Switch to side-by-side view

--- a
+++ b/Feature Importance for 15 subjects.ipynb
@@ -0,0 +1,1802 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "from sklearn.ensemble import RandomForestClassifier \n",
+    "from sklearn.model_selection import train_test_split\n",
+    "from sklearn.metrics import classification_report"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df = pd.read_csv(\"master_data.csv\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<class 'pandas.core.frame.DataFrame'>\n",
+      "RangeIndex: 59125500 entries, 0 to 59125499\n",
+      "Data columns (total 10 columns):\n",
+      "target         int64\n",
+      "subject        int64\n",
+      "chest_ACC_x    float64\n",
+      "chest_ACC_y    float64\n",
+      "chest_ACC_z    float64\n",
+      "chest_ECG      float64\n",
+      "chest_EMG      float64\n",
+      "chest_EDA      float64\n",
+      "chest_Temp     float64\n",
+      "chest_Resp     float64\n",
+      "dtypes: float64(8), int64(2)\n",
+      "memory usage: 4.4 GB\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.info()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "6     4825799\n",
+       "3     4400200\n",
+       "4     4393200\n",
+       "5     4250400\n",
+       "2     4165000\n",
+       "17    4022201\n",
+       "16    3826200\n",
+       "13    3794000\n",
+       "14    3763200\n",
+       "10    3740100\n",
+       "8     3719799\n",
+       "15    3576300\n",
+       "7     3563700\n",
+       "11    3556701\n",
+       "9     3528700\n",
+       "Name: subject, dtype: int64"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df['subject'].value_counts()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "feature_importances_list = []"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "6\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9981689328947815\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       1.00      1.00      1.00    902929\n",
+      "           1       1.00      1.00      1.00    271725\n",
+      "           2       1.00      1.00      1.00    150059\n",
+      "           3       1.00      0.99      1.00     86152\n",
+      "           4       1.00      1.00      1.00    181649\n",
+      "\n",
+      "    accuracy                           1.00   1592514\n",
+      "   macro avg       1.00      1.00      1.00   1592514\n",
+      "weighted avg       1.00      1.00      1.00   1592514\n",
+      "\n",
+      "11\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9880933312430988\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.99      0.99      0.99    475759\n",
+      "           1       1.00      1.00      1.00    272833\n",
+      "           2       1.00      0.99      1.00    157039\n",
+      "           3       0.98      0.98      0.98     85341\n",
+      "           4       0.98      0.98      0.98    182740\n",
+      "\n",
+      "    accuracy                           0.99   1173712\n",
+      "   macro avg       0.99      0.99      0.99   1173712\n",
+      "weighted avg       0.99      0.99      0.99   1173712\n",
+      "\n",
+      "14\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9876434948979592\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.99      0.99      0.99    543791\n",
+      "           1       1.00      1.00      1.00    272719\n",
+      "           2       0.98      0.98      0.98    155792\n",
+      "           3       0.98      0.97      0.97     85954\n",
+      "           4       0.99      0.99      0.99    183600\n",
+      "\n",
+      "    accuracy                           0.99   1241856\n",
+      "   macro avg       0.99      0.98      0.98   1241856\n",
+      "weighted avg       0.99      0.99      0.99   1241856\n",
+      "\n",
+      "8\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.99311057779255\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.99      0.99      0.99    533239\n",
+      "           1       1.00      1.00      1.00    270630\n",
+      "           2       0.99      0.99      0.99    155051\n",
+      "           3       0.99      0.99      0.99     85349\n",
+      "           4       0.99      0.99      0.99    183265\n",
+      "\n",
+      "    accuracy                           0.99   1227534\n",
+      "   macro avg       0.99      0.99      0.99   1227534\n",
+      "weighted avg       0.99      0.99      0.99   1227534\n",
+      "\n",
+      "15\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9935704668529096\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.99      0.99      0.99    481153\n",
+      "           1       1.00      1.00      1.00    271736\n",
+      "           2       1.00      1.00      1.00    158288\n",
+      "           3       0.99      0.99      0.99     85801\n",
+      "           4       1.00      1.00      1.00    183201\n",
+      "\n",
+      "    accuracy                           0.99   1180179\n",
+      "   macro avg       0.99      0.99      0.99   1180179\n",
+      "weighted avg       0.99      0.99      0.99   1180179\n",
+      "\n",
+      "9\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9942205516496332\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.99      0.99      0.99    473496\n",
+      "           1       1.00      1.00      1.00    272821\n",
+      "           2       1.00      1.00      1.00    148833\n",
+      "           3       0.98      0.99      0.99     86077\n",
+      "           4       0.99      0.99      0.99    183244\n",
+      "\n",
+      "    accuracy                           0.99   1164471\n",
+      "   macro avg       0.99      0.99      0.99   1164471\n",
+      "weighted avg       0.99      0.99      0.99   1164471\n",
+      "\n",
+      "10\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9887095872497332\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.99      0.98      0.99    524557\n",
+      "           1       1.00      1.00      1.00    272919\n",
+      "           2       0.99      0.99      0.99    167514\n",
+      "           3       0.97      0.98      0.98     85925\n",
+      "           4       0.98      0.99      0.99    183318\n",
+      "\n",
+      "    accuracy                           0.99   1234233\n",
+      "   macro avg       0.99      0.99      0.99   1234233\n",
+      "weighted avg       0.99      0.99      0.99   1234233\n",
+      "\n",
+      "2\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9942551566080978\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.99      0.99      0.99    707930\n",
+      "           1       1.00      1.00      1.00    264291\n",
+      "           2       0.99      0.99      0.99    141472\n",
+      "           3       0.99      0.99      0.99     83882\n",
+      "           4       0.99      0.99      0.99    176875\n",
+      "\n",
+      "    accuracy                           0.99   1374450\n",
+      "   macro avg       0.99      0.99      0.99   1374450\n",
+      "weighted avg       0.99      0.99      0.99   1374450\n",
+      "\n",
+      "16\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9909420375940683\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.99      0.99      0.99    566286\n",
+      "           1       1.00      1.00      1.00    273173\n",
+      "           2       1.00      0.99      1.00    155403\n",
+      "           3       0.97      0.97      0.97     84900\n",
+      "           4       0.99      0.99      0.99    182884\n",
+      "\n",
+      "    accuracy                           0.99   1262646\n",
+      "   macro avg       0.99      0.99      0.99   1262646\n",
+      "weighted avg       0.99      0.99      0.99   1262646\n",
+      "\n",
+      "4\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9948501678903209\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       1.00      0.99      1.00    763459\n",
+      "           1       1.00      1.00      1.00    267545\n",
+      "           2       1.00      1.00      1.00    147129\n",
+      "           3       0.97      0.99      0.98     86069\n",
+      "           4       1.00      1.00      1.00    185554\n",
+      "\n",
+      "    accuracy                           0.99   1449756\n",
+      "   macro avg       0.99      0.99      0.99   1449756\n",
+      "weighted avg       0.99      0.99      0.99   1449756\n",
+      "\n",
+      "13\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9953618951773934\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.99      1.00      0.99    554003\n",
+      "           1       1.00      1.00      1.00    273008\n",
+      "           2       1.00      1.00      1.00    153832\n",
+      "           3       0.99      0.99      0.99     88025\n",
+      "           4       1.00      0.99      1.00    183152\n",
+      "\n",
+      "    accuracy                           1.00   1252020\n",
+      "   macro avg       1.00      0.99      0.99   1252020\n",
+      "weighted avg       1.00      1.00      1.00   1252020\n",
+      "\n",
+      "3\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9984215593506081\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       1.00      1.00      1.00    774757\n",
+      "           1       1.00      1.00      1.00    263230\n",
+      "           2       1.00      1.00      1.00    147381\n",
+      "           3       1.00      1.00      1.00     86832\n",
+      "           4       1.00      1.00      1.00    179866\n",
+      "\n",
+      "    accuracy                           1.00   1452066\n",
+      "   macro avg       1.00      1.00      1.00   1452066\n",
+      "weighted avg       1.00      1.00      1.00   1452066\n",
+      "\n",
+      "17\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9960514628271707\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       1.00      1.00      1.00    632614\n",
+      "           1       1.00      1.00      1.00    273250\n",
+      "           2       1.00      1.00      1.00    167191\n",
+      "           3       0.99      0.99      0.99     85889\n",
+      "           4       0.99      0.99      0.99    168383\n",
+      "\n",
+      "    accuracy                           1.00   1327327\n",
+      "   macro avg       0.99      1.00      1.00   1327327\n",
+      "weighted avg       1.00      1.00      1.00   1327327\n",
+      "\n",
+      "5\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9962292319011686\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       1.00      1.00      1.00    706523\n",
+      "           1       1.00      1.00      1.00    276704\n",
+      "           2       0.99      0.99      0.99    149255\n",
+      "           3       1.00      1.00      1.00     86753\n",
+      "           4       1.00      1.00      1.00    183397\n",
+      "\n",
+      "    accuracy                           1.00   1402632\n",
+      "   macro avg       1.00      1.00      1.00   1402632\n",
+      "weighted avg       1.00      1.00      1.00   1402632\n",
+      "\n",
+      "7\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0.9961871429166657\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       1.00      1.00      1.00    486045\n",
+      "           1       1.00      1.00      1.00    274312\n",
+      "           2       1.00      1.00      1.00    147644\n",
+      "           3       0.99      0.99      0.99     85832\n",
+      "           4       1.00      1.00      1.00    182188\n",
+      "\n",
+      "    accuracy                           1.00   1176021\n",
+      "   macro avg       1.00      1.00      1.00   1176021\n",
+      "weighted avg       1.00      1.00      1.00   1176021\n",
+      "\n",
+      "CPU times: user 1h 2min 21s, sys: 35.1 s, total: 1h 2min 56s\n",
+      "Wall time: 1h 2min 56s\n"
+     ]
+    }
+   ],
+   "source": [
+    "%%time\n",
+    "for subject in df['subject'].unique():\n",
+    "    print (subject)\n",
+    "    temp = df[df['subject'] == subject]\n",
+    "    y = temp['target']\n",
+    "    X = temp.drop('target', 1)\n",
+    "    \n",
+    "    rf = RandomForestClassifier() \n",
+    "    \n",
+    "    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\n",
+    "    \n",
+    "    rf.fit(X_train, y_train)\n",
+    "    print (rf.score(X_test, y_test))\n",
+    "    \n",
+    "    print(classification_report(y_test, rf.predict(X_test)))\n",
+    "    \n",
+    "    feature_importances = pd.DataFrame(rf.feature_importances_,index = X_train.columns,columns=[str(subject)])\n",
+    "    feature_importances_dict = feature_importances.to_dict()\n",
+    "    feature_importances_list.append(feature_importances_dict)\n",
+    "       "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[{'6': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.1300669764504841,\n",
+       "   'chest_ACC_y': 0.1968860170043269,\n",
+       "   'chest_ACC_z': 0.24581151008517166,\n",
+       "   'chest_ECG': 0.0032265901153278563,\n",
+       "   'chest_EMG': 0.0036803586156519685,\n",
+       "   'chest_EDA': 0.24669042461389065,\n",
+       "   'chest_Temp': 0.15944455526109153,\n",
+       "   'chest_Resp': 0.014193567854055431}},\n",
+       " {'11': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.04024757292461694,\n",
+       "   'chest_ACC_y': 0.1565318618203392,\n",
+       "   'chest_ACC_z': 0.11830625071942938,\n",
+       "   'chest_ECG': 0.007922838269133713,\n",
+       "   'chest_EMG': 0.006348978002092723,\n",
+       "   'chest_EDA': 0.36328293249601246,\n",
+       "   'chest_Temp': 0.2618496659465971,\n",
+       "   'chest_Resp': 0.045509899821778596}},\n",
+       " {'14': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.10375227203200195,\n",
+       "   'chest_ACC_y': 0.1853095383931324,\n",
+       "   'chest_ACC_z': 0.215453524103329,\n",
+       "   'chest_ECG': 0.008595033425546683,\n",
+       "   'chest_EMG': 0.0051670030825727055,\n",
+       "   'chest_EDA': 0.25382475947777666,\n",
+       "   'chest_Temp': 0.2077869105964587,\n",
+       "   'chest_Resp': 0.020110958889181855}},\n",
+       " {'8': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.14347363122864362,\n",
+       "   'chest_ACC_y': 0.24065811924766892,\n",
+       "   'chest_ACC_z': 0.267762938257923,\n",
+       "   'chest_ECG': 0.005711548638591734,\n",
+       "   'chest_EMG': 0.003918487469962929,\n",
+       "   'chest_EDA': 0.2387070057305599,\n",
+       "   'chest_Temp': 0.08413531983996998,\n",
+       "   'chest_Resp': 0.01563294958667973}},\n",
+       " {'15': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.11231814251034679,\n",
+       "   'chest_ACC_y': 0.08220255608689836,\n",
+       "   'chest_ACC_z': 0.20822479510318542,\n",
+       "   'chest_ECG': 0.0030866105842708154,\n",
+       "   'chest_EMG': 0.002597678771338352,\n",
+       "   'chest_EDA': 0.41319383692544054,\n",
+       "   'chest_Temp': 0.1684332696165509,\n",
+       "   'chest_Resp': 0.009943110401968736}},\n",
+       " {'9': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.12561607603440622,\n",
+       "   'chest_ACC_y': 0.09702573688756252,\n",
+       "   'chest_ACC_z': 0.24384679962004108,\n",
+       "   'chest_ECG': 0.003995169023835594,\n",
+       "   'chest_EMG': 0.0054176080210714085,\n",
+       "   'chest_EDA': 0.36880376616830607,\n",
+       "   'chest_Temp': 0.14303779961937815,\n",
+       "   'chest_Resp': 0.012257044625398936}},\n",
+       " {'10': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.22882102161026965,\n",
+       "   'chest_ACC_y': 0.04732657436997019,\n",
+       "   'chest_ACC_z': 0.2322145246566627,\n",
+       "   'chest_ECG': 0.004801462002461738,\n",
+       "   'chest_EMG': 0.0045123477972814855,\n",
+       "   'chest_EDA': 0.31158122644140307,\n",
+       "   'chest_Temp': 0.1581155419253945,\n",
+       "   'chest_Resp': 0.012627301196556704}},\n",
+       " {'2': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.11668464543524892,\n",
+       "   'chest_ACC_y': 0.13597111186938743,\n",
+       "   'chest_ACC_z': 0.24675670252898294,\n",
+       "   'chest_ECG': 0.0049927372104148,\n",
+       "   'chest_EMG': 0.0024869718274109194,\n",
+       "   'chest_EDA': 0.22587860975496904,\n",
+       "   'chest_Temp': 0.25156271388019963,\n",
+       "   'chest_Resp': 0.015666507493386436}},\n",
+       " {'16': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.07922301732289758,\n",
+       "   'chest_ACC_y': 0.06155434121985866,\n",
+       "   'chest_ACC_z': 0.2439000711979064,\n",
+       "   'chest_ECG': 0.012125844832497342,\n",
+       "   'chest_EMG': 0.003252002142311649,\n",
+       "   'chest_EDA': 0.4108674411007088,\n",
+       "   'chest_Temp': 0.1740060304072016,\n",
+       "   'chest_Resp': 0.0150712517766179}},\n",
+       " {'4': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.1888912770202422,\n",
+       "   'chest_ACC_y': 0.1515329160303108,\n",
+       "   'chest_ACC_z': 0.23782728420548904,\n",
+       "   'chest_ECG': 0.003605102562460383,\n",
+       "   'chest_EMG': 0.002869069393522499,\n",
+       "   'chest_EDA': 0.2525019555539589,\n",
+       "   'chest_Temp': 0.1498092548768111,\n",
+       "   'chest_Resp': 0.012963140357205296}},\n",
+       " {'13': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.07803417203388363,\n",
+       "   'chest_ACC_y': 0.09974802002465204,\n",
+       "   'chest_ACC_z': 0.1777006613688301,\n",
+       "   'chest_ECG': 0.0034168687514631547,\n",
+       "   'chest_EMG': 0.0034440563788113777,\n",
+       "   'chest_EDA': 0.37400948926186695,\n",
+       "   'chest_Temp': 0.2460262689411883,\n",
+       "   'chest_Resp': 0.017620463239304454}},\n",
+       " {'3': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.07188722001251066,\n",
+       "   'chest_ACC_y': 0.061859702055979716,\n",
+       "   'chest_ACC_z': 0.33898272660534673,\n",
+       "   'chest_ECG': 0.002533408376087527,\n",
+       "   'chest_EMG': 0.012332865584837815,\n",
+       "   'chest_EDA': 0.22347187550642342,\n",
+       "   'chest_Temp': 0.2792589111675616,\n",
+       "   'chest_Resp': 0.009673290691252574}},\n",
+       " {'17': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.18044989325378819,\n",
+       "   'chest_ACC_y': 0.07736863340070056,\n",
+       "   'chest_ACC_z': 0.20479809095955676,\n",
+       "   'chest_ECG': 0.003415233725763734,\n",
+       "   'chest_EMG': 0.0025323836092819166,\n",
+       "   'chest_EDA': 0.39464251796388494,\n",
+       "   'chest_Temp': 0.12339909371098787,\n",
+       "   'chest_Resp': 0.013394153376035991}},\n",
+       " {'5': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.20167807887040695,\n",
+       "   'chest_ACC_y': 0.08914038474449766,\n",
+       "   'chest_ACC_z': 0.2014025757829614,\n",
+       "   'chest_ECG': 0.004351308801137371,\n",
+       "   'chest_EMG': 0.004152757849246086,\n",
+       "   'chest_EDA': 0.37152507620617825,\n",
+       "   'chest_Temp': 0.10902969536748346,\n",
+       "   'chest_Resp': 0.01872012237808883}},\n",
+       " {'7': {'subject': 0.0,\n",
+       "   'chest_ACC_x': 0.07199023148411884,\n",
+       "   'chest_ACC_y': 0.0738758141531722,\n",
+       "   'chest_ACC_z': 0.2306827752142297,\n",
+       "   'chest_ECG': 0.004528291130553968,\n",
+       "   'chest_EMG': 0.003471923752608401,\n",
+       "   'chest_EDA': 0.22224281102614607,\n",
+       "   'chest_Temp': 0.3742280348025795,\n",
+       "   'chest_Resp': 0.0189801184365914}}]"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "feature_importances_list"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "15"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "len(feature_importances_list)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "list_df = []\n",
+    "for val in feature_importances_list:\n",
+    "    list_df.append(pd.DataFrame.from_dict(val).T)\n",
+    "    "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[   chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 6     0.130067     0.196886     0.245812   0.003227    0.24669    0.00368   \n",
+       " \n",
+       "    chest_Resp  chest_Temp  subject  \n",
+       " 6    0.014194    0.159445      0.0  ,\n",
+       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 11     0.040248     0.156532     0.118306   0.007923   0.363283   0.006349   \n",
+       " \n",
+       "     chest_Resp  chest_Temp  subject  \n",
+       " 11     0.04551     0.26185      0.0  ,\n",
+       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 14     0.103752      0.18531     0.215454   0.008595   0.253825   0.005167   \n",
+       " \n",
+       "     chest_Resp  chest_Temp  subject  \n",
+       " 14    0.020111    0.207787      0.0  ,\n",
+       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 8     0.143474     0.240658     0.267763   0.005712   0.238707   0.003918   \n",
+       " \n",
+       "    chest_Resp  chest_Temp  subject  \n",
+       " 8    0.015633    0.084135      0.0  ,\n",
+       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 15     0.112318     0.082203     0.208225   0.003087   0.413194   0.002598   \n",
+       " \n",
+       "     chest_Resp  chest_Temp  subject  \n",
+       " 15    0.009943    0.168433      0.0  ,\n",
+       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 9     0.125616     0.097026     0.243847   0.003995   0.368804   0.005418   \n",
+       " \n",
+       "    chest_Resp  chest_Temp  subject  \n",
+       " 9    0.012257    0.143038      0.0  ,\n",
+       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 10     0.228821     0.047327     0.232215   0.004801   0.311581   0.004512   \n",
+       " \n",
+       "     chest_Resp  chest_Temp  subject  \n",
+       " 10    0.012627    0.158116      0.0  ,\n",
+       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 2     0.116685     0.135971     0.246757   0.004993   0.225879   0.002487   \n",
+       " \n",
+       "    chest_Resp  chest_Temp  subject  \n",
+       " 2    0.015667    0.251563      0.0  ,\n",
+       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 16     0.079223     0.061554       0.2439   0.012126   0.410867   0.003252   \n",
+       " \n",
+       "     chest_Resp  chest_Temp  subject  \n",
+       " 16    0.015071    0.174006      0.0  ,\n",
+       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 4     0.188891     0.151533     0.237827   0.003605   0.252502   0.002869   \n",
+       " \n",
+       "    chest_Resp  chest_Temp  subject  \n",
+       " 4    0.012963    0.149809      0.0  ,\n",
+       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 13     0.078034     0.099748     0.177701   0.003417   0.374009   0.003444   \n",
+       " \n",
+       "     chest_Resp  chest_Temp  subject  \n",
+       " 13     0.01762    0.246026      0.0  ,\n",
+       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 3     0.071887      0.06186     0.338983   0.002533   0.223472   0.012333   \n",
+       " \n",
+       "    chest_Resp  chest_Temp  subject  \n",
+       " 3    0.009673    0.279259      0.0  ,\n",
+       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 17      0.18045     0.077369     0.204798   0.003415   0.394643   0.002532   \n",
+       " \n",
+       "     chest_Resp  chest_Temp  subject  \n",
+       " 17    0.013394    0.123399      0.0  ,\n",
+       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 5     0.201678      0.08914     0.201403   0.004351   0.371525   0.004153   \n",
+       " \n",
+       "    chest_Resp  chest_Temp  subject  \n",
+       " 5     0.01872     0.10903      0.0  ,\n",
+       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       " 7      0.07199     0.073876     0.230683   0.004528   0.222243   0.003472   \n",
+       " \n",
+       "    chest_Resp  chest_Temp  subject  \n",
+       " 7     0.01898    0.374228      0.0  ]"
+      ]
+     },
+     "execution_count": 16,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "list_df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "feature_importance_all_subjects = pd.concat(list_df)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>chest_ACC_x</th>\n",
+       "      <th>chest_ACC_y</th>\n",
+       "      <th>chest_ACC_z</th>\n",
+       "      <th>chest_ECG</th>\n",
+       "      <th>chest_EDA</th>\n",
+       "      <th>chest_EMG</th>\n",
+       "      <th>chest_Resp</th>\n",
+       "      <th>chest_Temp</th>\n",
+       "      <th>subject</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>0.130067</td>\n",
+       "      <td>0.196886</td>\n",
+       "      <td>0.245812</td>\n",
+       "      <td>0.003227</td>\n",
+       "      <td>0.246690</td>\n",
+       "      <td>0.003680</td>\n",
+       "      <td>0.014194</td>\n",
+       "      <td>0.159445</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>11</th>\n",
+       "      <td>0.040248</td>\n",
+       "      <td>0.156532</td>\n",
+       "      <td>0.118306</td>\n",
+       "      <td>0.007923</td>\n",
+       "      <td>0.363283</td>\n",
+       "      <td>0.006349</td>\n",
+       "      <td>0.045510</td>\n",
+       "      <td>0.261850</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>14</th>\n",
+       "      <td>0.103752</td>\n",
+       "      <td>0.185310</td>\n",
+       "      <td>0.215454</td>\n",
+       "      <td>0.008595</td>\n",
+       "      <td>0.253825</td>\n",
+       "      <td>0.005167</td>\n",
+       "      <td>0.020111</td>\n",
+       "      <td>0.207787</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>8</th>\n",
+       "      <td>0.143474</td>\n",
+       "      <td>0.240658</td>\n",
+       "      <td>0.267763</td>\n",
+       "      <td>0.005712</td>\n",
+       "      <td>0.238707</td>\n",
+       "      <td>0.003918</td>\n",
+       "      <td>0.015633</td>\n",
+       "      <td>0.084135</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>15</th>\n",
+       "      <td>0.112318</td>\n",
+       "      <td>0.082203</td>\n",
+       "      <td>0.208225</td>\n",
+       "      <td>0.003087</td>\n",
+       "      <td>0.413194</td>\n",
+       "      <td>0.002598</td>\n",
+       "      <td>0.009943</td>\n",
+       "      <td>0.168433</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>9</th>\n",
+       "      <td>0.125616</td>\n",
+       "      <td>0.097026</td>\n",
+       "      <td>0.243847</td>\n",
+       "      <td>0.003995</td>\n",
+       "      <td>0.368804</td>\n",
+       "      <td>0.005418</td>\n",
+       "      <td>0.012257</td>\n",
+       "      <td>0.143038</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>10</th>\n",
+       "      <td>0.228821</td>\n",
+       "      <td>0.047327</td>\n",
+       "      <td>0.232215</td>\n",
+       "      <td>0.004801</td>\n",
+       "      <td>0.311581</td>\n",
+       "      <td>0.004512</td>\n",
+       "      <td>0.012627</td>\n",
+       "      <td>0.158116</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>0.116685</td>\n",
+       "      <td>0.135971</td>\n",
+       "      <td>0.246757</td>\n",
+       "      <td>0.004993</td>\n",
+       "      <td>0.225879</td>\n",
+       "      <td>0.002487</td>\n",
+       "      <td>0.015667</td>\n",
+       "      <td>0.251563</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>16</th>\n",
+       "      <td>0.079223</td>\n",
+       "      <td>0.061554</td>\n",
+       "      <td>0.243900</td>\n",
+       "      <td>0.012126</td>\n",
+       "      <td>0.410867</td>\n",
+       "      <td>0.003252</td>\n",
+       "      <td>0.015071</td>\n",
+       "      <td>0.174006</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>0.188891</td>\n",
+       "      <td>0.151533</td>\n",
+       "      <td>0.237827</td>\n",
+       "      <td>0.003605</td>\n",
+       "      <td>0.252502</td>\n",
+       "      <td>0.002869</td>\n",
+       "      <td>0.012963</td>\n",
+       "      <td>0.149809</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>13</th>\n",
+       "      <td>0.078034</td>\n",
+       "      <td>0.099748</td>\n",
+       "      <td>0.177701</td>\n",
+       "      <td>0.003417</td>\n",
+       "      <td>0.374009</td>\n",
+       "      <td>0.003444</td>\n",
+       "      <td>0.017620</td>\n",
+       "      <td>0.246026</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>0.071887</td>\n",
+       "      <td>0.061860</td>\n",
+       "      <td>0.338983</td>\n",
+       "      <td>0.002533</td>\n",
+       "      <td>0.223472</td>\n",
+       "      <td>0.012333</td>\n",
+       "      <td>0.009673</td>\n",
+       "      <td>0.279259</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>17</th>\n",
+       "      <td>0.180450</td>\n",
+       "      <td>0.077369</td>\n",
+       "      <td>0.204798</td>\n",
+       "      <td>0.003415</td>\n",
+       "      <td>0.394643</td>\n",
+       "      <td>0.002532</td>\n",
+       "      <td>0.013394</td>\n",
+       "      <td>0.123399</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5</th>\n",
+       "      <td>0.201678</td>\n",
+       "      <td>0.089140</td>\n",
+       "      <td>0.201403</td>\n",
+       "      <td>0.004351</td>\n",
+       "      <td>0.371525</td>\n",
+       "      <td>0.004153</td>\n",
+       "      <td>0.018720</td>\n",
+       "      <td>0.109030</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>0.071990</td>\n",
+       "      <td>0.073876</td>\n",
+       "      <td>0.230683</td>\n",
+       "      <td>0.004528</td>\n",
+       "      <td>0.222243</td>\n",
+       "      <td>0.003472</td>\n",
+       "      <td>0.018980</td>\n",
+       "      <td>0.374228</td>\n",
+       "      <td>0.0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
+       "6      0.130067     0.196886     0.245812   0.003227   0.246690   0.003680   \n",
+       "11     0.040248     0.156532     0.118306   0.007923   0.363283   0.006349   \n",
+       "14     0.103752     0.185310     0.215454   0.008595   0.253825   0.005167   \n",
+       "8      0.143474     0.240658     0.267763   0.005712   0.238707   0.003918   \n",
+       "15     0.112318     0.082203     0.208225   0.003087   0.413194   0.002598   \n",
+       "9      0.125616     0.097026     0.243847   0.003995   0.368804   0.005418   \n",
+       "10     0.228821     0.047327     0.232215   0.004801   0.311581   0.004512   \n",
+       "2      0.116685     0.135971     0.246757   0.004993   0.225879   0.002487   \n",
+       "16     0.079223     0.061554     0.243900   0.012126   0.410867   0.003252   \n",
+       "4      0.188891     0.151533     0.237827   0.003605   0.252502   0.002869   \n",
+       "13     0.078034     0.099748     0.177701   0.003417   0.374009   0.003444   \n",
+       "3      0.071887     0.061860     0.338983   0.002533   0.223472   0.012333   \n",
+       "17     0.180450     0.077369     0.204798   0.003415   0.394643   0.002532   \n",
+       "5      0.201678     0.089140     0.201403   0.004351   0.371525   0.004153   \n",
+       "7      0.071990     0.073876     0.230683   0.004528   0.222243   0.003472   \n",
+       "\n",
+       "    chest_Resp  chest_Temp  subject  \n",
+       "6     0.014194    0.159445      0.0  \n",
+       "11    0.045510    0.261850      0.0  \n",
+       "14    0.020111    0.207787      0.0  \n",
+       "8     0.015633    0.084135      0.0  \n",
+       "15    0.009943    0.168433      0.0  \n",
+       "9     0.012257    0.143038      0.0  \n",
+       "10    0.012627    0.158116      0.0  \n",
+       "2     0.015667    0.251563      0.0  \n",
+       "16    0.015071    0.174006      0.0  \n",
+       "4     0.012963    0.149809      0.0  \n",
+       "13    0.017620    0.246026      0.0  \n",
+       "3     0.009673    0.279259      0.0  \n",
+       "17    0.013394    0.123399      0.0  \n",
+       "5     0.018720    0.109030      0.0  \n",
+       "7     0.018980    0.374228      0.0  "
+      ]
+     },
+     "execution_count": 19,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "feature_importance_all_subjects"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "6     1.0\n",
+       "11    1.0\n",
+       "14    1.0\n",
+       "8     1.0\n",
+       "15    1.0\n",
+       "9     1.0\n",
+       "10    1.0\n",
+       "2     1.0\n",
+       "16    1.0\n",
+       "4     1.0\n",
+       "13    1.0\n",
+       "3     1.0\n",
+       "17    1.0\n",
+       "5     1.0\n",
+       "7     1.0\n",
+       "dtype: float64"
+      ]
+     },
+     "execution_count": 21,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "feature_importance_all_subjects.sum(axis = 1, skipna = True) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style  type=\"text/css\" >\n",
+       "    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col0 {\n",
+       "            background-color:  #6dbc6d;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col1 {\n",
+       "            background-color:  #2e992e;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col2 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col3 {\n",
+       "            background-color:  #e3fee3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col5 {\n",
+       "            background-color:  #e3fee3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col6 {\n",
+       "            background-color:  #d9f8d9;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col7 {\n",
+       "            background-color:  #51ad51;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col0 {\n",
+       "            background-color:  #ccf1cc;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col1 {\n",
+       "            background-color:  #82c882;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col2 {\n",
+       "            background-color:  #9bd69b;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col3 {\n",
+       "            background-color:  #e1fde1;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col5 {\n",
+       "            background-color:  #e2fde2;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col6 {\n",
+       "            background-color:  #c9efc9;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col7 {\n",
+       "            background-color:  #40a340;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col0 {\n",
+       "            background-color:  #88cb88;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col1 {\n",
+       "            background-color:  #3ea23e;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col2 {\n",
+       "            background-color:  #229322;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col3 {\n",
+       "            background-color:  #defbde;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col5 {\n",
+       "            background-color:  #e1fde1;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col6 {\n",
+       "            background-color:  #d3f5d3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col7 {\n",
+       "            background-color:  #299729;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col0 {\n",
+       "            background-color:  #6abb6a;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col1 {\n",
+       "            background-color:  #178c17;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col2 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col3 {\n",
+       "            background-color:  #e1fde1;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col4 {\n",
+       "            background-color:  #188d18;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col5 {\n",
+       "            background-color:  #e3fee3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col6 {\n",
+       "            background-color:  #d9f8d9;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col7 {\n",
+       "            background-color:  #9ed79e;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col0 {\n",
+       "            background-color:  #a7dda7;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col1 {\n",
+       "            background-color:  #b8e6b8;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col2 {\n",
+       "            background-color:  #71bf71;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col3 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col5 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col6 {\n",
+       "            background-color:  #e0fce0;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col7 {\n",
+       "            background-color:  #88cb88;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col0 {\n",
+       "            background-color:  #97d497;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col1 {\n",
+       "            background-color:  #a9dea9;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col2 {\n",
+       "            background-color:  #4dab4d;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col3 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col5 {\n",
+       "            background-color:  #e3fee3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col6 {\n",
+       "            background-color:  #defbde;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col7 {\n",
+       "            background-color:  #8cce8c;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col0 {\n",
+       "            background-color:  #3ca13c;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col1 {\n",
+       "            background-color:  #c3ecc3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col2 {\n",
+       "            background-color:  #3aa03a;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col3 {\n",
+       "            background-color:  #e3fee3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col5 {\n",
+       "            background-color:  #e3fee3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col6 {\n",
+       "            background-color:  #dcfadc;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col7 {\n",
+       "            background-color:  #71bf71;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col0 {\n",
+       "            background-color:  #7bc47b;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col1 {\n",
+       "            background-color:  #69ba69;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col2 {\n",
+       "            background-color:  #048204;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col3 {\n",
+       "            background-color:  #e1fde1;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col4 {\n",
+       "            background-color:  #178d17;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col5 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col6 {\n",
+       "            background-color:  #d8f8d8;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col7 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col0 {\n",
+       "            background-color:  #b9e7b9;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col1 {\n",
+       "            background-color:  #c3ecc3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col2 {\n",
+       "            background-color:  #5eb45e;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col3 {\n",
+       "            background-color:  #dffcdf;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col5 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col6 {\n",
+       "            background-color:  #ddfbdd;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col7 {\n",
+       "            background-color:  #84c984;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col0 {\n",
+       "            background-color:  #3aa03a;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col1 {\n",
+       "            background-color:  #5cb35c;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col2 {\n",
+       "            background-color:  #0d870d;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col3 {\n",
+       "            background-color:  #e3fee3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col5 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col6 {\n",
+       "            background-color:  #daf9da;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col7 {\n",
+       "            background-color:  #5eb45e;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col0 {\n",
+       "            background-color:  #b6e5b6;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col1 {\n",
+       "            background-color:  #a8dda8;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col2 {\n",
+       "            background-color:  #79c379;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col3 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col5 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col6 {\n",
+       "            background-color:  #dbf9db;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col7 {\n",
+       "            background-color:  #4eab4e;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col0 {\n",
+       "            background-color:  #b5e4b5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col1 {\n",
+       "            background-color:  #bce8bc;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col2 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col3 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col4 {\n",
+       "            background-color:  #4eab4e;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col5 {\n",
+       "            background-color:  #ddfbdd;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col6 {\n",
+       "            background-color:  #dffcdf;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col7 {\n",
+       "            background-color:  #289628;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col0 {\n",
+       "            background-color:  #7cc57c;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col1 {\n",
+       "            background-color:  #b8e6b8;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col2 {\n",
+       "            background-color:  #6fbd6f;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col3 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col5 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col6 {\n",
+       "            background-color:  #defbde;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col7 {\n",
+       "            background-color:  #9ed79e;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col0 {\n",
+       "            background-color:  #69ba69;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col1 {\n",
+       "            background-color:  #afe1af;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col2 {\n",
+       "            background-color:  #69ba69;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col3 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col4 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col5 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col6 {\n",
+       "            background-color:  #dbf9db;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col7 {\n",
+       "            background-color:  #a2daa2;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col0 {\n",
+       "            background-color:  #b9e7b9;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col1 {\n",
+       "            background-color:  #b8e6b8;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col2 {\n",
+       "            background-color:  #58b158;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col3 {\n",
+       "            background-color:  #e3fee3;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col4 {\n",
+       "            background-color:  #5db35d;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col5 {\n",
+       "            background-color:  #e4fee4;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col6 {\n",
+       "            background-color:  #dbf9db;\n",
+       "            color:  #000000;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col7 {\n",
+       "            background-color:  #008000;\n",
+       "            color:  #f1f1f1;\n",
+       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col8 {\n",
+       "            background-color:  #e5ffe5;\n",
+       "            color:  #000000;\n",
+       "        }</style><table id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002\" ><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >chest_ACC_x</th>        <th class=\"col_heading level0 col1\" >chest_ACC_y</th>        <th class=\"col_heading level0 col2\" >chest_ACC_z</th>        <th class=\"col_heading level0 col3\" >chest_ECG</th>        <th class=\"col_heading level0 col4\" >chest_EDA</th>        <th class=\"col_heading level0 col5\" >chest_EMG</th>        <th class=\"col_heading level0 col6\" >chest_Resp</th>        <th class=\"col_heading level0 col7\" >chest_Temp</th>        <th class=\"col_heading level0 col8\" >subject</th>    </tr></thead><tbody>\n",
+       "                <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row0\" class=\"row_heading level0 row0\" >6</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col0\" class=\"data row0 col0\" >0.130067</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col1\" class=\"data row0 col1\" >0.196886</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col2\" class=\"data row0 col2\" >0.245812</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col3\" class=\"data row0 col3\" >0.00322659</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col4\" class=\"data row0 col4\" >0.24669</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col5\" class=\"data row0 col5\" >0.00368036</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col6\" class=\"data row0 col6\" >0.0141936</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col7\" class=\"data row0 col7\" >0.159445</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col8\" class=\"data row0 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row1\" class=\"row_heading level0 row1\" >11</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col0\" class=\"data row1 col0\" >0.0402476</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col1\" class=\"data row1 col1\" >0.156532</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col2\" class=\"data row1 col2\" >0.118306</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col3\" class=\"data row1 col3\" >0.00792284</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col4\" class=\"data row1 col4\" >0.363283</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col5\" class=\"data row1 col5\" >0.00634898</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col6\" class=\"data row1 col6\" >0.0455099</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col7\" class=\"data row1 col7\" >0.26185</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col8\" class=\"data row1 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row2\" class=\"row_heading level0 row2\" >14</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col0\" class=\"data row2 col0\" >0.103752</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col1\" class=\"data row2 col1\" >0.18531</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col2\" class=\"data row2 col2\" >0.215454</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col3\" class=\"data row2 col3\" >0.00859503</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col4\" class=\"data row2 col4\" >0.253825</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col5\" class=\"data row2 col5\" >0.005167</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col6\" class=\"data row2 col6\" >0.020111</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col7\" class=\"data row2 col7\" >0.207787</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col8\" class=\"data row2 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row3\" class=\"row_heading level0 row3\" >8</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col0\" class=\"data row3 col0\" >0.143474</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col1\" class=\"data row3 col1\" >0.240658</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col2\" class=\"data row3 col2\" >0.267763</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col3\" class=\"data row3 col3\" >0.00571155</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col4\" class=\"data row3 col4\" >0.238707</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col5\" class=\"data row3 col5\" >0.00391849</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col6\" class=\"data row3 col6\" >0.0156329</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col7\" class=\"data row3 col7\" >0.0841353</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col8\" class=\"data row3 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row4\" class=\"row_heading level0 row4\" >15</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col0\" class=\"data row4 col0\" >0.112318</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col1\" class=\"data row4 col1\" >0.0822026</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col2\" class=\"data row4 col2\" >0.208225</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col3\" class=\"data row4 col3\" >0.00308661</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col4\" class=\"data row4 col4\" >0.413194</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col5\" class=\"data row4 col5\" >0.00259768</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col6\" class=\"data row4 col6\" >0.00994311</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col7\" class=\"data row4 col7\" >0.168433</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col8\" class=\"data row4 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row5\" class=\"row_heading level0 row5\" >9</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col0\" class=\"data row5 col0\" >0.125616</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col1\" class=\"data row5 col1\" >0.0970257</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col2\" class=\"data row5 col2\" >0.243847</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col3\" class=\"data row5 col3\" >0.00399517</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col4\" class=\"data row5 col4\" >0.368804</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col5\" class=\"data row5 col5\" >0.00541761</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col6\" class=\"data row5 col6\" >0.012257</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col7\" class=\"data row5 col7\" >0.143038</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col8\" class=\"data row5 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row6\" class=\"row_heading level0 row6\" >10</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col0\" class=\"data row6 col0\" >0.228821</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col1\" class=\"data row6 col1\" >0.0473266</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col2\" class=\"data row6 col2\" >0.232215</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col3\" class=\"data row6 col3\" >0.00480146</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col4\" class=\"data row6 col4\" >0.311581</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col5\" class=\"data row6 col5\" >0.00451235</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col6\" class=\"data row6 col6\" >0.0126273</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col7\" class=\"data row6 col7\" >0.158116</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col8\" class=\"data row6 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row7\" class=\"row_heading level0 row7\" >2</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col0\" class=\"data row7 col0\" >0.116685</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col1\" class=\"data row7 col1\" >0.135971</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col2\" class=\"data row7 col2\" >0.246757</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col3\" class=\"data row7 col3\" >0.00499274</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col4\" class=\"data row7 col4\" >0.225879</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col5\" class=\"data row7 col5\" >0.00248697</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col6\" class=\"data row7 col6\" >0.0156665</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col7\" class=\"data row7 col7\" >0.251563</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col8\" class=\"data row7 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row8\" class=\"row_heading level0 row8\" >16</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col0\" class=\"data row8 col0\" >0.079223</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col1\" class=\"data row8 col1\" >0.0615543</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col2\" class=\"data row8 col2\" >0.2439</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col3\" class=\"data row8 col3\" >0.0121258</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col4\" class=\"data row8 col4\" >0.410867</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col5\" class=\"data row8 col5\" >0.003252</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col6\" class=\"data row8 col6\" >0.0150713</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col7\" class=\"data row8 col7\" >0.174006</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col8\" class=\"data row8 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row9\" class=\"row_heading level0 row9\" >4</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col0\" class=\"data row9 col0\" >0.188891</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col1\" class=\"data row9 col1\" >0.151533</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col2\" class=\"data row9 col2\" >0.237827</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col3\" class=\"data row9 col3\" >0.0036051</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col4\" class=\"data row9 col4\" >0.252502</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col5\" class=\"data row9 col5\" >0.00286907</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col6\" class=\"data row9 col6\" >0.0129631</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col7\" class=\"data row9 col7\" >0.149809</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col8\" class=\"data row9 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row10\" class=\"row_heading level0 row10\" >13</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col0\" class=\"data row10 col0\" >0.0780342</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col1\" class=\"data row10 col1\" >0.099748</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col2\" class=\"data row10 col2\" >0.177701</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col3\" class=\"data row10 col3\" >0.00341687</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col4\" class=\"data row10 col4\" >0.374009</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col5\" class=\"data row10 col5\" >0.00344406</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col6\" class=\"data row10 col6\" >0.0176205</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col7\" class=\"data row10 col7\" >0.246026</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col8\" class=\"data row10 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row11\" class=\"row_heading level0 row11\" >3</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col0\" class=\"data row11 col0\" >0.0718872</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col1\" class=\"data row11 col1\" >0.0618597</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col2\" class=\"data row11 col2\" >0.338983</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col3\" class=\"data row11 col3\" >0.00253341</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col4\" class=\"data row11 col4\" >0.223472</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col5\" class=\"data row11 col5\" >0.0123329</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col6\" class=\"data row11 col6\" >0.00967329</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col7\" class=\"data row11 col7\" >0.279259</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col8\" class=\"data row11 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row12\" class=\"row_heading level0 row12\" >17</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col0\" class=\"data row12 col0\" >0.18045</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col1\" class=\"data row12 col1\" >0.0773686</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col2\" class=\"data row12 col2\" >0.204798</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col3\" class=\"data row12 col3\" >0.00341523</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col4\" class=\"data row12 col4\" >0.394643</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col5\" class=\"data row12 col5\" >0.00253238</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col6\" class=\"data row12 col6\" >0.0133942</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col7\" class=\"data row12 col7\" >0.123399</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col8\" class=\"data row12 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row13\" class=\"row_heading level0 row13\" >5</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col0\" class=\"data row13 col0\" >0.201678</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col1\" class=\"data row13 col1\" >0.0891404</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col2\" class=\"data row13 col2\" >0.201403</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col3\" class=\"data row13 col3\" >0.00435131</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col4\" class=\"data row13 col4\" >0.371525</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col5\" class=\"data row13 col5\" >0.00415276</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col6\" class=\"data row13 col6\" >0.0187201</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col7\" class=\"data row13 col7\" >0.10903</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col8\" class=\"data row13 col8\" >0</td>\n",
+       "            </tr>\n",
+       "            <tr>\n",
+       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row14\" class=\"row_heading level0 row14\" >7</th>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col0\" class=\"data row14 col0\" >0.0719902</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col1\" class=\"data row14 col1\" >0.0738758</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col2\" class=\"data row14 col2\" >0.230683</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col3\" class=\"data row14 col3\" >0.00452829</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col4\" class=\"data row14 col4\" >0.222243</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col5\" class=\"data row14 col5\" >0.00347192</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col6\" class=\"data row14 col6\" >0.0189801</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col7\" class=\"data row14 col7\" >0.374228</td>\n",
+       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col8\" class=\"data row14 col8\" >0</td>\n",
+       "            </tr>\n",
+       "    </tbody></table>"
+      ],
+      "text/plain": [
+       "<pandas.io.formats.style.Styler at 0x7fa017af0898>"
+      ]
+     },
+     "execution_count": 23,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import seaborn as sns\n",
+    "\n",
+    "cm = sns.light_palette(\"green\", as_cmap=True)\n",
+    "\n",
+    "s = feature_importance_all_subjects.style.background_gradient(cmap=cm,axis = 1)\n",
+    "s"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "feature_importance_all_subjects.to_csv('feature_importance_all_subjects.csv' )"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.8"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}