261 lines (260 with data), 10.5 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 42 µs, sys: 10 µs, total: 52 µs\n",
"Wall time: 56.5 µs\n"
]
}
],
"source": [
"%%time\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.ensemble import ExtraTreesClassifier\n",
"from sklearn.metrics import classification_report\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from itertools import combinations \n",
"from mlxtend.classifier import StackingClassifier\n",
"from sklearn import model_selection\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 46.9 s, sys: 10.7 s, total: 57.6 s\n",
"Wall time: 57.6 s\n"
]
}
],
"source": [
"%%time\n",
"train = pd.read_csv(\"1_min_train.csv\")\n",
"test = pd.read_csv(\"1_min_test.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2520000, 11)\n",
"(28950603, 11)\n"
]
}
],
"source": [
"print(train.shape)\n",
"print(test.shape)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['chest_ACC_x',\n",
" 'chest_ACC_y',\n",
" 'chest_ACC_z',\n",
" 'chest_ECG',\n",
" 'chest_EMG',\n",
" 'chest_EDA',\n",
" 'chest_Temp',\n",
" 'chest_Resp']"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"features=train.columns.tolist()\n",
"features = features[3:]\n",
"features"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"clf1 = ExtraTreesClassifier(n_estimators=50, n_jobs=10, verbose=1,random_state=0)\n",
"clf2 = DecisionTreeClassifier()\n",
"clf3 = RandomForestClassifier(n_estimators=10)\n",
"clf4 = LogisticRegression()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"sclf = StackingClassifier(classifiers=[clf1, clf2, clf3], meta_classifier=clf4)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Parallel(n_jobs=10)]: Using backend LokyBackend with 10 concurrent workers.\n",
"/home/sf/.local/lib/python3.6/site-packages/joblib/externals/loky/process_executor.py:706: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.\n",
" \"timeout or by a memory leak.\", UserWarning\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 2.5min\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 4.2min finished\n",
"[Parallel(n_jobs=10)]: Using backend ThreadingBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 15.9s\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 23.4s finished\n",
"[Parallel(n_jobs=10)]: Using backend LokyBackend with 10 concurrent workers.\n",
"/home/sf/.local/lib/python3.6/site-packages/joblib/externals/loky/process_executor.py:706: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.\n",
" \"timeout or by a memory leak.\", UserWarning\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 1.3min\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 2.4min finished\n",
"[Parallel(n_jobs=10)]: Using backend ThreadingBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 15.5s\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 24.3s finished\n",
"[Parallel(n_jobs=10)]: Using backend LokyBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 1.4min\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 2.6min finished\n",
"[Parallel(n_jobs=10)]: Using backend ThreadingBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 16.7s\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 25.8s finished\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.49 (+/- 0.10) [ExtraTreesClassifier]\n",
"Accuracy: 0.38 (+/- 0.06) [DecisionTreeClassifier]\n",
"Accuracy: 0.43 (+/- 0.10) [RandomForestClassifier]\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Parallel(n_jobs=10)]: Using backend LokyBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 1.3min\n",
"/home/sf/.local/lib/python3.6/site-packages/joblib/externals/loky/process_executor.py:706: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.\n",
" \"timeout or by a memory leak.\", UserWarning\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 2.0min finished\n",
"[Parallel(n_jobs=10)]: Using backend ThreadingBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 20.1s\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 30.6s finished\n",
"/home/sf/.local/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
" FutureWarning)\n",
"/home/sf/.local/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
" \"this warning.\", FutureWarning)\n",
"[Parallel(n_jobs=10)]: Using backend ThreadingBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 11.9s\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 17.0s finished\n",
"[Parallel(n_jobs=10)]: Using backend LokyBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 1.4min\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 2.7min finished\n",
"[Parallel(n_jobs=10)]: Using backend ThreadingBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 19.8s\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 37.8s finished\n",
"/home/sf/.local/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
" FutureWarning)\n",
"/home/sf/.local/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
" \"this warning.\", FutureWarning)\n",
"[Parallel(n_jobs=10)]: Using backend ThreadingBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 14.4s\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 23.7s finished\n",
"[Parallel(n_jobs=10)]: Using backend LokyBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 1.6min\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 2.8min finished\n",
"[Parallel(n_jobs=10)]: Using backend ThreadingBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 16.6s\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 26.6s finished\n",
"/home/sf/.local/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
" FutureWarning)\n",
"/home/sf/.local/lib/python3.6/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
" \"this warning.\", FutureWarning)\n",
"[Parallel(n_jobs=10)]: Using backend ThreadingBackend with 10 concurrent workers.\n",
"[Parallel(n_jobs=10)]: Done 30 tasks | elapsed: 8.7s\n",
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 13.6s finished\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.37 (+/- 0.06) [LogisticRegression]\n"
]
}
],
"source": [
"for clf, label in zip([clf1, clf2, clf3, sclf], ['ExtraTreesClassifier','DecisionTreeClassifier','RandomForestClassifier','LogisticRegression']):\n",
"\n",
" scores = model_selection.cross_val_score(clf, test[features], test['target'],cv=3, scoring='accuracy')\n",
" \n",
" print(\"Accuracy: %0.2f (+/- %0.2f) [%s]\" % (scores.mean(), scores.std(), label))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}