Diff of /Random/Random 4.ipynb [000000] .. [d8f241]

Switch to unified view

a b/Random/Random 4.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 3,
6
   "metadata": {},
7
   "outputs": [
8
    {
9
     "name": "stdout",
10
     "output_type": "stream",
11
     "text": [
12
      "CPU times: user 0 ns, sys: 37 µs, total: 37 µs\n",
13
      "Wall time: 41 µs\n"
14
     ]
15
    }
16
   ],
17
   "source": [
18
    "%%time\n",
19
    "import pandas as pd\n",
20
    "import numpy as np\n",
21
    "from sklearn.ensemble import ExtraTreesClassifier\n",
22
    "from sklearn.metrics import classification_report\n",
23
    "from sklearn.model_selection import train_test_split\n",
24
    "from sklearn.ensemble import RandomForestClassifier\n",
25
    "from sklearn.linear_model import LogisticRegression\n",
26
    "\n"
27
   ]
28
  },
29
  {
30
   "cell_type": "code",
31
   "execution_count": 4,
32
   "metadata": {},
33
   "outputs": [
34
    {
35
     "name": "stdout",
36
     "output_type": "stream",
37
     "text": [
38
      "CPU times: user 1min 1s, sys: 4.38 s, total: 1min 5s\n",
39
      "Wall time: 1min 18s\n"
40
     ]
41
    }
42
   ],
43
   "source": [
44
    "%%time\n",
45
    "df = pd.read_csv(\"master_data.csv\")"
46
   ]
47
  },
48
  {
49
   "cell_type": "code",
50
   "execution_count": 5,
51
   "metadata": {},
52
   "outputs": [
53
    {
54
     "data": {
55
      "text/plain": [
56
       "(31470603, 10)"
57
      ]
58
     },
59
     "execution_count": 5,
60
     "metadata": {},
61
     "output_type": "execute_result"
62
    }
63
   ],
64
   "source": [
65
    "df.shape"
66
   ]
67
  },
68
  {
69
   "cell_type": "code",
70
   "execution_count": 6,
71
   "metadata": {},
72
   "outputs": [
73
    {
74
     "data": {
75
      "text/plain": [
76
       "[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17]"
77
      ]
78
     },
79
     "execution_count": 6,
80
     "metadata": {},
81
     "output_type": "execute_result"
82
    }
83
   ],
84
   "source": [
85
    "df['subject'].unique()\n",
86
    "list_of_subjects=list(df['subject'].unique())\n",
87
    "list_of_subjects.sort()\n",
88
    "list_of_subjects"
89
   ]
90
  },
91
  {
92
   "cell_type": "code",
93
   "execution_count": 7,
94
   "metadata": {},
95
   "outputs": [
96
    {
97
     "data": {
98
      "text/plain": [
99
       "['chest_ACC_x',\n",
100
       " 'chest_ACC_y',\n",
101
       " 'chest_ACC_z',\n",
102
       " 'chest_ECG',\n",
103
       " 'chest_EMG',\n",
104
       " 'chest_EDA',\n",
105
       " 'chest_Temp',\n",
106
       " 'chest_Resp']"
107
      ]
108
     },
109
     "execution_count": 7,
110
     "metadata": {},
111
     "output_type": "execute_result"
112
    }
113
   ],
114
   "source": [
115
    "features=df.columns.tolist()\n",
116
    "to_remove = [fea for fea in features if \"target\"  in fea or \"subject\"  in fea]\n",
117
    "feature = [x for x in features if x not in to_remove]\n",
118
    "feature"
119
   ]
120
  },
121
  {
122
   "cell_type": "code",
123
   "execution_count": 8,
124
   "metadata": {},
125
   "outputs": [
126
    {
127
     "data": {
128
      "text/plain": [
129
       "array([1, 2, 4, 3])"
130
      ]
131
     },
132
     "execution_count": 8,
133
     "metadata": {},
134
     "output_type": "execute_result"
135
    }
136
   ],
137
   "source": [
138
    "df['target'].unique()"
139
   ]
140
  },
141
  {
142
   "cell_type": "code",
143
   "execution_count": 9,
144
   "metadata": {},
145
   "outputs": [
146
    {
147
     "name": "stdout",
148
     "output_type": "stream",
149
     "text": [
150
      "6\n",
151
      "11\n",
152
      "14\n",
153
      "8\n",
154
      "15\n",
155
      "9\n",
156
      "10\n",
157
      "2\n",
158
      "16\n",
159
      "4\n",
160
      "13\n",
161
      "3\n",
162
      "17\n",
163
      "5\n",
164
      "7\n",
165
      "CPU times: user 2.25 s, sys: 663 ms, total: 2.92 s\n",
166
      "Wall time: 3.07 s\n"
167
     ]
168
    }
169
   ],
170
   "source": [
171
    "%%time\n",
172
    "test_subject=list(df['subject'].unique())\n",
173
    "for i in test_subject:\n",
174
    "    print(i)\n",
175
    "    globals()['subject_%s' % i]=df[df['subject'] == i]\n",
176
    "#     globals()['subject_%s_train' % i],globals()['subject_%s_test' % i]=train_test_split(globals()['subject_%s' % i], test_size=test_shape)"
177
   ]
178
  },
179
  {
180
   "cell_type": "code",
181
   "execution_count": 10,
182
   "metadata": {},
183
   "outputs": [],
184
   "source": [
185
    "subject_list=[subject_2,subject_3,subject_4,subject_5,subject_6,subject_7,subject_8,subject_9,subject_10,subject_11,subject_13,subject_14,subject_15,subject_16,subject_17]"
186
   ]
187
  },
188
  {
189
   "cell_type": "code",
190
   "execution_count": 11,
191
   "metadata": {},
192
   "outputs": [],
193
   "source": [
194
    "x=[2,3,4,5,6,7,8,9,10,11,13,14,15,16,17]"
195
   ]
196
  },
197
  {
198
   "cell_type": "code",
199
   "execution_count": 12,
200
   "metadata": {},
201
   "outputs": [],
202
   "source": [
203
    "\n",
204
    "for i in range(len(x)):\n",
205
    "        \n",
206
    "        globals()['df_1_%s' % x[i]]=subject_list[i][subject_list[i]['target']==1]\n",
207
    "        globals()['df_2_%s' % x[i]]=subject_list[i][subject_list[i]['target']==2]\n",
208
    "        globals()['df_3_%s' % x[i]]=subject_list[i][subject_list[i]['target']==3]\n",
209
    "        globals()['df_4_%s' % x[i]]=subject_list[i][subject_list[i]['target']==4]"
210
   ]
211
  },
212
  {
213
   "cell_type": "code",
214
   "execution_count": 13,
215
   "metadata": {},
216
   "outputs": [
217
    {
218
     "name": "stdout",
219
     "output_type": "stream",
220
     "text": [
221
      "ExtraTreesClassifier\t LogisticRegression\t RandomForestClassifier\t classification_report\t df\t df_1_10\t df_1_11\t df_1_13\t df_1_14\t \n",
222
      "df_1_15\t df_1_16\t df_1_17\t df_1_2\t df_1_3\t df_1_4\t df_1_5\t df_1_6\t df_1_7\t \n",
223
      "df_1_8\t df_1_9\t df_2_10\t df_2_11\t df_2_13\t df_2_14\t df_2_15\t df_2_16\t df_2_17\t \n",
224
      "df_2_2\t df_2_3\t df_2_4\t df_2_5\t df_2_6\t df_2_7\t df_2_8\t df_2_9\t df_3_10\t \n",
225
      "df_3_11\t df_3_13\t df_3_14\t df_3_15\t df_3_16\t df_3_17\t df_3_2\t df_3_3\t df_3_4\t \n",
226
      "df_3_5\t df_3_6\t df_3_7\t df_3_8\t df_3_9\t df_4_10\t df_4_11\t df_4_13\t df_4_14\t \n",
227
      "df_4_15\t df_4_16\t df_4_17\t df_4_2\t df_4_3\t df_4_4\t df_4_5\t df_4_6\t df_4_7\t \n",
228
      "df_4_8\t df_4_9\t feature\t features\t i\t list_of_subjects\t np\t pd\t subject_10\t \n",
229
      "subject_11\t subject_13\t subject_14\t subject_15\t subject_16\t subject_17\t subject_2\t subject_3\t subject_4\t \n",
230
      "subject_5\t subject_6\t subject_7\t subject_8\t subject_9\t subject_list\t test_subject\t to_remove\t train_test_split\t \n",
231
      "x\t \n"
232
     ]
233
    }
234
   ],
235
   "source": [
236
    "who"
237
   ]
238
  },
239
  {
240
   "cell_type": "code",
241
   "execution_count": 14,
242
   "metadata": {},
243
   "outputs": [],
244
   "source": [
245
    "x=[2,3,4,5,6,7,8,9,10,11,13,14,15,16,17]\n",
246
    "cls=[1,2,3,4]"
247
   ]
248
  },
249
  {
250
   "cell_type": "code",
251
   "execution_count": 15,
252
   "metadata": {},
253
   "outputs": [
254
    {
255
     "data": {
256
      "text/plain": [
257
       "84000"
258
      ]
259
     },
260
     "execution_count": 15,
261
     "metadata": {},
262
     "output_type": "execute_result"
263
    }
264
   ],
265
   "source": [
266
    "no_of_rows=int(700*120)\n",
267
    "no_of_rows"
268
   ]
269
  },
270
  {
271
   "cell_type": "code",
272
   "execution_count": 16,
273
   "metadata": {},
274
   "outputs": [],
275
   "source": [
276
    "for i in cls:\n",
277
    "    for j in x:\n",
278
    "        globals()['df_{}_train_{}'.format(i,j)] = globals()['df_{}_{}'.format(i,j)].iloc[:no_of_rows]\n",
279
    "        #globals()['df_{}_train_{}'.format(i,j)],globals()['df_{}_test_{}'.format(i,j)]=train_test_split(globals()['df_{}_{}'.format(i,j)], test_size=0.3)\n",
280
    "        #print('subject_'+str(i))\n",
281
    "        globals()['df_{}_test_{}'.format(i,j)] = globals()['df_{}_{}'.format(i,j)].iloc[no_of_rows:]        "
282
   ]
283
  },
284
  {
285
   "cell_type": "code",
286
   "execution_count": 17,
287
   "metadata": {
288
    "scrolled": true
289
   },
290
   "outputs": [],
291
   "source": [
292
    "concat_list=[]\n",
293
    "for i in cls:\n",
294
    "    for j in x:\n",
295
    "        concat_list.append(globals()['df_{}_train_{}'.format(i,j)])\n",
296
    "#concat_list[0]"
297
   ]
298
  },
299
  {
300
   "cell_type": "code",
301
   "execution_count": 22,
302
   "metadata": {
303
    "collapsed": true
304
   },
305
   "outputs": [
306
    {
307
     "data": {
308
      "text/html": [
309
       "<div>\n",
310
       "<style scoped>\n",
311
       "    .dataframe tbody tr th:only-of-type {\n",
312
       "        vertical-align: middle;\n",
313
       "    }\n",
314
       "\n",
315
       "    .dataframe tbody tr th {\n",
316
       "        vertical-align: top;\n",
317
       "    }\n",
318
       "\n",
319
       "    .dataframe thead th {\n",
320
       "        text-align: right;\n",
321
       "    }\n",
322
       "</style>\n",
323
       "<table border=\"1\" class=\"dataframe\">\n",
324
       "  <thead>\n",
325
       "    <tr style=\"text-align: right;\">\n",
326
       "      <th></th>\n",
327
       "      <th>target</th>\n",
328
       "      <th>subject</th>\n",
329
       "      <th>chest_ACC_x</th>\n",
330
       "      <th>chest_ACC_y</th>\n",
331
       "      <th>chest_ACC_z</th>\n",
332
       "      <th>chest_ECG</th>\n",
333
       "      <th>chest_EMG</th>\n",
334
       "      <th>chest_EDA</th>\n",
335
       "      <th>chest_Temp</th>\n",
336
       "      <th>chest_Resp</th>\n",
337
       "    </tr>\n",
338
       "  </thead>\n",
339
       "  <tbody>\n",
340
       "    <tr>\n",
341
       "      <td>14786800</td>\n",
342
       "      <td>1</td>\n",
343
       "      <td>2</td>\n",
344
       "      <td>0.8914</td>\n",
345
       "      <td>-0.1102</td>\n",
346
       "      <td>-0.2576</td>\n",
347
       "      <td>0.030945</td>\n",
348
       "      <td>-0.003708</td>\n",
349
       "      <td>5.710983</td>\n",
350
       "      <td>29.083618</td>\n",
351
       "      <td>1.191711</td>\n",
352
       "    </tr>\n",
353
       "    <tr>\n",
354
       "      <td>14786801</td>\n",
355
       "      <td>1</td>\n",
356
       "      <td>2</td>\n",
357
       "      <td>0.8926</td>\n",
358
       "      <td>-0.1086</td>\n",
359
       "      <td>-0.2544</td>\n",
360
       "      <td>0.033646</td>\n",
361
       "      <td>-0.014145</td>\n",
362
       "      <td>5.719376</td>\n",
363
       "      <td>29.122437</td>\n",
364
       "      <td>1.139832</td>\n",
365
       "    </tr>\n",
366
       "    <tr>\n",
367
       "      <td>14786802</td>\n",
368
       "      <td>1</td>\n",
369
       "      <td>2</td>\n",
370
       "      <td>0.8930</td>\n",
371
       "      <td>-0.1094</td>\n",
372
       "      <td>-0.2580</td>\n",
373
       "      <td>0.033005</td>\n",
374
       "      <td>0.010208</td>\n",
375
       "      <td>5.706406</td>\n",
376
       "      <td>29.115234</td>\n",
377
       "      <td>1.141357</td>\n",
378
       "    </tr>\n",
379
       "    <tr>\n",
380
       "      <td>14786803</td>\n",
381
       "      <td>1</td>\n",
382
       "      <td>2</td>\n",
383
       "      <td>0.8934</td>\n",
384
       "      <td>-0.1082</td>\n",
385
       "      <td>-0.2538</td>\n",
386
       "      <td>0.031815</td>\n",
387
       "      <td>0.012634</td>\n",
388
       "      <td>5.712509</td>\n",
389
       "      <td>29.126709</td>\n",
390
       "      <td>1.155090</td>\n",
391
       "    </tr>\n",
392
       "    <tr>\n",
393
       "      <td>14786804</td>\n",
394
       "      <td>1</td>\n",
395
       "      <td>2</td>\n",
396
       "      <td>0.8930</td>\n",
397
       "      <td>-0.1096</td>\n",
398
       "      <td>-0.2570</td>\n",
399
       "      <td>0.030350</td>\n",
400
       "      <td>0.002060</td>\n",
401
       "      <td>5.727005</td>\n",
402
       "      <td>29.100861</td>\n",
403
       "      <td>1.133728</td>\n",
404
       "    </tr>\n",
405
       "    <tr>\n",
406
       "      <td>...</td>\n",
407
       "      <td>...</td>\n",
408
       "      <td>...</td>\n",
409
       "      <td>...</td>\n",
410
       "      <td>...</td>\n",
411
       "      <td>...</td>\n",
412
       "      <td>...</td>\n",
413
       "      <td>...</td>\n",
414
       "      <td>...</td>\n",
415
       "      <td>...</td>\n",
416
       "      <td>...</td>\n",
417
       "    </tr>\n",
418
       "    <tr>\n",
419
       "      <td>16809094</td>\n",
420
       "      <td>4</td>\n",
421
       "      <td>2</td>\n",
422
       "      <td>0.4378</td>\n",
423
       "      <td>-0.2348</td>\n",
424
       "      <td>-0.8380</td>\n",
425
       "      <td>-0.182602</td>\n",
426
       "      <td>-0.015793</td>\n",
427
       "      <td>0.484085</td>\n",
428
       "      <td>31.926239</td>\n",
429
       "      <td>-1.609802</td>\n",
430
       "    </tr>\n",
431
       "    <tr>\n",
432
       "      <td>16809095</td>\n",
433
       "      <td>4</td>\n",
434
       "      <td>2</td>\n",
435
       "      <td>0.4378</td>\n",
436
       "      <td>-0.2338</td>\n",
437
       "      <td>-0.8394</td>\n",
438
       "      <td>-0.170609</td>\n",
439
       "      <td>0.000687</td>\n",
440
       "      <td>0.473404</td>\n",
441
       "      <td>31.932190</td>\n",
442
       "      <td>-1.646423</td>\n",
443
       "    </tr>\n",
444
       "    <tr>\n",
445
       "      <td>16809096</td>\n",
446
       "      <td>4</td>\n",
447
       "      <td>2</td>\n",
448
       "      <td>0.4388</td>\n",
449
       "      <td>-0.2338</td>\n",
450
       "      <td>-0.8386</td>\n",
451
       "      <td>-0.160812</td>\n",
452
       "      <td>0.004532</td>\n",
453
       "      <td>0.463486</td>\n",
454
       "      <td>31.918823</td>\n",
455
       "      <td>-1.643372</td>\n",
456
       "    </tr>\n",
457
       "    <tr>\n",
458
       "      <td>16809097</td>\n",
459
       "      <td>4</td>\n",
460
       "      <td>2</td>\n",
461
       "      <td>0.4398</td>\n",
462
       "      <td>-0.2374</td>\n",
463
       "      <td>-0.8390</td>\n",
464
       "      <td>-0.156326</td>\n",
465
       "      <td>0.000595</td>\n",
466
       "      <td>0.459290</td>\n",
467
       "      <td>31.932190</td>\n",
468
       "      <td>-1.661682</td>\n",
469
       "    </tr>\n",
470
       "    <tr>\n",
471
       "      <td>16809098</td>\n",
472
       "      <td>4</td>\n",
473
       "      <td>2</td>\n",
474
       "      <td>0.4386</td>\n",
475
       "      <td>-0.2366</td>\n",
476
       "      <td>-0.8408</td>\n",
477
       "      <td>-0.154312</td>\n",
478
       "      <td>-0.009201</td>\n",
479
       "      <td>0.455475</td>\n",
480
       "      <td>31.927704</td>\n",
481
       "      <td>-1.646423</td>\n",
482
       "    </tr>\n",
483
       "  </tbody>\n",
484
       "</table>\n",
485
       "<p>2022299 rows × 10 columns</p>\n",
486
       "</div>"
487
      ],
488
      "text/plain": [
489
       "          target  subject  chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  \\\n",
490
       "14786800       1        2       0.8914      -0.1102      -0.2576   0.030945   \n",
491
       "14786801       1        2       0.8926      -0.1086      -0.2544   0.033646   \n",
492
       "14786802       1        2       0.8930      -0.1094      -0.2580   0.033005   \n",
493
       "14786803       1        2       0.8934      -0.1082      -0.2538   0.031815   \n",
494
       "14786804       1        2       0.8930      -0.1096      -0.2570   0.030350   \n",
495
       "...          ...      ...          ...          ...          ...        ...   \n",
496
       "16809094       4        2       0.4378      -0.2348      -0.8380  -0.182602   \n",
497
       "16809095       4        2       0.4378      -0.2338      -0.8394  -0.170609   \n",
498
       "16809096       4        2       0.4388      -0.2338      -0.8386  -0.160812   \n",
499
       "16809097       4        2       0.4398      -0.2374      -0.8390  -0.156326   \n",
500
       "16809098       4        2       0.4386      -0.2366      -0.8408  -0.154312   \n",
501
       "\n",
502
       "          chest_EMG  chest_EDA  chest_Temp  chest_Resp  \n",
503
       "14786800  -0.003708   5.710983   29.083618    1.191711  \n",
504
       "14786801  -0.014145   5.719376   29.122437    1.139832  \n",
505
       "14786802   0.010208   5.706406   29.115234    1.141357  \n",
506
       "14786803   0.012634   5.712509   29.126709    1.155090  \n",
507
       "14786804   0.002060   5.727005   29.100861    1.133728  \n",
508
       "...             ...        ...         ...         ...  \n",
509
       "16809094  -0.015793   0.484085   31.926239   -1.609802  \n",
510
       "16809095   0.000687   0.473404   31.932190   -1.646423  \n",
511
       "16809096   0.004532   0.463486   31.918823   -1.643372  \n",
512
       "16809097   0.000595   0.459290   31.932190   -1.661682  \n",
513
       "16809098  -0.009201   0.455475   31.927704   -1.646423  \n",
514
       "\n",
515
       "[2022299 rows x 10 columns]"
516
      ]
517
     },
518
     "execution_count": 22,
519
     "metadata": {},
520
     "output_type": "execute_result"
521
    }
522
   ],
523
   "source": [
524
    "subject_2"
525
   ]
526
  },
527
  {
528
   "cell_type": "code",
529
   "execution_count": 18,
530
   "metadata": {},
531
   "outputs": [
532
    {
533
     "data": {
534
      "text/html": [
535
       "<div>\n",
536
       "<style scoped>\n",
537
       "    .dataframe tbody tr th:only-of-type {\n",
538
       "        vertical-align: middle;\n",
539
       "    }\n",
540
       "\n",
541
       "    .dataframe tbody tr th {\n",
542
       "        vertical-align: top;\n",
543
       "    }\n",
544
       "\n",
545
       "    .dataframe thead th {\n",
546
       "        text-align: right;\n",
547
       "    }\n",
548
       "</style>\n",
549
       "<table border=\"1\" class=\"dataframe\">\n",
550
       "  <thead>\n",
551
       "    <tr style=\"text-align: right;\">\n",
552
       "      <th></th>\n",
553
       "      <th>target</th>\n",
554
       "      <th>subject</th>\n",
555
       "      <th>chest_ACC_x</th>\n",
556
       "      <th>chest_ACC_y</th>\n",
557
       "      <th>chest_ACC_z</th>\n",
558
       "      <th>chest_ECG</th>\n",
559
       "      <th>chest_EMG</th>\n",
560
       "      <th>chest_EDA</th>\n",
561
       "      <th>chest_Temp</th>\n",
562
       "      <th>chest_Resp</th>\n",
563
       "    </tr>\n",
564
       "  </thead>\n",
565
       "  <tbody>\n",
566
       "    <tr>\n",
567
       "      <td>14870800</td>\n",
568
       "      <td>1</td>\n",
569
       "      <td>2</td>\n",
570
       "      <td>0.6296</td>\n",
571
       "      <td>-0.1086</td>\n",
572
       "      <td>-0.7042</td>\n",
573
       "      <td>0.126160</td>\n",
574
       "      <td>-0.005585</td>\n",
575
       "      <td>3.750992</td>\n",
576
       "      <td>28.752167</td>\n",
577
       "      <td>-2.301025</td>\n",
578
       "    </tr>\n",
579
       "    <tr>\n",
580
       "      <td>14870801</td>\n",
581
       "      <td>1</td>\n",
582
       "      <td>2</td>\n",
583
       "      <td>0.6296</td>\n",
584
       "      <td>-0.1058</td>\n",
585
       "      <td>-0.7094</td>\n",
586
       "      <td>0.124100</td>\n",
587
       "      <td>-0.007004</td>\n",
588
       "      <td>3.757477</td>\n",
589
       "      <td>28.765045</td>\n",
590
       "      <td>-2.740479</td>\n",
591
       "    </tr>\n",
592
       "    <tr>\n",
593
       "      <td>14870802</td>\n",
594
       "      <td>1</td>\n",
595
       "      <td>2</td>\n",
596
       "      <td>0.6292</td>\n",
597
       "      <td>-0.1042</td>\n",
598
       "      <td>-0.7086</td>\n",
599
       "      <td>0.120346</td>\n",
600
       "      <td>0.002335</td>\n",
601
       "      <td>3.776169</td>\n",
602
       "      <td>28.745026</td>\n",
603
       "      <td>-2.276611</td>\n",
604
       "    </tr>\n",
605
       "    <tr>\n",
606
       "      <td>14870803</td>\n",
607
       "      <td>1</td>\n",
608
       "      <td>2</td>\n",
609
       "      <td>0.6266</td>\n",
610
       "      <td>-0.1022</td>\n",
611
       "      <td>-0.7086</td>\n",
612
       "      <td>0.113754</td>\n",
613
       "      <td>-0.012863</td>\n",
614
       "      <td>3.753662</td>\n",
615
       "      <td>28.766479</td>\n",
616
       "      <td>-2.287292</td>\n",
617
       "    </tr>\n",
618
       "    <tr>\n",
619
       "      <td>14870804</td>\n",
620
       "      <td>1</td>\n",
621
       "      <td>2</td>\n",
622
       "      <td>0.6258</td>\n",
623
       "      <td>-0.1022</td>\n",
624
       "      <td>-0.7106</td>\n",
625
       "      <td>0.109909</td>\n",
626
       "      <td>-0.002975</td>\n",
627
       "      <td>3.759766</td>\n",
628
       "      <td>28.737854</td>\n",
629
       "      <td>-2.284241</td>\n",
630
       "    </tr>\n",
631
       "    <tr>\n",
632
       "      <td>...</td>\n",
633
       "      <td>...</td>\n",
634
       "      <td>...</td>\n",
635
       "      <td>...</td>\n",
636
       "      <td>...</td>\n",
637
       "      <td>...</td>\n",
638
       "      <td>...</td>\n",
639
       "      <td>...</td>\n",
640
       "      <td>...</td>\n",
641
       "      <td>...</td>\n",
642
       "      <td>...</td>\n",
643
       "    </tr>\n",
644
       "    <tr>\n",
645
       "      <td>15587595</td>\n",
646
       "      <td>1</td>\n",
647
       "      <td>2</td>\n",
648
       "      <td>0.7148</td>\n",
649
       "      <td>0.0758</td>\n",
650
       "      <td>-0.0428</td>\n",
651
       "      <td>0.308167</td>\n",
652
       "      <td>0.016617</td>\n",
653
       "      <td>1.204681</td>\n",
654
       "      <td>29.716492</td>\n",
655
       "      <td>-1.144409</td>\n",
656
       "    </tr>\n",
657
       "    <tr>\n",
658
       "      <td>15587596</td>\n",
659
       "      <td>1</td>\n",
660
       "      <td>2</td>\n",
661
       "      <td>0.7144</td>\n",
662
       "      <td>0.0670</td>\n",
663
       "      <td>-0.0618</td>\n",
664
       "      <td>0.332840</td>\n",
665
       "      <td>-0.001740</td>\n",
666
       "      <td>1.197052</td>\n",
667
       "      <td>29.762756</td>\n",
668
       "      <td>-1.118469</td>\n",
669
       "    </tr>\n",
670
       "    <tr>\n",
671
       "      <td>15587597</td>\n",
672
       "      <td>1</td>\n",
673
       "      <td>2</td>\n",
674
       "      <td>0.7146</td>\n",
675
       "      <td>0.0642</td>\n",
676
       "      <td>-0.0726</td>\n",
677
       "      <td>0.359528</td>\n",
678
       "      <td>-0.005814</td>\n",
679
       "      <td>1.200104</td>\n",
680
       "      <td>29.715027</td>\n",
681
       "      <td>-1.078796</td>\n",
682
       "    </tr>\n",
683
       "    <tr>\n",
684
       "      <td>15587598</td>\n",
685
       "      <td>1</td>\n",
686
       "      <td>2</td>\n",
687
       "      <td>0.7244</td>\n",
688
       "      <td>0.0606</td>\n",
689
       "      <td>-0.0818</td>\n",
690
       "      <td>0.387680</td>\n",
691
       "      <td>-0.001602</td>\n",
692
       "      <td>1.190948</td>\n",
693
       "      <td>29.717896</td>\n",
694
       "      <td>-1.025391</td>\n",
695
       "    </tr>\n",
696
       "    <tr>\n",
697
       "      <td>15587599</td>\n",
698
       "      <td>1</td>\n",
699
       "      <td>2</td>\n",
700
       "      <td>0.7282</td>\n",
701
       "      <td>0.0506</td>\n",
702
       "      <td>-0.0948</td>\n",
703
       "      <td>0.415009</td>\n",
704
       "      <td>-0.028244</td>\n",
705
       "      <td>1.198959</td>\n",
706
       "      <td>29.717896</td>\n",
707
       "      <td>-0.996399</td>\n",
708
       "    </tr>\n",
709
       "  </tbody>\n",
710
       "</table>\n",
711
       "<p>716800 rows × 10 columns</p>\n",
712
       "</div>"
713
      ],
714
      "text/plain": [
715
       "          target  subject  chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  \\\n",
716
       "14870800       1        2       0.6296      -0.1086      -0.7042   0.126160   \n",
717
       "14870801       1        2       0.6296      -0.1058      -0.7094   0.124100   \n",
718
       "14870802       1        2       0.6292      -0.1042      -0.7086   0.120346   \n",
719
       "14870803       1        2       0.6266      -0.1022      -0.7086   0.113754   \n",
720
       "14870804       1        2       0.6258      -0.1022      -0.7106   0.109909   \n",
721
       "...          ...      ...          ...          ...          ...        ...   \n",
722
       "15587595       1        2       0.7148       0.0758      -0.0428   0.308167   \n",
723
       "15587596       1        2       0.7144       0.0670      -0.0618   0.332840   \n",
724
       "15587597       1        2       0.7146       0.0642      -0.0726   0.359528   \n",
725
       "15587598       1        2       0.7244       0.0606      -0.0818   0.387680   \n",
726
       "15587599       1        2       0.7282       0.0506      -0.0948   0.415009   \n",
727
       "\n",
728
       "          chest_EMG  chest_EDA  chest_Temp  chest_Resp  \n",
729
       "14870800  -0.005585   3.750992   28.752167   -2.301025  \n",
730
       "14870801  -0.007004   3.757477   28.765045   -2.740479  \n",
731
       "14870802   0.002335   3.776169   28.745026   -2.276611  \n",
732
       "14870803  -0.012863   3.753662   28.766479   -2.287292  \n",
733
       "14870804  -0.002975   3.759766   28.737854   -2.284241  \n",
734
       "...             ...        ...         ...         ...  \n",
735
       "15587595   0.016617   1.204681   29.716492   -1.144409  \n",
736
       "15587596  -0.001740   1.197052   29.762756   -1.118469  \n",
737
       "15587597  -0.005814   1.200104   29.715027   -1.078796  \n",
738
       "15587598  -0.001602   1.190948   29.717896   -1.025391  \n",
739
       "15587599  -0.028244   1.198959   29.717896   -0.996399  \n",
740
       "\n",
741
       "[716800 rows x 10 columns]"
742
      ]
743
     },
744
     "execution_count": 18,
745
     "metadata": {},
746
     "output_type": "execute_result"
747
    }
748
   ],
749
   "source": [
750
    "concat_list1=[]\n",
751
    "for i in cls:\n",
752
    "    for j in x:\n",
753
    "        concat_list1.append(globals()['df_{}_test_{}'.format(i,j)])\n",
754
    "concat_list1[0]"
755
   ]
756
  },
757
  {
758
   "cell_type": "code",
759
   "execution_count": 19,
760
   "metadata": {
761
    "scrolled": true
762
   },
763
   "outputs": [
764
    {
765
     "data": {
766
      "text/plain": [
767
       "(5040000, 10)"
768
      ]
769
     },
770
     "execution_count": 19,
771
     "metadata": {},
772
     "output_type": "execute_result"
773
    }
774
   ],
775
   "source": [
776
    "train_df=pd.concat(concat_list)\n",
777
    "train_df.shape"
778
   ]
779
  },
780
  {
781
   "cell_type": "code",
782
   "execution_count": 20,
783
   "metadata": {},
784
   "outputs": [
785
    {
786
     "data": {
787
      "text/plain": [
788
       "4    1260000\n",
789
       "3    1260000\n",
790
       "2    1260000\n",
791
       "1    1260000\n",
792
       "Name: target, dtype: int64"
793
      ]
794
     },
795
     "execution_count": 20,
796
     "metadata": {},
797
     "output_type": "execute_result"
798
    }
799
   ],
800
   "source": [
801
    "train_df.target.value_counts()"
802
   ]
803
  },
804
  {
805
   "cell_type": "code",
806
   "execution_count": 21,
807
   "metadata": {
808
    "scrolled": true
809
   },
810
   "outputs": [
811
    {
812
     "data": {
813
      "text/plain": [
814
       "15"
815
      ]
816
     },
817
     "execution_count": 21,
818
     "metadata": {},
819
     "output_type": "execute_result"
820
    }
821
   ],
822
   "source": [
823
    "len(train_df.subject.unique())"
824
   ]
825
  },
826
  {
827
   "cell_type": "code",
828
   "execution_count": 22,
829
   "metadata": {},
830
   "outputs": [
831
    {
832
     "data": {
833
      "text/plain": [
834
       "(26430603, 10)"
835
      ]
836
     },
837
     "execution_count": 22,
838
     "metadata": {},
839
     "output_type": "execute_result"
840
    }
841
   ],
842
   "source": [
843
    "test_df=pd.concat(concat_list1)\n",
844
    "test_df.shape"
845
   ]
846
  },
847
  {
848
   "cell_type": "code",
849
   "execution_count": 23,
850
   "metadata": {},
851
   "outputs": [],
852
   "source": [
853
    "for i in test_subject:\n",
854
    "    del(globals()['subject_%s' % i])\n",
855
    "    \n",
856
    "for i in range(len(x)):   \n",
857
    "        del(globals()['df_1_%s' % x[i]])\n",
858
    "        del(globals()['df_2_%s' % x[i]])\n",
859
    "        del(globals()['df_3_%s' % x[i]])\n",
860
    "        del(globals()['df_4_%s' % x[i]])\n",
861
    "for i in cls:\n",
862
    "    for j in x:\n",
863
    "        del(globals()['df_{}_train_{}'.format(i,j)])\n",
864
    "        del(globals()['df_{}_test_{}'.format(i,j)])\n",
865
    "del df"
866
   ]
867
  },
868
  {
869
   "cell_type": "code",
870
   "execution_count": null,
871
   "metadata": {},
872
   "outputs": [],
873
   "source": [
874
    "who"
875
   ]
876
  },
877
  {
878
   "cell_type": "code",
879
   "execution_count": null,
880
   "metadata": {},
881
   "outputs": [],
882
   "source": [
883
    "%%time\n",
884
    "et = ExtraTreesClassifier(n_estimators=50, n_jobs=10, verbose=2,random_state=0)"
885
   ]
886
  },
887
  {
888
   "cell_type": "code",
889
   "execution_count": null,
890
   "metadata": {},
891
   "outputs": [],
892
   "source": [
893
    "#et = RandomForestClassifier(n_estimators=100, n_jobs=10, verbose=2,random_state=0)"
894
   ]
895
  },
896
  {
897
   "cell_type": "code",
898
   "execution_count": null,
899
   "metadata": {
900
    "scrolled": true
901
   },
902
   "outputs": [],
903
   "source": [
904
    "et.fit(train_df[feature],train_df['target'])"
905
   ]
906
  },
907
  {
908
   "cell_type": "code",
909
   "execution_count": null,
910
   "metadata": {},
911
   "outputs": [],
912
   "source": [
913
    "%%time \n",
914
    "y_pred=et.predict(test_df[feature])"
915
   ]
916
  },
917
  {
918
   "cell_type": "code",
919
   "execution_count": null,
920
   "metadata": {},
921
   "outputs": [],
922
   "source": [
923
    "print(classification_report(test_df['target'], y_pred))"
924
   ]
925
  },
926
  {
927
   "cell_type": "code",
928
   "execution_count": null,
929
   "metadata": {},
930
   "outputs": [],
931
   "source": [
932
    "#train_df.to_csv('1_min_train.csv')"
933
   ]
934
  },
935
  {
936
   "cell_type": "code",
937
   "execution_count": null,
938
   "metadata": {},
939
   "outputs": [],
940
   "source": [
941
    "#test_df.to_csv('1_min_test.csv')"
942
   ]
943
  },
944
  {
945
   "cell_type": "code",
946
   "execution_count": 33,
947
   "metadata": {},
948
   "outputs": [],
949
   "source": [
950
    "# train_df.to_csv('30_sec_train.csv')"
951
   ]
952
  },
953
  {
954
   "cell_type": "code",
955
   "execution_count": 34,
956
   "metadata": {},
957
   "outputs": [],
958
   "source": [
959
    "# test_df.to_csv('30_sec_test.csv')"
960
   ]
961
  },
962
  {
963
   "cell_type": "code",
964
   "execution_count": 24,
965
   "metadata": {},
966
   "outputs": [],
967
   "source": [
968
    "train_df.to_csv('2_min_train.csv')"
969
   ]
970
  },
971
  {
972
   "cell_type": "code",
973
   "execution_count": 25,
974
   "metadata": {},
975
   "outputs": [],
976
   "source": [
977
    "test_df.to_csv('2_min_test.csv')s"
978
   ]
979
  },
980
  {
981
   "cell_type": "code",
982
   "execution_count": null,
983
   "metadata": {},
984
   "outputs": [],
985
   "source": [
986
    "from sklearn.model_selection import cross_val_score\n",
987
    "scores = cross_val_score(et, train_df[feature],train_df['target'], cv=4)\n",
988
    "print(scores)"
989
   ]
990
  },
991
  {
992
   "cell_type": "code",
993
   "execution_count": 27,
994
   "metadata": {
995
    "scrolled": true
996
   },
997
   "outputs": [
998
    {
999
     "name": "stdout",
1000
     "output_type": "stream",
1001
     "text": [
1002
      "Fitting 10 folds for each of 6 candidates, totalling 60 fits\n"
1003
     ]
1004
    },
1005
    {
1006
     "name": "stderr",
1007
     "output_type": "stream",
1008
     "text": [
1009
      "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n"
1010
     ]
1011
    },
1012
    {
1013
     "name": "stdout",
1014
     "output_type": "stream",
1015
     "text": [
1016
      "[CV] n_neighbors=1 ...................................................\n",
1017
      "[CV] .................................... n_neighbors=1, total=  17.2s\n",
1018
      "[CV] n_neighbors=1 ...................................................\n"
1019
     ]
1020
    },
1021
    {
1022
     "name": "stderr",
1023
     "output_type": "stream",
1024
     "text": [
1025
      "[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:   17.2s remaining:    0.0s\n"
1026
     ]
1027
    },
1028
    {
1029
     "name": "stdout",
1030
     "output_type": "stream",
1031
     "text": [
1032
      "[CV] .................................... n_neighbors=1, total=  22.0s\n",
1033
      "[CV] n_neighbors=1 ...................................................\n",
1034
      "[CV] .................................... n_neighbors=1, total=  18.1s\n",
1035
      "[CV] n_neighbors=1 ...................................................\n",
1036
      "[CV] .................................... n_neighbors=1, total=  13.1s\n",
1037
      "[CV] n_neighbors=1 ...................................................\n",
1038
      "[CV] .................................... n_neighbors=1, total=  21.9s\n",
1039
      "[CV] n_neighbors=1 ...................................................\n",
1040
      "[CV] .................................... n_neighbors=1, total=  30.5s\n",
1041
      "[CV] n_neighbors=1 ...................................................\n",
1042
      "[CV] .................................... n_neighbors=1, total=  17.4s\n",
1043
      "[CV] n_neighbors=1 ...................................................\n",
1044
      "[CV] .................................... n_neighbors=1, total=  19.3s\n",
1045
      "[CV] n_neighbors=1 ...................................................\n",
1046
      "[CV] .................................... n_neighbors=1, total=  21.8s\n",
1047
      "[CV] n_neighbors=1 ...................................................\n",
1048
      "[CV] .................................... n_neighbors=1, total=  21.4s\n",
1049
      "[CV] n_neighbors=3 ...................................................\n",
1050
      "[CV] .................................... n_neighbors=3, total=  21.4s\n",
1051
      "[CV] n_neighbors=3 ...................................................\n",
1052
      "[CV] .................................... n_neighbors=3, total=  28.9s\n",
1053
      "[CV] n_neighbors=3 ...................................................\n",
1054
      "[CV] .................................... n_neighbors=3, total=  20.3s\n",
1055
      "[CV] n_neighbors=3 ...................................................\n",
1056
      "[CV] .................................... n_neighbors=3, total=  15.2s\n",
1057
      "[CV] n_neighbors=3 ...................................................\n",
1058
      "[CV] .................................... n_neighbors=3, total=  21.3s\n",
1059
      "[CV] n_neighbors=3 ...................................................\n",
1060
      "[CV] .................................... n_neighbors=3, total=  24.5s\n",
1061
      "[CV] n_neighbors=3 ...................................................\n",
1062
      "[CV] .................................... n_neighbors=3, total=  19.0s\n",
1063
      "[CV] n_neighbors=3 ...................................................\n",
1064
      "[CV] .................................... n_neighbors=3, total=  20.7s\n",
1065
      "[CV] n_neighbors=3 ...................................................\n",
1066
      "[CV] .................................... n_neighbors=3, total=  24.1s\n",
1067
      "[CV] n_neighbors=3 ...................................................\n",
1068
      "[CV] .................................... n_neighbors=3, total=  23.5s\n",
1069
      "[CV] n_neighbors=5 ...................................................\n",
1070
      "[CV] .................................... n_neighbors=5, total=  22.2s\n",
1071
      "[CV] n_neighbors=5 ...................................................\n",
1072
      "[CV] .................................... n_neighbors=5, total=  24.9s\n",
1073
      "[CV] n_neighbors=5 ...................................................\n",
1074
      "[CV] .................................... n_neighbors=5, total=  21.1s\n",
1075
      "[CV] n_neighbors=5 ...................................................\n",
1076
      "[CV] .................................... n_neighbors=5, total=  13.9s\n",
1077
      "[CV] n_neighbors=5 ...................................................\n",
1078
      "[CV] .................................... n_neighbors=5, total=  22.0s\n",
1079
      "[CV] n_neighbors=5 ...................................................\n",
1080
      "[CV] .................................... n_neighbors=5, total=  27.2s\n",
1081
      "[CV] n_neighbors=5 ...................................................\n",
1082
      "[CV] .................................... n_neighbors=5, total=  19.0s\n",
1083
      "[CV] n_neighbors=5 ...................................................\n",
1084
      "[CV] .................................... n_neighbors=5, total=  21.3s\n",
1085
      "[CV] n_neighbors=5 ...................................................\n",
1086
      "[CV] .................................... n_neighbors=5, total=  25.0s\n",
1087
      "[CV] n_neighbors=5 ...................................................\n",
1088
      "[CV] .................................... n_neighbors=5, total=  24.3s\n",
1089
      "[CV] n_neighbors=7 ...................................................\n",
1090
      "[CV] .................................... n_neighbors=7, total=  22.7s\n",
1091
      "[CV] n_neighbors=7 ...................................................\n",
1092
      "[CV] .................................... n_neighbors=7, total=  25.2s\n",
1093
      "[CV] n_neighbors=7 ...................................................\n",
1094
      "[CV] .................................... n_neighbors=7, total=  21.6s\n",
1095
      "[CV] n_neighbors=7 ...................................................\n",
1096
      "[CV] .................................... n_neighbors=7, total=  13.8s\n",
1097
      "[CV] n_neighbors=7 ...................................................\n",
1098
      "[CV] .................................... n_neighbors=7, total=  22.1s\n",
1099
      "[CV] n_neighbors=7 ...................................................\n",
1100
      "[CV] .................................... n_neighbors=7, total=  28.4s\n",
1101
      "[CV] n_neighbors=7 ...................................................\n",
1102
      "[CV] .................................... n_neighbors=7, total=  19.4s\n",
1103
      "[CV] n_neighbors=7 ...................................................\n",
1104
      "[CV] .................................... n_neighbors=7, total=  21.6s\n",
1105
      "[CV] n_neighbors=7 ...................................................\n",
1106
      "[CV] .................................... n_neighbors=7, total=  25.3s\n",
1107
      "[CV] n_neighbors=7 ...................................................\n",
1108
      "[CV] .................................... n_neighbors=7, total=  24.4s\n",
1109
      "[CV] n_neighbors=9 ...................................................\n",
1110
      "[CV] .................................... n_neighbors=9, total=  23.3s\n",
1111
      "[CV] n_neighbors=9 ...................................................\n",
1112
      "[CV] .................................... n_neighbors=9, total=  25.8s\n",
1113
      "[CV] n_neighbors=9 ...................................................\n",
1114
      "[CV] .................................... n_neighbors=9, total=  22.1s\n",
1115
      "[CV] n_neighbors=9 ...................................................\n",
1116
      "[CV] .................................... n_neighbors=9, total=  13.8s\n",
1117
      "[CV] n_neighbors=9 ...................................................\n",
1118
      "[CV] .................................... n_neighbors=9, total=  22.5s\n",
1119
      "[CV] n_neighbors=9 ...................................................\n",
1120
      "[CV] .................................... n_neighbors=9, total=  28.0s\n",
1121
      "[CV] n_neighbors=9 ...................................................\n",
1122
      "[CV] .................................... n_neighbors=9, total=  21.1s\n",
1123
      "[CV] n_neighbors=9 ...................................................\n",
1124
      "[CV] .................................... n_neighbors=9, total=  22.1s\n",
1125
      "[CV] n_neighbors=9 ...................................................\n",
1126
      "[CV] .................................... n_neighbors=9, total=  26.2s\n",
1127
      "[CV] n_neighbors=9 ...................................................\n",
1128
      "[CV] .................................... n_neighbors=9, total=  24.9s\n",
1129
      "[CV] n_neighbors=11 ..................................................\n",
1130
      "[CV] ................................... n_neighbors=11, total=  24.0s\n",
1131
      "[CV] n_neighbors=11 ..................................................\n",
1132
      "[CV] ................................... n_neighbors=11, total=  26.5s\n",
1133
      "[CV] n_neighbors=11 ..................................................\n",
1134
      "[CV] ................................... n_neighbors=11, total=  29.7s\n",
1135
      "[CV] n_neighbors=11 ..................................................\n",
1136
      "[CV] ................................... n_neighbors=11, total=  14.2s\n",
1137
      "[CV] n_neighbors=11 ..................................................\n",
1138
      "[CV] ................................... n_neighbors=11, total=  23.2s\n",
1139
      "[CV] n_neighbors=11 ..................................................\n",
1140
      "[CV] ................................... n_neighbors=11, total=  28.7s\n",
1141
      "[CV] n_neighbors=11 ..................................................\n",
1142
      "[CV] ................................... n_neighbors=11, total=  21.7s\n",
1143
      "[CV] n_neighbors=11 ..................................................\n",
1144
      "[CV] ................................... n_neighbors=11, total=  22.7s\n",
1145
      "[CV] n_neighbors=11 ..................................................\n",
1146
      "[CV] ................................... n_neighbors=11, total=  27.1s\n",
1147
      "[CV] n_neighbors=11 ..................................................\n"
1148
     ]
1149
    },
1150
    {
1151
     "name": "stdout",
1152
     "output_type": "stream",
1153
     "text": [
1154
      "[CV] ................................... n_neighbors=11, total=  25.6s\n"
1155
     ]
1156
    },
1157
    {
1158
     "name": "stderr",
1159
     "output_type": "stream",
1160
     "text": [
1161
      "[Parallel(n_jobs=1)]: Done  60 out of  60 | elapsed: 22.4min finished\n"
1162
     ]
1163
    },
1164
    {
1165
     "data": {
1166
      "text/plain": [
1167
       "GridSearchCV(cv=10, error_score='raise-deprecating',\n",
1168
       "             estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30,\n",
1169
       "                                            metric='minkowski',\n",
1170
       "                                            metric_params=None, n_jobs=None,\n",
1171
       "                                            n_neighbors=5, p=2,\n",
1172
       "                                            weights='uniform'),\n",
1173
       "             iid='warn', n_jobs=None,\n",
1174
       "             param_grid={'n_neighbors': [1, 3, 5, 7, 9, 11]},\n",
1175
       "             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,\n",
1176
       "             scoring=None, verbose=2)"
1177
      ]
1178
     },
1179
     "execution_count": 27,
1180
     "metadata": {},
1181
     "output_type": "execute_result"
1182
    }
1183
   ],
1184
   "source": [
1185
    "from sklearn.model_selection import GridSearchCV\n",
1186
    "from sklearn.neighbors import KNeighborsClassifier\n",
1187
    "# param_grid = { \n",
1188
    "#     'n_estimators': [20],\n",
1189
    "#     'max_features': ['auto'],\n",
1190
    "# #     'max_depth' : [4,5,6,7,8],\n",
1191
    "#     'criterion' :['gini', 'entropy']\n",
1192
    "# }\n",
1193
    "\n",
1194
    "param_grid = { \n",
1195
    "    'n_neighbors': [1,3,5,7,9,11]\n",
1196
    "}\n",
1197
    "\n",
1198
    "clf = KNeighborsClassifier()\n",
1199
    "\n",
1200
    "CV_rfc = GridSearchCV(estimator=clf, param_grid=param_grid, cv= 10,verbose=2)\n",
1201
    "CV_rfc.fit(train_df[feature],train_df['target'])"
1202
   ]
1203
  },
1204
  {
1205
   "cell_type": "code",
1206
   "execution_count": 28,
1207
   "metadata": {},
1208
   "outputs": [
1209
    {
1210
     "data": {
1211
      "text/plain": [
1212
       "{'n_neighbors': 1}"
1213
      ]
1214
     },
1215
     "execution_count": 28,
1216
     "metadata": {},
1217
     "output_type": "execute_result"
1218
    }
1219
   ],
1220
   "source": [
1221
    "CV_rfc.best_params_"
1222
   ]
1223
  },
1224
  {
1225
   "cell_type": "code",
1226
   "execution_count": null,
1227
   "metadata": {},
1228
   "outputs": [],
1229
   "source": [
1230
    "%%time\n",
1231
    "et = ExtraTreesClassifier(n_estimators=20, n_jobs=10, verbose=2,random_state=0)"
1232
   ]
1233
  },
1234
  {
1235
   "cell_type": "code",
1236
   "execution_count": null,
1237
   "metadata": {},
1238
   "outputs": [],
1239
   "source": [
1240
    "et.fit(train_df[feature],train_df['target'])"
1241
   ]
1242
  },
1243
  {
1244
   "cell_type": "code",
1245
   "execution_count": null,
1246
   "metadata": {},
1247
   "outputs": [],
1248
   "source": [
1249
    "%%time \n",
1250
    "y_pred=et.predict(test_df[feature])"
1251
   ]
1252
  },
1253
  {
1254
   "cell_type": "code",
1255
   "execution_count": null,
1256
   "metadata": {},
1257
   "outputs": [],
1258
   "source": [
1259
    "print(classification_report(test_df['target'], y_pred))"
1260
   ]
1261
  },
1262
  {
1263
   "cell_type": "code",
1264
   "execution_count": null,
1265
   "metadata": {},
1266
   "outputs": [],
1267
   "source": [
1268
    "clf = KNeighborsClassifier(n_neighbors=1)\n",
1269
    "clf.fit(train_df[feature],train_df['target'])\n",
1270
    "y_pred=clf.predict(test_df[feature])"
1271
   ]
1272
  },
1273
  {
1274
   "cell_type": "code",
1275
   "execution_count": null,
1276
   "metadata": {},
1277
   "outputs": [],
1278
   "source": [
1279
    "print(classification_report(test_df['target'], y_pred))"
1280
   ]
1281
  },
1282
  {
1283
   "cell_type": "code",
1284
   "execution_count": null,
1285
   "metadata": {},
1286
   "outputs": [],
1287
   "source": []
1288
  }
1289
 ],
1290
 "metadata": {
1291
  "kernelspec": {
1292
   "display_name": "Python 3",
1293
   "language": "python",
1294
   "name": "python3"
1295
  },
1296
  "language_info": {
1297
   "codemirror_mode": {
1298
    "name": "ipython",
1299
    "version": 3
1300
   },
1301
   "file_extension": ".py",
1302
   "mimetype": "text/x-python",
1303
   "name": "python",
1304
   "nbconvert_exporter": "python",
1305
   "pygments_lexer": "ipython3",
1306
   "version": "3.6.8"
1307
  }
1308
 },
1309
 "nbformat": 4,
1310
 "nbformat_minor": 2
1311
}