d9f8d9;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col7 {\n",
" background-color: #51ad51;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col0 {\n",
" background-color: #ccf1cc;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col1 {\n",
" background-color: #82c882;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col2 {\n",
" background-color: #9bd69b;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col3 {\n",
" background-color: #e1fde1;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col5 {\n",
" background-color: #e2fde2;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col6 {\n",
" background-color: #c9efc9;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col7 {\n",
" background-color: #40a340;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col0 {\n",
" background-color: #88cb88;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col1 {\n",
" background-color: #3ea23e;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col2 {\n",
" background-color: #229322;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col3 {\n",
" background-color: #defbde;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col5 {\n",
" background-color: #e1fde1;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col6 {\n",
" background-color: #d3f5d3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col7 {\n",
" background-color: #299729;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col0 {\n",
" background-color: #6abb6a;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col1 {\n",
" background-color: #178c17;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col2 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col3 {\n",
" background-color: #e1fde1;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col4 {\n",
" background-color: #188d18;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col5 {\n",
" background-color: #e3fee3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col6 {\n",
" background-color: #d9f8d9;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col7 {\n",
" background-color: #9ed79e;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col0 {\n",
" background-color: #a7dda7;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col1 {\n",
" background-color: #b8e6b8;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col2 {\n",
" background-color: #71bf71;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col3 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col5 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col6 {\n",
" background-color: #e0fce0;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col7 {\n",
" background-color: #88cb88;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col0 {\n",
" background-color: #97d497;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col1 {\n",
" background-color: #a9dea9;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col2 {\n",
" background-color: #4dab4d;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col3 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col5 {\n",
" background-color: #e3fee3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col6 {\n",
" background-color: #defbde;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col7 {\n",
" background-color: #8cce8c;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col0 {\n",
" background-color: #3ca13c;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col1 {\n",
" background-color: #c3ecc3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col2 {\n",
" background-color: #3aa03a;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col3 {\n",
" background-color: #e3fee3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col5 {\n",
" background-color: #e3fee3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col6 {\n",
" background-color: #dcfadc;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col7 {\n",
" background-color: #71bf71;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col0 {\n",
" background-color: #7bc47b;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col1 {\n",
" background-color: #69ba69;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col2 {\n",
" background-color: #048204;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col3 {\n",
" background-color: #e1fde1;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col4 {\n",
" background-color: #178d17;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col5 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col6 {\n",
" background-color: #d8f8d8;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col7 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col0 {\n",
" background-color: #b9e7b9;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col1 {\n",
" background-color: #c3ecc3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col2 {\n",
" background-color: #5eb45e;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col3 {\n",
" background-color: #dffcdf;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col5 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col6 {\n",
" background-color: #ddfbdd;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col7 {\n",
" background-color: #84c984;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col0 {\n",
" background-color: #3aa03a;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col1 {\n",
" background-color: #5cb35c;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col2 {\n",
" background-color: #0d870d;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col3 {\n",
" background-color: #e3fee3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col5 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col6 {\n",
" background-color: #daf9da;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col7 {\n",
" background-color: #5eb45e;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col0 {\n",
" background-color: #b6e5b6;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col1 {\n",
" background-color: #a8dda8;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col2 {\n",
" background-color: #79c379;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col3 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col5 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col6 {\n",
" background-color: #dbf9db;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col7 {\n",
" background-color: #4eab4e;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col0 {\n",
" background-color: #b5e4b5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col1 {\n",
" background-color: #bce8bc;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col2 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col3 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col4 {\n",
" background-color: #4eab4e;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col5 {\n",
" background-color: #ddfbdd;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col6 {\n",
" background-color: #dffcdf;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col7 {\n",
" background-color: #289628;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col0 {\n",
" background-color: #7cc57c;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col1 {\n",
" background-color: #b8e6b8;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col2 {\n",
" background-color: #6fbd6f;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col3 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col5 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col6 {\n",
" background-color: #defbde;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col7 {\n",
" background-color: #9ed79e;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col0 {\n",
" background-color: #69ba69;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col1 {\n",
" background-color: #afe1af;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col2 {\n",
" background-color: #69ba69;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col3 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col4 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col5 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col6 {\n",
" background-color: #dbf9db;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col7 {\n",
" background-color: #a2daa2;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col0 {\n",
" background-color: #b9e7b9;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col1 {\n",
" background-color: #b8e6b8;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col2 {\n",
" background-color: #58b158;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col3 {\n",
" background-color: #e3fee3;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col4 {\n",
" background-color: #5db35d;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col5 {\n",
" background-color: #e4fee4;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col6 {\n",
" background-color: #dbf9db;\n",
" color: #000000;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col7 {\n",
" background-color: #008000;\n",
" color: #f1f1f1;\n",
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col8 {\n",
" background-color: #e5ffe5;\n",
" color: #000000;\n",
" }</style><table id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002\" ><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >chest_ACC_x</th> <th class=\"col_heading level0 col1\" >chest_ACC_y</th> <th class=\"col_heading level0 col2\" >chest_ACC_z</th> <th class=\"col_heading level0 col3\" >chest_ECG</th> <th class=\"col_heading level0 col4\" >chest_EDA</th> <th class=\"col_heading level0 col5\" >chest_EMG</th> <th class=\"col_heading level0 col6\" >chest_Resp</th> <th class=\"col_heading level0 col7\" >chest_Temp</th> <th class=\"col_heading level0 col8\" >subject</th> </tr></thead><tbody>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row0\" class=\"row_heading level0 row0\" >6</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col0\" class=\"data row0 col0\" >0.130067</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col1\" class=\"data row0 col1\" >0.196886</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col2\" class=\"data row0 col2\" >0.245812</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col3\" class=\"data row0 col3\" >0.00322659</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col4\" class=\"data row0 col4\" >0.24669</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col5\" class=\"data row0 col5\" >0.00368036</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col6\" class=\"data row0 col6\" >0.0141936</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col7\" class=\"data row0 col7\" >0.159445</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col8\" class=\"data row0 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row1\" class=\"row_heading level0 row1\" >11</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col0\" class=\"data row1 col0\" >0.0402476</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col1\" class=\"data row1 col1\" >0.156532</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col2\" class=\"data row1 col2\" >0.118306</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col3\" class=\"data row1 col3\" >0.00792284</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col4\" class=\"data row1 col4\" >0.363283</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col5\" class=\"data row1 col5\" >0.00634898</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col6\" class=\"data row1 col6\" >0.0455099</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col7\" class=\"data row1 col7\" >0.26185</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col8\" class=\"data row1 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row2\" class=\"row_heading level0 row2\" >14</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col0\" class=\"data row2 col0\" >0.103752</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col1\" class=\"data row2 col1\" >0.18531</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col2\" class=\"data row2 col2\" >0.215454</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col3\" class=\"data row2 col3\" >0.00859503</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col4\" class=\"data row2 col4\" >0.253825</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col5\" class=\"data row2 col5\" >0.005167</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col6\" class=\"data row2 col6\" >0.020111</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col7\" class=\"data row2 col7\" >0.207787</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col8\" class=\"data row2 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row3\" class=\"row_heading level0 row3\" >8</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col0\" class=\"data row3 col0\" >0.143474</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col1\" class=\"data row3 col1\" >0.240658</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col2\" class=\"data row3 col2\" >0.267763</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col3\" class=\"data row3 col3\" >0.00571155</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col4\" class=\"data row3 col4\" >0.238707</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col5\" class=\"data row3 col5\" >0.00391849</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col6\" class=\"data row3 col6\" >0.0156329</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col7\" class=\"data row3 col7\" >0.0841353</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col8\" class=\"data row3 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row4\" class=\"row_heading level0 row4\" >15</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col0\" class=\"data row4 col0\" >0.112318</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col1\" class=\"data row4 col1\" >0.0822026</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col2\" class=\"data row4 col2\" >0.208225</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col3\" class=\"data row4 col3\" >0.00308661</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col4\" class=\"data row4 col4\" >0.413194</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col5\" class=\"data row4 col5\" >0.00259768</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col6\" class=\"data row4 col6\" >0.00994311</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col7\" class=\"data row4 col7\" >0.168433</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col8\" class=\"data row4 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row5\" class=\"row_heading level0 row5\" >9</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col0\" class=\"data row5 col0\" >0.125616</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col1\" class=\"data row5 col1\" >0.0970257</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col2\" class=\"data row5 col2\" >0.243847</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col3\" class=\"data row5 col3\" >0.00399517</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col4\" class=\"data row5 col4\" >0.368804</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col5\" class=\"data row5 col5\" >0.00541761</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col6\" class=\"data row5 col6\" >0.012257</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col7\" class=\"data row5 col7\" >0.143038</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col8\" class=\"data row5 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row6\" class=\"row_heading level0 row6\" >10</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col0\" class=\"data row6 col0\" >0.228821</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col1\" class=\"data row6 col1\" >0.0473266</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col2\" class=\"data row6 col2\" >0.232215</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col3\" class=\"data row6 col3\" >0.00480146</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col4\" class=\"data row6 col4\" >0.311581</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col5\" class=\"data row6 col5\" >0.00451235</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col6\" class=\"data row6 col6\" >0.0126273</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col7\" class=\"data row6 col7\" >0.158116</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col8\" class=\"data row6 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row7\" class=\"row_heading level0 row7\" >2</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col0\" class=\"data row7 col0\" >0.116685</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col1\" class=\"data row7 col1\" >0.135971</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col2\" class=\"data row7 col2\" >0.246757</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col3\" class=\"data row7 col3\" >0.00499274</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col4\" class=\"data row7 col4\" >0.225879</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col5\" class=\"data row7 col5\" >0.00248697</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col6\" class=\"data row7 col6\" >0.0156665</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col7\" class=\"data row7 col7\" >0.251563</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col8\" class=\"data row7 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row8\" class=\"row_heading level0 row8\" >16</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col0\" class=\"data row8 col0\" >0.079223</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col1\" class=\"data row8 col1\" >0.0615543</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col2\" class=\"data row8 col2\" >0.2439</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col3\" class=\"data row8 col3\" >0.0121258</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col4\" class=\"data row8 col4\" >0.410867</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col5\" class=\"data row8 col5\" >0.003252</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col6\" class=\"data row8 col6\" >0.0150713</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col7\" class=\"data row8 col7\" >0.174006</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col8\" class=\"data row8 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row9\" class=\"row_heading level0 row9\" >4</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col0\" class=\"data row9 col0\" >0.188891</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col1\" class=\"data row9 col1\" >0.151533</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col2\" class=\"data row9 col2\" >0.237827</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col3\" class=\"data row9 col3\" >0.0036051</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col4\" class=\"data row9 col4\" >0.252502</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col5\" class=\"data row9 col5\" >0.00286907</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col6\" class=\"data row9 col6\" >0.0129631</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col7\" class=\"data row9 col7\" >0.149809</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col8\" class=\"data row9 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row10\" class=\"row_heading level0 row10\" >13</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col0\" class=\"data row10 col0\" >0.0780342</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col1\" class=\"data row10 col1\" >0.099748</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col2\" class=\"data row10 col2\" >0.177701</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col3\" class=\"data row10 col3\" >0.00341687</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col4\" class=\"data row10 col4\" >0.374009</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col5\" class=\"data row10 col5\" >0.00344406</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col6\" class=\"data row10 col6\" >0.0176205</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col7\" class=\"data row10 col7\" >0.246026</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col8\" class=\"data row10 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row11\" class=\"row_heading level0 row11\" >3</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col0\" class=\"data row11 col0\" >0.0718872</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col1\" class=\"data row11 col1\" >0.0618597</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col2\" class=\"data row11 col2\" >0.338983</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col3\" class=\"data row11 col3\" >0.00253341</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col4\" class=\"data row11 col4\" >0.223472</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col5\" class=\"data row11 col5\" >0.0123329</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col6\" class=\"data row11 col6\" >0.00967329</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col7\" class=\"data row11 col7\" >0.279259</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col8\" class=\"data row11 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row12\" class=\"row_heading level0 row12\" >17</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col0\" class=\"data row12 col0\" >0.18045</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col1\" class=\"data row12 col1\" >0.0773686</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col2\" class=\"data row12 col2\" >0.204798</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col3\" class=\"data row12 col3\" >0.00341523</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col4\" class=\"data row12 col4\" >0.394643</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col5\" class=\"data row12 col5\" >0.00253238</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col6\" class=\"data row12 col6\" >0.0133942</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col7\" class=\"data row12 col7\" >0.123399</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col8\" class=\"data row12 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row13\" class=\"row_heading level0 row13\" >5</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col0\" class=\"data row13 col0\" >0.201678</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col1\" class=\"data row13 col1\" >0.0891404</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col2\" class=\"data row13 col2\" >0.201403</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col3\" class=\"data row13 col3\" >0.00435131</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col4\" class=\"data row13 col4\" >0.371525</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col5\" class=\"data row13 col5\" >0.00415276</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col6\" class=\"data row13 col6\" >0.0187201</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col7\" class=\"data row13 col7\" >0.10903</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col8\" class=\"data row13 col8\" >0</td>\n",
" </tr>\n",
" <tr>\n",
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row14\" class=\"row_heading level0 row14\" >7</th>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col0\" class=\"data row14 col0\" >0.0719902</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col1\" class=\"data row14 col1\" >0.0738758</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col2\" class=\"data row14 col2\" >0.230683</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col3\" class=\"data row14 col3\" >0.00452829</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col4\" class=\"data row14 col4\" >0.222243</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col5\" class=\"data row14 col5\" >0.00347192</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col6\" class=\"data row14 col6\" >0.0189801</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col7\" class=\"data row14 col7\" >0.374228</td>\n",
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col8\" class=\"data row14 col8\" >0</td>\n",
" </tr>\n",
" </tbody></table>"
],
"text/plain": [
"<pandas.io.formats.style.Styler at 0x7fa017af0898>"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import seaborn as sns\n",
"\n",
"cm = sns.light_palette(\"green\", as_cmap=True)\n",
"\n",
"s = feature_importance_all_subjects.style.background_gradient(cmap=cm,axis = 1)\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"feature_importance_all_subjects.to_csv('feature_importance_all_subjects.csv' )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}