|
a |
|
b/Feature Importance for 15 subjects.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 26, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import pandas as pd\n", |
|
|
10 |
"from sklearn.ensemble import RandomForestClassifier \n", |
|
|
11 |
"from sklearn.model_selection import train_test_split\n", |
|
|
12 |
"from sklearn.metrics import classification_report" |
|
|
13 |
] |
|
|
14 |
}, |
|
|
15 |
{ |
|
|
16 |
"cell_type": "code", |
|
|
17 |
"execution_count": 3, |
|
|
18 |
"metadata": {}, |
|
|
19 |
"outputs": [], |
|
|
20 |
"source": [ |
|
|
21 |
"df = pd.read_csv(\"master_data.csv\")" |
|
|
22 |
] |
|
|
23 |
}, |
|
|
24 |
{ |
|
|
25 |
"cell_type": "code", |
|
|
26 |
"execution_count": 4, |
|
|
27 |
"metadata": {}, |
|
|
28 |
"outputs": [ |
|
|
29 |
{ |
|
|
30 |
"name": "stdout", |
|
|
31 |
"output_type": "stream", |
|
|
32 |
"text": [ |
|
|
33 |
"<class 'pandas.core.frame.DataFrame'>\n", |
|
|
34 |
"RangeIndex: 59125500 entries, 0 to 59125499\n", |
|
|
35 |
"Data columns (total 10 columns):\n", |
|
|
36 |
"target int64\n", |
|
|
37 |
"subject int64\n", |
|
|
38 |
"chest_ACC_x float64\n", |
|
|
39 |
"chest_ACC_y float64\n", |
|
|
40 |
"chest_ACC_z float64\n", |
|
|
41 |
"chest_ECG float64\n", |
|
|
42 |
"chest_EMG float64\n", |
|
|
43 |
"chest_EDA float64\n", |
|
|
44 |
"chest_Temp float64\n", |
|
|
45 |
"chest_Resp float64\n", |
|
|
46 |
"dtypes: float64(8), int64(2)\n", |
|
|
47 |
"memory usage: 4.4 GB\n" |
|
|
48 |
] |
|
|
49 |
} |
|
|
50 |
], |
|
|
51 |
"source": [ |
|
|
52 |
"df.info()" |
|
|
53 |
] |
|
|
54 |
}, |
|
|
55 |
{ |
|
|
56 |
"cell_type": "code", |
|
|
57 |
"execution_count": 5, |
|
|
58 |
"metadata": {}, |
|
|
59 |
"outputs": [ |
|
|
60 |
{ |
|
|
61 |
"data": { |
|
|
62 |
"text/plain": [ |
|
|
63 |
"6 4825799\n", |
|
|
64 |
"3 4400200\n", |
|
|
65 |
"4 4393200\n", |
|
|
66 |
"5 4250400\n", |
|
|
67 |
"2 4165000\n", |
|
|
68 |
"17 4022201\n", |
|
|
69 |
"16 3826200\n", |
|
|
70 |
"13 3794000\n", |
|
|
71 |
"14 3763200\n", |
|
|
72 |
"10 3740100\n", |
|
|
73 |
"8 3719799\n", |
|
|
74 |
"15 3576300\n", |
|
|
75 |
"7 3563700\n", |
|
|
76 |
"11 3556701\n", |
|
|
77 |
"9 3528700\n", |
|
|
78 |
"Name: subject, dtype: int64" |
|
|
79 |
] |
|
|
80 |
}, |
|
|
81 |
"execution_count": 5, |
|
|
82 |
"metadata": {}, |
|
|
83 |
"output_type": "execute_result" |
|
|
84 |
} |
|
|
85 |
], |
|
|
86 |
"source": [ |
|
|
87 |
"df['subject'].value_counts()" |
|
|
88 |
] |
|
|
89 |
}, |
|
|
90 |
{ |
|
|
91 |
"cell_type": "code", |
|
|
92 |
"execution_count": 6, |
|
|
93 |
"metadata": {}, |
|
|
94 |
"outputs": [], |
|
|
95 |
"source": [ |
|
|
96 |
"feature_importances_list = []" |
|
|
97 |
] |
|
|
98 |
}, |
|
|
99 |
{ |
|
|
100 |
"cell_type": "code", |
|
|
101 |
"execution_count": 27, |
|
|
102 |
"metadata": { |
|
|
103 |
"scrolled": false |
|
|
104 |
}, |
|
|
105 |
"outputs": [ |
|
|
106 |
{ |
|
|
107 |
"name": "stdout", |
|
|
108 |
"output_type": "stream", |
|
|
109 |
"text": [ |
|
|
110 |
"6\n" |
|
|
111 |
] |
|
|
112 |
}, |
|
|
113 |
{ |
|
|
114 |
"name": "stderr", |
|
|
115 |
"output_type": "stream", |
|
|
116 |
"text": [ |
|
|
117 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
118 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
119 |
] |
|
|
120 |
}, |
|
|
121 |
{ |
|
|
122 |
"name": "stdout", |
|
|
123 |
"output_type": "stream", |
|
|
124 |
"text": [ |
|
|
125 |
"0.9981689328947815\n", |
|
|
126 |
" precision recall f1-score support\n", |
|
|
127 |
"\n", |
|
|
128 |
" 0 1.00 1.00 1.00 902929\n", |
|
|
129 |
" 1 1.00 1.00 1.00 271725\n", |
|
|
130 |
" 2 1.00 1.00 1.00 150059\n", |
|
|
131 |
" 3 1.00 0.99 1.00 86152\n", |
|
|
132 |
" 4 1.00 1.00 1.00 181649\n", |
|
|
133 |
"\n", |
|
|
134 |
" accuracy 1.00 1592514\n", |
|
|
135 |
" macro avg 1.00 1.00 1.00 1592514\n", |
|
|
136 |
"weighted avg 1.00 1.00 1.00 1592514\n", |
|
|
137 |
"\n", |
|
|
138 |
"11\n" |
|
|
139 |
] |
|
|
140 |
}, |
|
|
141 |
{ |
|
|
142 |
"name": "stderr", |
|
|
143 |
"output_type": "stream", |
|
|
144 |
"text": [ |
|
|
145 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
146 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
147 |
] |
|
|
148 |
}, |
|
|
149 |
{ |
|
|
150 |
"name": "stdout", |
|
|
151 |
"output_type": "stream", |
|
|
152 |
"text": [ |
|
|
153 |
"0.9880933312430988\n", |
|
|
154 |
" precision recall f1-score support\n", |
|
|
155 |
"\n", |
|
|
156 |
" 0 0.99 0.99 0.99 475759\n", |
|
|
157 |
" 1 1.00 1.00 1.00 272833\n", |
|
|
158 |
" 2 1.00 0.99 1.00 157039\n", |
|
|
159 |
" 3 0.98 0.98 0.98 85341\n", |
|
|
160 |
" 4 0.98 0.98 0.98 182740\n", |
|
|
161 |
"\n", |
|
|
162 |
" accuracy 0.99 1173712\n", |
|
|
163 |
" macro avg 0.99 0.99 0.99 1173712\n", |
|
|
164 |
"weighted avg 0.99 0.99 0.99 1173712\n", |
|
|
165 |
"\n", |
|
|
166 |
"14\n" |
|
|
167 |
] |
|
|
168 |
}, |
|
|
169 |
{ |
|
|
170 |
"name": "stderr", |
|
|
171 |
"output_type": "stream", |
|
|
172 |
"text": [ |
|
|
173 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
174 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
175 |
] |
|
|
176 |
}, |
|
|
177 |
{ |
|
|
178 |
"name": "stdout", |
|
|
179 |
"output_type": "stream", |
|
|
180 |
"text": [ |
|
|
181 |
"0.9876434948979592\n", |
|
|
182 |
" precision recall f1-score support\n", |
|
|
183 |
"\n", |
|
|
184 |
" 0 0.99 0.99 0.99 543791\n", |
|
|
185 |
" 1 1.00 1.00 1.00 272719\n", |
|
|
186 |
" 2 0.98 0.98 0.98 155792\n", |
|
|
187 |
" 3 0.98 0.97 0.97 85954\n", |
|
|
188 |
" 4 0.99 0.99 0.99 183600\n", |
|
|
189 |
"\n", |
|
|
190 |
" accuracy 0.99 1241856\n", |
|
|
191 |
" macro avg 0.99 0.98 0.98 1241856\n", |
|
|
192 |
"weighted avg 0.99 0.99 0.99 1241856\n", |
|
|
193 |
"\n", |
|
|
194 |
"8\n" |
|
|
195 |
] |
|
|
196 |
}, |
|
|
197 |
{ |
|
|
198 |
"name": "stderr", |
|
|
199 |
"output_type": "stream", |
|
|
200 |
"text": [ |
|
|
201 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
202 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
203 |
] |
|
|
204 |
}, |
|
|
205 |
{ |
|
|
206 |
"name": "stdout", |
|
|
207 |
"output_type": "stream", |
|
|
208 |
"text": [ |
|
|
209 |
"0.99311057779255\n", |
|
|
210 |
" precision recall f1-score support\n", |
|
|
211 |
"\n", |
|
|
212 |
" 0 0.99 0.99 0.99 533239\n", |
|
|
213 |
" 1 1.00 1.00 1.00 270630\n", |
|
|
214 |
" 2 0.99 0.99 0.99 155051\n", |
|
|
215 |
" 3 0.99 0.99 0.99 85349\n", |
|
|
216 |
" 4 0.99 0.99 0.99 183265\n", |
|
|
217 |
"\n", |
|
|
218 |
" accuracy 0.99 1227534\n", |
|
|
219 |
" macro avg 0.99 0.99 0.99 1227534\n", |
|
|
220 |
"weighted avg 0.99 0.99 0.99 1227534\n", |
|
|
221 |
"\n", |
|
|
222 |
"15\n" |
|
|
223 |
] |
|
|
224 |
}, |
|
|
225 |
{ |
|
|
226 |
"name": "stderr", |
|
|
227 |
"output_type": "stream", |
|
|
228 |
"text": [ |
|
|
229 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
230 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
231 |
] |
|
|
232 |
}, |
|
|
233 |
{ |
|
|
234 |
"name": "stdout", |
|
|
235 |
"output_type": "stream", |
|
|
236 |
"text": [ |
|
|
237 |
"0.9935704668529096\n", |
|
|
238 |
" precision recall f1-score support\n", |
|
|
239 |
"\n", |
|
|
240 |
" 0 0.99 0.99 0.99 481153\n", |
|
|
241 |
" 1 1.00 1.00 1.00 271736\n", |
|
|
242 |
" 2 1.00 1.00 1.00 158288\n", |
|
|
243 |
" 3 0.99 0.99 0.99 85801\n", |
|
|
244 |
" 4 1.00 1.00 1.00 183201\n", |
|
|
245 |
"\n", |
|
|
246 |
" accuracy 0.99 1180179\n", |
|
|
247 |
" macro avg 0.99 0.99 0.99 1180179\n", |
|
|
248 |
"weighted avg 0.99 0.99 0.99 1180179\n", |
|
|
249 |
"\n", |
|
|
250 |
"9\n" |
|
|
251 |
] |
|
|
252 |
}, |
|
|
253 |
{ |
|
|
254 |
"name": "stderr", |
|
|
255 |
"output_type": "stream", |
|
|
256 |
"text": [ |
|
|
257 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
258 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
259 |
] |
|
|
260 |
}, |
|
|
261 |
{ |
|
|
262 |
"name": "stdout", |
|
|
263 |
"output_type": "stream", |
|
|
264 |
"text": [ |
|
|
265 |
"0.9942205516496332\n", |
|
|
266 |
" precision recall f1-score support\n", |
|
|
267 |
"\n", |
|
|
268 |
" 0 0.99 0.99 0.99 473496\n", |
|
|
269 |
" 1 1.00 1.00 1.00 272821\n", |
|
|
270 |
" 2 1.00 1.00 1.00 148833\n", |
|
|
271 |
" 3 0.98 0.99 0.99 86077\n", |
|
|
272 |
" 4 0.99 0.99 0.99 183244\n", |
|
|
273 |
"\n", |
|
|
274 |
" accuracy 0.99 1164471\n", |
|
|
275 |
" macro avg 0.99 0.99 0.99 1164471\n", |
|
|
276 |
"weighted avg 0.99 0.99 0.99 1164471\n", |
|
|
277 |
"\n", |
|
|
278 |
"10\n" |
|
|
279 |
] |
|
|
280 |
}, |
|
|
281 |
{ |
|
|
282 |
"name": "stderr", |
|
|
283 |
"output_type": "stream", |
|
|
284 |
"text": [ |
|
|
285 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
286 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
287 |
] |
|
|
288 |
}, |
|
|
289 |
{ |
|
|
290 |
"name": "stdout", |
|
|
291 |
"output_type": "stream", |
|
|
292 |
"text": [ |
|
|
293 |
"0.9887095872497332\n", |
|
|
294 |
" precision recall f1-score support\n", |
|
|
295 |
"\n", |
|
|
296 |
" 0 0.99 0.98 0.99 524557\n", |
|
|
297 |
" 1 1.00 1.00 1.00 272919\n", |
|
|
298 |
" 2 0.99 0.99 0.99 167514\n", |
|
|
299 |
" 3 0.97 0.98 0.98 85925\n", |
|
|
300 |
" 4 0.98 0.99 0.99 183318\n", |
|
|
301 |
"\n", |
|
|
302 |
" accuracy 0.99 1234233\n", |
|
|
303 |
" macro avg 0.99 0.99 0.99 1234233\n", |
|
|
304 |
"weighted avg 0.99 0.99 0.99 1234233\n", |
|
|
305 |
"\n", |
|
|
306 |
"2\n" |
|
|
307 |
] |
|
|
308 |
}, |
|
|
309 |
{ |
|
|
310 |
"name": "stderr", |
|
|
311 |
"output_type": "stream", |
|
|
312 |
"text": [ |
|
|
313 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
314 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
315 |
] |
|
|
316 |
}, |
|
|
317 |
{ |
|
|
318 |
"name": "stdout", |
|
|
319 |
"output_type": "stream", |
|
|
320 |
"text": [ |
|
|
321 |
"0.9942551566080978\n", |
|
|
322 |
" precision recall f1-score support\n", |
|
|
323 |
"\n", |
|
|
324 |
" 0 0.99 0.99 0.99 707930\n", |
|
|
325 |
" 1 1.00 1.00 1.00 264291\n", |
|
|
326 |
" 2 0.99 0.99 0.99 141472\n", |
|
|
327 |
" 3 0.99 0.99 0.99 83882\n", |
|
|
328 |
" 4 0.99 0.99 0.99 176875\n", |
|
|
329 |
"\n", |
|
|
330 |
" accuracy 0.99 1374450\n", |
|
|
331 |
" macro avg 0.99 0.99 0.99 1374450\n", |
|
|
332 |
"weighted avg 0.99 0.99 0.99 1374450\n", |
|
|
333 |
"\n", |
|
|
334 |
"16\n" |
|
|
335 |
] |
|
|
336 |
}, |
|
|
337 |
{ |
|
|
338 |
"name": "stderr", |
|
|
339 |
"output_type": "stream", |
|
|
340 |
"text": [ |
|
|
341 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
342 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
343 |
] |
|
|
344 |
}, |
|
|
345 |
{ |
|
|
346 |
"name": "stdout", |
|
|
347 |
"output_type": "stream", |
|
|
348 |
"text": [ |
|
|
349 |
"0.9909420375940683\n", |
|
|
350 |
" precision recall f1-score support\n", |
|
|
351 |
"\n", |
|
|
352 |
" 0 0.99 0.99 0.99 566286\n", |
|
|
353 |
" 1 1.00 1.00 1.00 273173\n", |
|
|
354 |
" 2 1.00 0.99 1.00 155403\n", |
|
|
355 |
" 3 0.97 0.97 0.97 84900\n", |
|
|
356 |
" 4 0.99 0.99 0.99 182884\n", |
|
|
357 |
"\n", |
|
|
358 |
" accuracy 0.99 1262646\n", |
|
|
359 |
" macro avg 0.99 0.99 0.99 1262646\n", |
|
|
360 |
"weighted avg 0.99 0.99 0.99 1262646\n", |
|
|
361 |
"\n", |
|
|
362 |
"4\n" |
|
|
363 |
] |
|
|
364 |
}, |
|
|
365 |
{ |
|
|
366 |
"name": "stderr", |
|
|
367 |
"output_type": "stream", |
|
|
368 |
"text": [ |
|
|
369 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
370 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
371 |
] |
|
|
372 |
}, |
|
|
373 |
{ |
|
|
374 |
"name": "stdout", |
|
|
375 |
"output_type": "stream", |
|
|
376 |
"text": [ |
|
|
377 |
"0.9948501678903209\n", |
|
|
378 |
" precision recall f1-score support\n", |
|
|
379 |
"\n", |
|
|
380 |
" 0 1.00 0.99 1.00 763459\n", |
|
|
381 |
" 1 1.00 1.00 1.00 267545\n", |
|
|
382 |
" 2 1.00 1.00 1.00 147129\n", |
|
|
383 |
" 3 0.97 0.99 0.98 86069\n", |
|
|
384 |
" 4 1.00 1.00 1.00 185554\n", |
|
|
385 |
"\n", |
|
|
386 |
" accuracy 0.99 1449756\n", |
|
|
387 |
" macro avg 0.99 0.99 0.99 1449756\n", |
|
|
388 |
"weighted avg 0.99 0.99 0.99 1449756\n", |
|
|
389 |
"\n", |
|
|
390 |
"13\n" |
|
|
391 |
] |
|
|
392 |
}, |
|
|
393 |
{ |
|
|
394 |
"name": "stderr", |
|
|
395 |
"output_type": "stream", |
|
|
396 |
"text": [ |
|
|
397 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
398 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
399 |
] |
|
|
400 |
}, |
|
|
401 |
{ |
|
|
402 |
"name": "stdout", |
|
|
403 |
"output_type": "stream", |
|
|
404 |
"text": [ |
|
|
405 |
"0.9953618951773934\n", |
|
|
406 |
" precision recall f1-score support\n", |
|
|
407 |
"\n", |
|
|
408 |
" 0 0.99 1.00 0.99 554003\n", |
|
|
409 |
" 1 1.00 1.00 1.00 273008\n", |
|
|
410 |
" 2 1.00 1.00 1.00 153832\n", |
|
|
411 |
" 3 0.99 0.99 0.99 88025\n", |
|
|
412 |
" 4 1.00 0.99 1.00 183152\n", |
|
|
413 |
"\n", |
|
|
414 |
" accuracy 1.00 1252020\n", |
|
|
415 |
" macro avg 1.00 0.99 0.99 1252020\n", |
|
|
416 |
"weighted avg 1.00 1.00 1.00 1252020\n", |
|
|
417 |
"\n", |
|
|
418 |
"3\n" |
|
|
419 |
] |
|
|
420 |
}, |
|
|
421 |
{ |
|
|
422 |
"name": "stderr", |
|
|
423 |
"output_type": "stream", |
|
|
424 |
"text": [ |
|
|
425 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
426 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
427 |
] |
|
|
428 |
}, |
|
|
429 |
{ |
|
|
430 |
"name": "stdout", |
|
|
431 |
"output_type": "stream", |
|
|
432 |
"text": [ |
|
|
433 |
"0.9984215593506081\n", |
|
|
434 |
" precision recall f1-score support\n", |
|
|
435 |
"\n", |
|
|
436 |
" 0 1.00 1.00 1.00 774757\n", |
|
|
437 |
" 1 1.00 1.00 1.00 263230\n", |
|
|
438 |
" 2 1.00 1.00 1.00 147381\n", |
|
|
439 |
" 3 1.00 1.00 1.00 86832\n", |
|
|
440 |
" 4 1.00 1.00 1.00 179866\n", |
|
|
441 |
"\n", |
|
|
442 |
" accuracy 1.00 1452066\n", |
|
|
443 |
" macro avg 1.00 1.00 1.00 1452066\n", |
|
|
444 |
"weighted avg 1.00 1.00 1.00 1452066\n", |
|
|
445 |
"\n", |
|
|
446 |
"17\n" |
|
|
447 |
] |
|
|
448 |
}, |
|
|
449 |
{ |
|
|
450 |
"name": "stderr", |
|
|
451 |
"output_type": "stream", |
|
|
452 |
"text": [ |
|
|
453 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
454 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
455 |
] |
|
|
456 |
}, |
|
|
457 |
{ |
|
|
458 |
"name": "stdout", |
|
|
459 |
"output_type": "stream", |
|
|
460 |
"text": [ |
|
|
461 |
"0.9960514628271707\n", |
|
|
462 |
" precision recall f1-score support\n", |
|
|
463 |
"\n", |
|
|
464 |
" 0 1.00 1.00 1.00 632614\n", |
|
|
465 |
" 1 1.00 1.00 1.00 273250\n", |
|
|
466 |
" 2 1.00 1.00 1.00 167191\n", |
|
|
467 |
" 3 0.99 0.99 0.99 85889\n", |
|
|
468 |
" 4 0.99 0.99 0.99 168383\n", |
|
|
469 |
"\n", |
|
|
470 |
" accuracy 1.00 1327327\n", |
|
|
471 |
" macro avg 0.99 1.00 1.00 1327327\n", |
|
|
472 |
"weighted avg 1.00 1.00 1.00 1327327\n", |
|
|
473 |
"\n", |
|
|
474 |
"5\n" |
|
|
475 |
] |
|
|
476 |
}, |
|
|
477 |
{ |
|
|
478 |
"name": "stderr", |
|
|
479 |
"output_type": "stream", |
|
|
480 |
"text": [ |
|
|
481 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
482 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
483 |
] |
|
|
484 |
}, |
|
|
485 |
{ |
|
|
486 |
"name": "stdout", |
|
|
487 |
"output_type": "stream", |
|
|
488 |
"text": [ |
|
|
489 |
"0.9962292319011686\n", |
|
|
490 |
" precision recall f1-score support\n", |
|
|
491 |
"\n", |
|
|
492 |
" 0 1.00 1.00 1.00 706523\n", |
|
|
493 |
" 1 1.00 1.00 1.00 276704\n", |
|
|
494 |
" 2 0.99 0.99 0.99 149255\n", |
|
|
495 |
" 3 1.00 1.00 1.00 86753\n", |
|
|
496 |
" 4 1.00 1.00 1.00 183397\n", |
|
|
497 |
"\n", |
|
|
498 |
" accuracy 1.00 1402632\n", |
|
|
499 |
" macro avg 1.00 1.00 1.00 1402632\n", |
|
|
500 |
"weighted avg 1.00 1.00 1.00 1402632\n", |
|
|
501 |
"\n", |
|
|
502 |
"7\n" |
|
|
503 |
] |
|
|
504 |
}, |
|
|
505 |
{ |
|
|
506 |
"name": "stderr", |
|
|
507 |
"output_type": "stream", |
|
|
508 |
"text": [ |
|
|
509 |
"/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n", |
|
|
510 |
" \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n" |
|
|
511 |
] |
|
|
512 |
}, |
|
|
513 |
{ |
|
|
514 |
"name": "stdout", |
|
|
515 |
"output_type": "stream", |
|
|
516 |
"text": [ |
|
|
517 |
"0.9961871429166657\n", |
|
|
518 |
" precision recall f1-score support\n", |
|
|
519 |
"\n", |
|
|
520 |
" 0 1.00 1.00 1.00 486045\n", |
|
|
521 |
" 1 1.00 1.00 1.00 274312\n", |
|
|
522 |
" 2 1.00 1.00 1.00 147644\n", |
|
|
523 |
" 3 0.99 0.99 0.99 85832\n", |
|
|
524 |
" 4 1.00 1.00 1.00 182188\n", |
|
|
525 |
"\n", |
|
|
526 |
" accuracy 1.00 1176021\n", |
|
|
527 |
" macro avg 1.00 1.00 1.00 1176021\n", |
|
|
528 |
"weighted avg 1.00 1.00 1.00 1176021\n", |
|
|
529 |
"\n", |
|
|
530 |
"CPU times: user 1h 2min 21s, sys: 35.1 s, total: 1h 2min 56s\n", |
|
|
531 |
"Wall time: 1h 2min 56s\n" |
|
|
532 |
] |
|
|
533 |
} |
|
|
534 |
], |
|
|
535 |
"source": [ |
|
|
536 |
"%%time\n", |
|
|
537 |
"for subject in df['subject'].unique():\n", |
|
|
538 |
" print (subject)\n", |
|
|
539 |
" temp = df[df['subject'] == subject]\n", |
|
|
540 |
" y = temp['target']\n", |
|
|
541 |
" X = temp.drop('target', 1)\n", |
|
|
542 |
" \n", |
|
|
543 |
" rf = RandomForestClassifier() \n", |
|
|
544 |
" \n", |
|
|
545 |
" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\n", |
|
|
546 |
" \n", |
|
|
547 |
" rf.fit(X_train, y_train)\n", |
|
|
548 |
" print (rf.score(X_test, y_test))\n", |
|
|
549 |
" \n", |
|
|
550 |
" print(classification_report(y_test, rf.predict(X_test)))\n", |
|
|
551 |
" \n", |
|
|
552 |
" feature_importances = pd.DataFrame(rf.feature_importances_,index = X_train.columns,columns=[str(subject)])\n", |
|
|
553 |
" feature_importances_dict = feature_importances.to_dict()\n", |
|
|
554 |
" feature_importances_list.append(feature_importances_dict)\n", |
|
|
555 |
" " |
|
|
556 |
] |
|
|
557 |
}, |
|
|
558 |
{ |
|
|
559 |
"cell_type": "code", |
|
|
560 |
"execution_count": 8, |
|
|
561 |
"metadata": {}, |
|
|
562 |
"outputs": [ |
|
|
563 |
{ |
|
|
564 |
"data": { |
|
|
565 |
"text/plain": [ |
|
|
566 |
"[{'6': {'subject': 0.0,\n", |
|
|
567 |
" 'chest_ACC_x': 0.1300669764504841,\n", |
|
|
568 |
" 'chest_ACC_y': 0.1968860170043269,\n", |
|
|
569 |
" 'chest_ACC_z': 0.24581151008517166,\n", |
|
|
570 |
" 'chest_ECG': 0.0032265901153278563,\n", |
|
|
571 |
" 'chest_EMG': 0.0036803586156519685,\n", |
|
|
572 |
" 'chest_EDA': 0.24669042461389065,\n", |
|
|
573 |
" 'chest_Temp': 0.15944455526109153,\n", |
|
|
574 |
" 'chest_Resp': 0.014193567854055431}},\n", |
|
|
575 |
" {'11': {'subject': 0.0,\n", |
|
|
576 |
" 'chest_ACC_x': 0.04024757292461694,\n", |
|
|
577 |
" 'chest_ACC_y': 0.1565318618203392,\n", |
|
|
578 |
" 'chest_ACC_z': 0.11830625071942938,\n", |
|
|
579 |
" 'chest_ECG': 0.007922838269133713,\n", |
|
|
580 |
" 'chest_EMG': 0.006348978002092723,\n", |
|
|
581 |
" 'chest_EDA': 0.36328293249601246,\n", |
|
|
582 |
" 'chest_Temp': 0.2618496659465971,\n", |
|
|
583 |
" 'chest_Resp': 0.045509899821778596}},\n", |
|
|
584 |
" {'14': {'subject': 0.0,\n", |
|
|
585 |
" 'chest_ACC_x': 0.10375227203200195,\n", |
|
|
586 |
" 'chest_ACC_y': 0.1853095383931324,\n", |
|
|
587 |
" 'chest_ACC_z': 0.215453524103329,\n", |
|
|
588 |
" 'chest_ECG': 0.008595033425546683,\n", |
|
|
589 |
" 'chest_EMG': 0.0051670030825727055,\n", |
|
|
590 |
" 'chest_EDA': 0.25382475947777666,\n", |
|
|
591 |
" 'chest_Temp': 0.2077869105964587,\n", |
|
|
592 |
" 'chest_Resp': 0.020110958889181855}},\n", |
|
|
593 |
" {'8': {'subject': 0.0,\n", |
|
|
594 |
" 'chest_ACC_x': 0.14347363122864362,\n", |
|
|
595 |
" 'chest_ACC_y': 0.24065811924766892,\n", |
|
|
596 |
" 'chest_ACC_z': 0.267762938257923,\n", |
|
|
597 |
" 'chest_ECG': 0.005711548638591734,\n", |
|
|
598 |
" 'chest_EMG': 0.003918487469962929,\n", |
|
|
599 |
" 'chest_EDA': 0.2387070057305599,\n", |
|
|
600 |
" 'chest_Temp': 0.08413531983996998,\n", |
|
|
601 |
" 'chest_Resp': 0.01563294958667973}},\n", |
|
|
602 |
" {'15': {'subject': 0.0,\n", |
|
|
603 |
" 'chest_ACC_x': 0.11231814251034679,\n", |
|
|
604 |
" 'chest_ACC_y': 0.08220255608689836,\n", |
|
|
605 |
" 'chest_ACC_z': 0.20822479510318542,\n", |
|
|
606 |
" 'chest_ECG': 0.0030866105842708154,\n", |
|
|
607 |
" 'chest_EMG': 0.002597678771338352,\n", |
|
|
608 |
" 'chest_EDA': 0.41319383692544054,\n", |
|
|
609 |
" 'chest_Temp': 0.1684332696165509,\n", |
|
|
610 |
" 'chest_Resp': 0.009943110401968736}},\n", |
|
|
611 |
" {'9': {'subject': 0.0,\n", |
|
|
612 |
" 'chest_ACC_x': 0.12561607603440622,\n", |
|
|
613 |
" 'chest_ACC_y': 0.09702573688756252,\n", |
|
|
614 |
" 'chest_ACC_z': 0.24384679962004108,\n", |
|
|
615 |
" 'chest_ECG': 0.003995169023835594,\n", |
|
|
616 |
" 'chest_EMG': 0.0054176080210714085,\n", |
|
|
617 |
" 'chest_EDA': 0.36880376616830607,\n", |
|
|
618 |
" 'chest_Temp': 0.14303779961937815,\n", |
|
|
619 |
" 'chest_Resp': 0.012257044625398936}},\n", |
|
|
620 |
" {'10': {'subject': 0.0,\n", |
|
|
621 |
" 'chest_ACC_x': 0.22882102161026965,\n", |
|
|
622 |
" 'chest_ACC_y': 0.04732657436997019,\n", |
|
|
623 |
" 'chest_ACC_z': 0.2322145246566627,\n", |
|
|
624 |
" 'chest_ECG': 0.004801462002461738,\n", |
|
|
625 |
" 'chest_EMG': 0.0045123477972814855,\n", |
|
|
626 |
" 'chest_EDA': 0.31158122644140307,\n", |
|
|
627 |
" 'chest_Temp': 0.1581155419253945,\n", |
|
|
628 |
" 'chest_Resp': 0.012627301196556704}},\n", |
|
|
629 |
" {'2': {'subject': 0.0,\n", |
|
|
630 |
" 'chest_ACC_x': 0.11668464543524892,\n", |
|
|
631 |
" 'chest_ACC_y': 0.13597111186938743,\n", |
|
|
632 |
" 'chest_ACC_z': 0.24675670252898294,\n", |
|
|
633 |
" 'chest_ECG': 0.0049927372104148,\n", |
|
|
634 |
" 'chest_EMG': 0.0024869718274109194,\n", |
|
|
635 |
" 'chest_EDA': 0.22587860975496904,\n", |
|
|
636 |
" 'chest_Temp': 0.25156271388019963,\n", |
|
|
637 |
" 'chest_Resp': 0.015666507493386436}},\n", |
|
|
638 |
" {'16': {'subject': 0.0,\n", |
|
|
639 |
" 'chest_ACC_x': 0.07922301732289758,\n", |
|
|
640 |
" 'chest_ACC_y': 0.06155434121985866,\n", |
|
|
641 |
" 'chest_ACC_z': 0.2439000711979064,\n", |
|
|
642 |
" 'chest_ECG': 0.012125844832497342,\n", |
|
|
643 |
" 'chest_EMG': 0.003252002142311649,\n", |
|
|
644 |
" 'chest_EDA': 0.4108674411007088,\n", |
|
|
645 |
" 'chest_Temp': 0.1740060304072016,\n", |
|
|
646 |
" 'chest_Resp': 0.0150712517766179}},\n", |
|
|
647 |
" {'4': {'subject': 0.0,\n", |
|
|
648 |
" 'chest_ACC_x': 0.1888912770202422,\n", |
|
|
649 |
" 'chest_ACC_y': 0.1515329160303108,\n", |
|
|
650 |
" 'chest_ACC_z': 0.23782728420548904,\n", |
|
|
651 |
" 'chest_ECG': 0.003605102562460383,\n", |
|
|
652 |
" 'chest_EMG': 0.002869069393522499,\n", |
|
|
653 |
" 'chest_EDA': 0.2525019555539589,\n", |
|
|
654 |
" 'chest_Temp': 0.1498092548768111,\n", |
|
|
655 |
" 'chest_Resp': 0.012963140357205296}},\n", |
|
|
656 |
" {'13': {'subject': 0.0,\n", |
|
|
657 |
" 'chest_ACC_x': 0.07803417203388363,\n", |
|
|
658 |
" 'chest_ACC_y': 0.09974802002465204,\n", |
|
|
659 |
" 'chest_ACC_z': 0.1777006613688301,\n", |
|
|
660 |
" 'chest_ECG': 0.0034168687514631547,\n", |
|
|
661 |
" 'chest_EMG': 0.0034440563788113777,\n", |
|
|
662 |
" 'chest_EDA': 0.37400948926186695,\n", |
|
|
663 |
" 'chest_Temp': 0.2460262689411883,\n", |
|
|
664 |
" 'chest_Resp': 0.017620463239304454}},\n", |
|
|
665 |
" {'3': {'subject': 0.0,\n", |
|
|
666 |
" 'chest_ACC_x': 0.07188722001251066,\n", |
|
|
667 |
" 'chest_ACC_y': 0.061859702055979716,\n", |
|
|
668 |
" 'chest_ACC_z': 0.33898272660534673,\n", |
|
|
669 |
" 'chest_ECG': 0.002533408376087527,\n", |
|
|
670 |
" 'chest_EMG': 0.012332865584837815,\n", |
|
|
671 |
" 'chest_EDA': 0.22347187550642342,\n", |
|
|
672 |
" 'chest_Temp': 0.2792589111675616,\n", |
|
|
673 |
" 'chest_Resp': 0.009673290691252574}},\n", |
|
|
674 |
" {'17': {'subject': 0.0,\n", |
|
|
675 |
" 'chest_ACC_x': 0.18044989325378819,\n", |
|
|
676 |
" 'chest_ACC_y': 0.07736863340070056,\n", |
|
|
677 |
" 'chest_ACC_z': 0.20479809095955676,\n", |
|
|
678 |
" 'chest_ECG': 0.003415233725763734,\n", |
|
|
679 |
" 'chest_EMG': 0.0025323836092819166,\n", |
|
|
680 |
" 'chest_EDA': 0.39464251796388494,\n", |
|
|
681 |
" 'chest_Temp': 0.12339909371098787,\n", |
|
|
682 |
" 'chest_Resp': 0.013394153376035991}},\n", |
|
|
683 |
" {'5': {'subject': 0.0,\n", |
|
|
684 |
" 'chest_ACC_x': 0.20167807887040695,\n", |
|
|
685 |
" 'chest_ACC_y': 0.08914038474449766,\n", |
|
|
686 |
" 'chest_ACC_z': 0.2014025757829614,\n", |
|
|
687 |
" 'chest_ECG': 0.004351308801137371,\n", |
|
|
688 |
" 'chest_EMG': 0.004152757849246086,\n", |
|
|
689 |
" 'chest_EDA': 0.37152507620617825,\n", |
|
|
690 |
" 'chest_Temp': 0.10902969536748346,\n", |
|
|
691 |
" 'chest_Resp': 0.01872012237808883}},\n", |
|
|
692 |
" {'7': {'subject': 0.0,\n", |
|
|
693 |
" 'chest_ACC_x': 0.07199023148411884,\n", |
|
|
694 |
" 'chest_ACC_y': 0.0738758141531722,\n", |
|
|
695 |
" 'chest_ACC_z': 0.2306827752142297,\n", |
|
|
696 |
" 'chest_ECG': 0.004528291130553968,\n", |
|
|
697 |
" 'chest_EMG': 0.003471923752608401,\n", |
|
|
698 |
" 'chest_EDA': 0.22224281102614607,\n", |
|
|
699 |
" 'chest_Temp': 0.3742280348025795,\n", |
|
|
700 |
" 'chest_Resp': 0.0189801184365914}}]" |
|
|
701 |
] |
|
|
702 |
}, |
|
|
703 |
"execution_count": 8, |
|
|
704 |
"metadata": {}, |
|
|
705 |
"output_type": "execute_result" |
|
|
706 |
} |
|
|
707 |
], |
|
|
708 |
"source": [ |
|
|
709 |
"feature_importances_list" |
|
|
710 |
] |
|
|
711 |
}, |
|
|
712 |
{ |
|
|
713 |
"cell_type": "code", |
|
|
714 |
"execution_count": 9, |
|
|
715 |
"metadata": {}, |
|
|
716 |
"outputs": [ |
|
|
717 |
{ |
|
|
718 |
"data": { |
|
|
719 |
"text/plain": [ |
|
|
720 |
"15" |
|
|
721 |
] |
|
|
722 |
}, |
|
|
723 |
"execution_count": 9, |
|
|
724 |
"metadata": {}, |
|
|
725 |
"output_type": "execute_result" |
|
|
726 |
} |
|
|
727 |
], |
|
|
728 |
"source": [ |
|
|
729 |
"len(feature_importances_list)" |
|
|
730 |
] |
|
|
731 |
}, |
|
|
732 |
{ |
|
|
733 |
"cell_type": "code", |
|
|
734 |
"execution_count": 15, |
|
|
735 |
"metadata": {}, |
|
|
736 |
"outputs": [], |
|
|
737 |
"source": [ |
|
|
738 |
"list_df = []\n", |
|
|
739 |
"for val in feature_importances_list:\n", |
|
|
740 |
" list_df.append(pd.DataFrame.from_dict(val).T)\n", |
|
|
741 |
" " |
|
|
742 |
] |
|
|
743 |
}, |
|
|
744 |
{ |
|
|
745 |
"cell_type": "code", |
|
|
746 |
"execution_count": 16, |
|
|
747 |
"metadata": {}, |
|
|
748 |
"outputs": [ |
|
|
749 |
{ |
|
|
750 |
"data": { |
|
|
751 |
"text/plain": [ |
|
|
752 |
"[ chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
753 |
" 6 0.130067 0.196886 0.245812 0.003227 0.24669 0.00368 \n", |
|
|
754 |
" \n", |
|
|
755 |
" chest_Resp chest_Temp subject \n", |
|
|
756 |
" 6 0.014194 0.159445 0.0 ,\n", |
|
|
757 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
758 |
" 11 0.040248 0.156532 0.118306 0.007923 0.363283 0.006349 \n", |
|
|
759 |
" \n", |
|
|
760 |
" chest_Resp chest_Temp subject \n", |
|
|
761 |
" 11 0.04551 0.26185 0.0 ,\n", |
|
|
762 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
763 |
" 14 0.103752 0.18531 0.215454 0.008595 0.253825 0.005167 \n", |
|
|
764 |
" \n", |
|
|
765 |
" chest_Resp chest_Temp subject \n", |
|
|
766 |
" 14 0.020111 0.207787 0.0 ,\n", |
|
|
767 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
768 |
" 8 0.143474 0.240658 0.267763 0.005712 0.238707 0.003918 \n", |
|
|
769 |
" \n", |
|
|
770 |
" chest_Resp chest_Temp subject \n", |
|
|
771 |
" 8 0.015633 0.084135 0.0 ,\n", |
|
|
772 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
773 |
" 15 0.112318 0.082203 0.208225 0.003087 0.413194 0.002598 \n", |
|
|
774 |
" \n", |
|
|
775 |
" chest_Resp chest_Temp subject \n", |
|
|
776 |
" 15 0.009943 0.168433 0.0 ,\n", |
|
|
777 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
778 |
" 9 0.125616 0.097026 0.243847 0.003995 0.368804 0.005418 \n", |
|
|
779 |
" \n", |
|
|
780 |
" chest_Resp chest_Temp subject \n", |
|
|
781 |
" 9 0.012257 0.143038 0.0 ,\n", |
|
|
782 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
783 |
" 10 0.228821 0.047327 0.232215 0.004801 0.311581 0.004512 \n", |
|
|
784 |
" \n", |
|
|
785 |
" chest_Resp chest_Temp subject \n", |
|
|
786 |
" 10 0.012627 0.158116 0.0 ,\n", |
|
|
787 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
788 |
" 2 0.116685 0.135971 0.246757 0.004993 0.225879 0.002487 \n", |
|
|
789 |
" \n", |
|
|
790 |
" chest_Resp chest_Temp subject \n", |
|
|
791 |
" 2 0.015667 0.251563 0.0 ,\n", |
|
|
792 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
793 |
" 16 0.079223 0.061554 0.2439 0.012126 0.410867 0.003252 \n", |
|
|
794 |
" \n", |
|
|
795 |
" chest_Resp chest_Temp subject \n", |
|
|
796 |
" 16 0.015071 0.174006 0.0 ,\n", |
|
|
797 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
798 |
" 4 0.188891 0.151533 0.237827 0.003605 0.252502 0.002869 \n", |
|
|
799 |
" \n", |
|
|
800 |
" chest_Resp chest_Temp subject \n", |
|
|
801 |
" 4 0.012963 0.149809 0.0 ,\n", |
|
|
802 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
803 |
" 13 0.078034 0.099748 0.177701 0.003417 0.374009 0.003444 \n", |
|
|
804 |
" \n", |
|
|
805 |
" chest_Resp chest_Temp subject \n", |
|
|
806 |
" 13 0.01762 0.246026 0.0 ,\n", |
|
|
807 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
808 |
" 3 0.071887 0.06186 0.338983 0.002533 0.223472 0.012333 \n", |
|
|
809 |
" \n", |
|
|
810 |
" chest_Resp chest_Temp subject \n", |
|
|
811 |
" 3 0.009673 0.279259 0.0 ,\n", |
|
|
812 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
813 |
" 17 0.18045 0.077369 0.204798 0.003415 0.394643 0.002532 \n", |
|
|
814 |
" \n", |
|
|
815 |
" chest_Resp chest_Temp subject \n", |
|
|
816 |
" 17 0.013394 0.123399 0.0 ,\n", |
|
|
817 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
818 |
" 5 0.201678 0.08914 0.201403 0.004351 0.371525 0.004153 \n", |
|
|
819 |
" \n", |
|
|
820 |
" chest_Resp chest_Temp subject \n", |
|
|
821 |
" 5 0.01872 0.10903 0.0 ,\n", |
|
|
822 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
823 |
" 7 0.07199 0.073876 0.230683 0.004528 0.222243 0.003472 \n", |
|
|
824 |
" \n", |
|
|
825 |
" chest_Resp chest_Temp subject \n", |
|
|
826 |
" 7 0.01898 0.374228 0.0 ]" |
|
|
827 |
] |
|
|
828 |
}, |
|
|
829 |
"execution_count": 16, |
|
|
830 |
"metadata": {}, |
|
|
831 |
"output_type": "execute_result" |
|
|
832 |
} |
|
|
833 |
], |
|
|
834 |
"source": [ |
|
|
835 |
"list_df" |
|
|
836 |
] |
|
|
837 |
}, |
|
|
838 |
{ |
|
|
839 |
"cell_type": "code", |
|
|
840 |
"execution_count": 18, |
|
|
841 |
"metadata": {}, |
|
|
842 |
"outputs": [], |
|
|
843 |
"source": [ |
|
|
844 |
"feature_importance_all_subjects = pd.concat(list_df)" |
|
|
845 |
] |
|
|
846 |
}, |
|
|
847 |
{ |
|
|
848 |
"cell_type": "code", |
|
|
849 |
"execution_count": 19, |
|
|
850 |
"metadata": {}, |
|
|
851 |
"outputs": [ |
|
|
852 |
{ |
|
|
853 |
"data": { |
|
|
854 |
"text/html": [ |
|
|
855 |
"<div>\n", |
|
|
856 |
"<style scoped>\n", |
|
|
857 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
858 |
" vertical-align: middle;\n", |
|
|
859 |
" }\n", |
|
|
860 |
"\n", |
|
|
861 |
" .dataframe tbody tr th {\n", |
|
|
862 |
" vertical-align: top;\n", |
|
|
863 |
" }\n", |
|
|
864 |
"\n", |
|
|
865 |
" .dataframe thead th {\n", |
|
|
866 |
" text-align: right;\n", |
|
|
867 |
" }\n", |
|
|
868 |
"</style>\n", |
|
|
869 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
870 |
" <thead>\n", |
|
|
871 |
" <tr style=\"text-align: right;\">\n", |
|
|
872 |
" <th></th>\n", |
|
|
873 |
" <th>chest_ACC_x</th>\n", |
|
|
874 |
" <th>chest_ACC_y</th>\n", |
|
|
875 |
" <th>chest_ACC_z</th>\n", |
|
|
876 |
" <th>chest_ECG</th>\n", |
|
|
877 |
" <th>chest_EDA</th>\n", |
|
|
878 |
" <th>chest_EMG</th>\n", |
|
|
879 |
" <th>chest_Resp</th>\n", |
|
|
880 |
" <th>chest_Temp</th>\n", |
|
|
881 |
" <th>subject</th>\n", |
|
|
882 |
" </tr>\n", |
|
|
883 |
" </thead>\n", |
|
|
884 |
" <tbody>\n", |
|
|
885 |
" <tr>\n", |
|
|
886 |
" <th>6</th>\n", |
|
|
887 |
" <td>0.130067</td>\n", |
|
|
888 |
" <td>0.196886</td>\n", |
|
|
889 |
" <td>0.245812</td>\n", |
|
|
890 |
" <td>0.003227</td>\n", |
|
|
891 |
" <td>0.246690</td>\n", |
|
|
892 |
" <td>0.003680</td>\n", |
|
|
893 |
" <td>0.014194</td>\n", |
|
|
894 |
" <td>0.159445</td>\n", |
|
|
895 |
" <td>0.0</td>\n", |
|
|
896 |
" </tr>\n", |
|
|
897 |
" <tr>\n", |
|
|
898 |
" <th>11</th>\n", |
|
|
899 |
" <td>0.040248</td>\n", |
|
|
900 |
" <td>0.156532</td>\n", |
|
|
901 |
" <td>0.118306</td>\n", |
|
|
902 |
" <td>0.007923</td>\n", |
|
|
903 |
" <td>0.363283</td>\n", |
|
|
904 |
" <td>0.006349</td>\n", |
|
|
905 |
" <td>0.045510</td>\n", |
|
|
906 |
" <td>0.261850</td>\n", |
|
|
907 |
" <td>0.0</td>\n", |
|
|
908 |
" </tr>\n", |
|
|
909 |
" <tr>\n", |
|
|
910 |
" <th>14</th>\n", |
|
|
911 |
" <td>0.103752</td>\n", |
|
|
912 |
" <td>0.185310</td>\n", |
|
|
913 |
" <td>0.215454</td>\n", |
|
|
914 |
" <td>0.008595</td>\n", |
|
|
915 |
" <td>0.253825</td>\n", |
|
|
916 |
" <td>0.005167</td>\n", |
|
|
917 |
" <td>0.020111</td>\n", |
|
|
918 |
" <td>0.207787</td>\n", |
|
|
919 |
" <td>0.0</td>\n", |
|
|
920 |
" </tr>\n", |
|
|
921 |
" <tr>\n", |
|
|
922 |
" <th>8</th>\n", |
|
|
923 |
" <td>0.143474</td>\n", |
|
|
924 |
" <td>0.240658</td>\n", |
|
|
925 |
" <td>0.267763</td>\n", |
|
|
926 |
" <td>0.005712</td>\n", |
|
|
927 |
" <td>0.238707</td>\n", |
|
|
928 |
" <td>0.003918</td>\n", |
|
|
929 |
" <td>0.015633</td>\n", |
|
|
930 |
" <td>0.084135</td>\n", |
|
|
931 |
" <td>0.0</td>\n", |
|
|
932 |
" </tr>\n", |
|
|
933 |
" <tr>\n", |
|
|
934 |
" <th>15</th>\n", |
|
|
935 |
" <td>0.112318</td>\n", |
|
|
936 |
" <td>0.082203</td>\n", |
|
|
937 |
" <td>0.208225</td>\n", |
|
|
938 |
" <td>0.003087</td>\n", |
|
|
939 |
" <td>0.413194</td>\n", |
|
|
940 |
" <td>0.002598</td>\n", |
|
|
941 |
" <td>0.009943</td>\n", |
|
|
942 |
" <td>0.168433</td>\n", |
|
|
943 |
" <td>0.0</td>\n", |
|
|
944 |
" </tr>\n", |
|
|
945 |
" <tr>\n", |
|
|
946 |
" <th>9</th>\n", |
|
|
947 |
" <td>0.125616</td>\n", |
|
|
948 |
" <td>0.097026</td>\n", |
|
|
949 |
" <td>0.243847</td>\n", |
|
|
950 |
" <td>0.003995</td>\n", |
|
|
951 |
" <td>0.368804</td>\n", |
|
|
952 |
" <td>0.005418</td>\n", |
|
|
953 |
" <td>0.012257</td>\n", |
|
|
954 |
" <td>0.143038</td>\n", |
|
|
955 |
" <td>0.0</td>\n", |
|
|
956 |
" </tr>\n", |
|
|
957 |
" <tr>\n", |
|
|
958 |
" <th>10</th>\n", |
|
|
959 |
" <td>0.228821</td>\n", |
|
|
960 |
" <td>0.047327</td>\n", |
|
|
961 |
" <td>0.232215</td>\n", |
|
|
962 |
" <td>0.004801</td>\n", |
|
|
963 |
" <td>0.311581</td>\n", |
|
|
964 |
" <td>0.004512</td>\n", |
|
|
965 |
" <td>0.012627</td>\n", |
|
|
966 |
" <td>0.158116</td>\n", |
|
|
967 |
" <td>0.0</td>\n", |
|
|
968 |
" </tr>\n", |
|
|
969 |
" <tr>\n", |
|
|
970 |
" <th>2</th>\n", |
|
|
971 |
" <td>0.116685</td>\n", |
|
|
972 |
" <td>0.135971</td>\n", |
|
|
973 |
" <td>0.246757</td>\n", |
|
|
974 |
" <td>0.004993</td>\n", |
|
|
975 |
" <td>0.225879</td>\n", |
|
|
976 |
" <td>0.002487</td>\n", |
|
|
977 |
" <td>0.015667</td>\n", |
|
|
978 |
" <td>0.251563</td>\n", |
|
|
979 |
" <td>0.0</td>\n", |
|
|
980 |
" </tr>\n", |
|
|
981 |
" <tr>\n", |
|
|
982 |
" <th>16</th>\n", |
|
|
983 |
" <td>0.079223</td>\n", |
|
|
984 |
" <td>0.061554</td>\n", |
|
|
985 |
" <td>0.243900</td>\n", |
|
|
986 |
" <td>0.012126</td>\n", |
|
|
987 |
" <td>0.410867</td>\n", |
|
|
988 |
" <td>0.003252</td>\n", |
|
|
989 |
" <td>0.015071</td>\n", |
|
|
990 |
" <td>0.174006</td>\n", |
|
|
991 |
" <td>0.0</td>\n", |
|
|
992 |
" </tr>\n", |
|
|
993 |
" <tr>\n", |
|
|
994 |
" <th>4</th>\n", |
|
|
995 |
" <td>0.188891</td>\n", |
|
|
996 |
" <td>0.151533</td>\n", |
|
|
997 |
" <td>0.237827</td>\n", |
|
|
998 |
" <td>0.003605</td>\n", |
|
|
999 |
" <td>0.252502</td>\n", |
|
|
1000 |
" <td>0.002869</td>\n", |
|
|
1001 |
" <td>0.012963</td>\n", |
|
|
1002 |
" <td>0.149809</td>\n", |
|
|
1003 |
" <td>0.0</td>\n", |
|
|
1004 |
" </tr>\n", |
|
|
1005 |
" <tr>\n", |
|
|
1006 |
" <th>13</th>\n", |
|
|
1007 |
" <td>0.078034</td>\n", |
|
|
1008 |
" <td>0.099748</td>\n", |
|
|
1009 |
" <td>0.177701</td>\n", |
|
|
1010 |
" <td>0.003417</td>\n", |
|
|
1011 |
" <td>0.374009</td>\n", |
|
|
1012 |
" <td>0.003444</td>\n", |
|
|
1013 |
" <td>0.017620</td>\n", |
|
|
1014 |
" <td>0.246026</td>\n", |
|
|
1015 |
" <td>0.0</td>\n", |
|
|
1016 |
" </tr>\n", |
|
|
1017 |
" <tr>\n", |
|
|
1018 |
" <th>3</th>\n", |
|
|
1019 |
" <td>0.071887</td>\n", |
|
|
1020 |
" <td>0.061860</td>\n", |
|
|
1021 |
" <td>0.338983</td>\n", |
|
|
1022 |
" <td>0.002533</td>\n", |
|
|
1023 |
" <td>0.223472</td>\n", |
|
|
1024 |
" <td>0.012333</td>\n", |
|
|
1025 |
" <td>0.009673</td>\n", |
|
|
1026 |
" <td>0.279259</td>\n", |
|
|
1027 |
" <td>0.0</td>\n", |
|
|
1028 |
" </tr>\n", |
|
|
1029 |
" <tr>\n", |
|
|
1030 |
" <th>17</th>\n", |
|
|
1031 |
" <td>0.180450</td>\n", |
|
|
1032 |
" <td>0.077369</td>\n", |
|
|
1033 |
" <td>0.204798</td>\n", |
|
|
1034 |
" <td>0.003415</td>\n", |
|
|
1035 |
" <td>0.394643</td>\n", |
|
|
1036 |
" <td>0.002532</td>\n", |
|
|
1037 |
" <td>0.013394</td>\n", |
|
|
1038 |
" <td>0.123399</td>\n", |
|
|
1039 |
" <td>0.0</td>\n", |
|
|
1040 |
" </tr>\n", |
|
|
1041 |
" <tr>\n", |
|
|
1042 |
" <th>5</th>\n", |
|
|
1043 |
" <td>0.201678</td>\n", |
|
|
1044 |
" <td>0.089140</td>\n", |
|
|
1045 |
" <td>0.201403</td>\n", |
|
|
1046 |
" <td>0.004351</td>\n", |
|
|
1047 |
" <td>0.371525</td>\n", |
|
|
1048 |
" <td>0.004153</td>\n", |
|
|
1049 |
" <td>0.018720</td>\n", |
|
|
1050 |
" <td>0.109030</td>\n", |
|
|
1051 |
" <td>0.0</td>\n", |
|
|
1052 |
" </tr>\n", |
|
|
1053 |
" <tr>\n", |
|
|
1054 |
" <th>7</th>\n", |
|
|
1055 |
" <td>0.071990</td>\n", |
|
|
1056 |
" <td>0.073876</td>\n", |
|
|
1057 |
" <td>0.230683</td>\n", |
|
|
1058 |
" <td>0.004528</td>\n", |
|
|
1059 |
" <td>0.222243</td>\n", |
|
|
1060 |
" <td>0.003472</td>\n", |
|
|
1061 |
" <td>0.018980</td>\n", |
|
|
1062 |
" <td>0.374228</td>\n", |
|
|
1063 |
" <td>0.0</td>\n", |
|
|
1064 |
" </tr>\n", |
|
|
1065 |
" </tbody>\n", |
|
|
1066 |
"</table>\n", |
|
|
1067 |
"</div>" |
|
|
1068 |
], |
|
|
1069 |
"text/plain": [ |
|
|
1070 |
" chest_ACC_x chest_ACC_y chest_ACC_z chest_ECG chest_EDA chest_EMG \\\n", |
|
|
1071 |
"6 0.130067 0.196886 0.245812 0.003227 0.246690 0.003680 \n", |
|
|
1072 |
"11 0.040248 0.156532 0.118306 0.007923 0.363283 0.006349 \n", |
|
|
1073 |
"14 0.103752 0.185310 0.215454 0.008595 0.253825 0.005167 \n", |
|
|
1074 |
"8 0.143474 0.240658 0.267763 0.005712 0.238707 0.003918 \n", |
|
|
1075 |
"15 0.112318 0.082203 0.208225 0.003087 0.413194 0.002598 \n", |
|
|
1076 |
"9 0.125616 0.097026 0.243847 0.003995 0.368804 0.005418 \n", |
|
|
1077 |
"10 0.228821 0.047327 0.232215 0.004801 0.311581 0.004512 \n", |
|
|
1078 |
"2 0.116685 0.135971 0.246757 0.004993 0.225879 0.002487 \n", |
|
|
1079 |
"16 0.079223 0.061554 0.243900 0.012126 0.410867 0.003252 \n", |
|
|
1080 |
"4 0.188891 0.151533 0.237827 0.003605 0.252502 0.002869 \n", |
|
|
1081 |
"13 0.078034 0.099748 0.177701 0.003417 0.374009 0.003444 \n", |
|
|
1082 |
"3 0.071887 0.061860 0.338983 0.002533 0.223472 0.012333 \n", |
|
|
1083 |
"17 0.180450 0.077369 0.204798 0.003415 0.394643 0.002532 \n", |
|
|
1084 |
"5 0.201678 0.089140 0.201403 0.004351 0.371525 0.004153 \n", |
|
|
1085 |
"7 0.071990 0.073876 0.230683 0.004528 0.222243 0.003472 \n", |
|
|
1086 |
"\n", |
|
|
1087 |
" chest_Resp chest_Temp subject \n", |
|
|
1088 |
"6 0.014194 0.159445 0.0 \n", |
|
|
1089 |
"11 0.045510 0.261850 0.0 \n", |
|
|
1090 |
"14 0.020111 0.207787 0.0 \n", |
|
|
1091 |
"8 0.015633 0.084135 0.0 \n", |
|
|
1092 |
"15 0.009943 0.168433 0.0 \n", |
|
|
1093 |
"9 0.012257 0.143038 0.0 \n", |
|
|
1094 |
"10 0.012627 0.158116 0.0 \n", |
|
|
1095 |
"2 0.015667 0.251563 0.0 \n", |
|
|
1096 |
"16 0.015071 0.174006 0.0 \n", |
|
|
1097 |
"4 0.012963 0.149809 0.0 \n", |
|
|
1098 |
"13 0.017620 0.246026 0.0 \n", |
|
|
1099 |
"3 0.009673 0.279259 0.0 \n", |
|
|
1100 |
"17 0.013394 0.123399 0.0 \n", |
|
|
1101 |
"5 0.018720 0.109030 0.0 \n", |
|
|
1102 |
"7 0.018980 0.374228 0.0 " |
|
|
1103 |
] |
|
|
1104 |
}, |
|
|
1105 |
"execution_count": 19, |
|
|
1106 |
"metadata": {}, |
|
|
1107 |
"output_type": "execute_result" |
|
|
1108 |
} |
|
|
1109 |
], |
|
|
1110 |
"source": [ |
|
|
1111 |
"feature_importance_all_subjects" |
|
|
1112 |
] |
|
|
1113 |
}, |
|
|
1114 |
{ |
|
|
1115 |
"cell_type": "code", |
|
|
1116 |
"execution_count": 21, |
|
|
1117 |
"metadata": {}, |
|
|
1118 |
"outputs": [ |
|
|
1119 |
{ |
|
|
1120 |
"data": { |
|
|
1121 |
"text/plain": [ |
|
|
1122 |
"6 1.0\n", |
|
|
1123 |
"11 1.0\n", |
|
|
1124 |
"14 1.0\n", |
|
|
1125 |
"8 1.0\n", |
|
|
1126 |
"15 1.0\n", |
|
|
1127 |
"9 1.0\n", |
|
|
1128 |
"10 1.0\n", |
|
|
1129 |
"2 1.0\n", |
|
|
1130 |
"16 1.0\n", |
|
|
1131 |
"4 1.0\n", |
|
|
1132 |
"13 1.0\n", |
|
|
1133 |
"3 1.0\n", |
|
|
1134 |
"17 1.0\n", |
|
|
1135 |
"5 1.0\n", |
|
|
1136 |
"7 1.0\n", |
|
|
1137 |
"dtype: float64" |
|
|
1138 |
] |
|
|
1139 |
}, |
|
|
1140 |
"execution_count": 21, |
|
|
1141 |
"metadata": {}, |
|
|
1142 |
"output_type": "execute_result" |
|
|
1143 |
} |
|
|
1144 |
], |
|
|
1145 |
"source": [ |
|
|
1146 |
"feature_importance_all_subjects.sum(axis = 1, skipna = True) " |
|
|
1147 |
] |
|
|
1148 |
}, |
|
|
1149 |
{ |
|
|
1150 |
"cell_type": "code", |
|
|
1151 |
"execution_count": 23, |
|
|
1152 |
"metadata": {}, |
|
|
1153 |
"outputs": [ |
|
|
1154 |
{ |
|
|
1155 |
"data": { |
|
|
1156 |
"text/html": [ |
|
|
1157 |
"<style type=\"text/css\" >\n", |
|
|
1158 |
" #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col0 {\n", |
|
|
1159 |
" background-color: #6dbc6d;\n", |
|
|
1160 |
" color: #000000;\n", |
|
|
1161 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col1 {\n", |
|
|
1162 |
" background-color: #2e992e;\n", |
|
|
1163 |
" color: #000000;\n", |
|
|
1164 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col2 {\n", |
|
|
1165 |
" background-color: #008000;\n", |
|
|
1166 |
" color: #f1f1f1;\n", |
|
|
1167 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col3 {\n", |
|
|
1168 |
" background-color: #e3fee3;\n", |
|
|
1169 |
" color: #000000;\n", |
|
|
1170 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col4 {\n", |
|
|
1171 |
" background-color: #008000;\n", |
|
|
1172 |
" color: #f1f1f1;\n", |
|
|
1173 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col5 {\n", |
|
|
1174 |
" background-color: #e3fee3;\n", |
|
|
1175 |
" color: #000000;\n", |
|
|
1176 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col6 {\n", |
|
|
1177 |
" background-color: #d9f8d9;\n", |
|
|
1178 |
" color: #000000;\n", |
|
|
1179 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col7 {\n", |
|
|
1180 |
" background-color: #51ad51;\n", |
|
|
1181 |
" color: #000000;\n", |
|
|
1182 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col8 {\n", |
|
|
1183 |
" background-color: #e5ffe5;\n", |
|
|
1184 |
" color: #000000;\n", |
|
|
1185 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col0 {\n", |
|
|
1186 |
" background-color: #ccf1cc;\n", |
|
|
1187 |
" color: #000000;\n", |
|
|
1188 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col1 {\n", |
|
|
1189 |
" background-color: #82c882;\n", |
|
|
1190 |
" color: #000000;\n", |
|
|
1191 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col2 {\n", |
|
|
1192 |
" background-color: #9bd69b;\n", |
|
|
1193 |
" color: #000000;\n", |
|
|
1194 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col3 {\n", |
|
|
1195 |
" background-color: #e1fde1;\n", |
|
|
1196 |
" color: #000000;\n", |
|
|
1197 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col4 {\n", |
|
|
1198 |
" background-color: #008000;\n", |
|
|
1199 |
" color: #f1f1f1;\n", |
|
|
1200 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col5 {\n", |
|
|
1201 |
" background-color: #e2fde2;\n", |
|
|
1202 |
" color: #000000;\n", |
|
|
1203 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col6 {\n", |
|
|
1204 |
" background-color: #c9efc9;\n", |
|
|
1205 |
" color: #000000;\n", |
|
|
1206 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col7 {\n", |
|
|
1207 |
" background-color: #40a340;\n", |
|
|
1208 |
" color: #000000;\n", |
|
|
1209 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col8 {\n", |
|
|
1210 |
" background-color: #e5ffe5;\n", |
|
|
1211 |
" color: #000000;\n", |
|
|
1212 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col0 {\n", |
|
|
1213 |
" background-color: #88cb88;\n", |
|
|
1214 |
" color: #000000;\n", |
|
|
1215 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col1 {\n", |
|
|
1216 |
" background-color: #3ea23e;\n", |
|
|
1217 |
" color: #000000;\n", |
|
|
1218 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col2 {\n", |
|
|
1219 |
" background-color: #229322;\n", |
|
|
1220 |
" color: #000000;\n", |
|
|
1221 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col3 {\n", |
|
|
1222 |
" background-color: #defbde;\n", |
|
|
1223 |
" color: #000000;\n", |
|
|
1224 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col4 {\n", |
|
|
1225 |
" background-color: #008000;\n", |
|
|
1226 |
" color: #f1f1f1;\n", |
|
|
1227 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col5 {\n", |
|
|
1228 |
" background-color: #e1fde1;\n", |
|
|
1229 |
" color: #000000;\n", |
|
|
1230 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col6 {\n", |
|
|
1231 |
" background-color: #d3f5d3;\n", |
|
|
1232 |
" color: #000000;\n", |
|
|
1233 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col7 {\n", |
|
|
1234 |
" background-color: #299729;\n", |
|
|
1235 |
" color: #000000;\n", |
|
|
1236 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col8 {\n", |
|
|
1237 |
" background-color: #e5ffe5;\n", |
|
|
1238 |
" color: #000000;\n", |
|
|
1239 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col0 {\n", |
|
|
1240 |
" background-color: #6abb6a;\n", |
|
|
1241 |
" color: #000000;\n", |
|
|
1242 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col1 {\n", |
|
|
1243 |
" background-color: #178c17;\n", |
|
|
1244 |
" color: #000000;\n", |
|
|
1245 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col2 {\n", |
|
|
1246 |
" background-color: #008000;\n", |
|
|
1247 |
" color: #f1f1f1;\n", |
|
|
1248 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col3 {\n", |
|
|
1249 |
" background-color: #e1fde1;\n", |
|
|
1250 |
" color: #000000;\n", |
|
|
1251 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col4 {\n", |
|
|
1252 |
" background-color: #188d18;\n", |
|
|
1253 |
" color: #000000;\n", |
|
|
1254 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col5 {\n", |
|
|
1255 |
" background-color: #e3fee3;\n", |
|
|
1256 |
" color: #000000;\n", |
|
|
1257 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col6 {\n", |
|
|
1258 |
" background-color: #d9f8d9;\n", |
|
|
1259 |
" color: #000000;\n", |
|
|
1260 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col7 {\n", |
|
|
1261 |
" background-color: #9ed79e;\n", |
|
|
1262 |
" color: #000000;\n", |
|
|
1263 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col8 {\n", |
|
|
1264 |
" background-color: #e5ffe5;\n", |
|
|
1265 |
" color: #000000;\n", |
|
|
1266 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col0 {\n", |
|
|
1267 |
" background-color: #a7dda7;\n", |
|
|
1268 |
" color: #000000;\n", |
|
|
1269 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col1 {\n", |
|
|
1270 |
" background-color: #b8e6b8;\n", |
|
|
1271 |
" color: #000000;\n", |
|
|
1272 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col2 {\n", |
|
|
1273 |
" background-color: #71bf71;\n", |
|
|
1274 |
" color: #000000;\n", |
|
|
1275 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col3 {\n", |
|
|
1276 |
" background-color: #e5ffe5;\n", |
|
|
1277 |
" color: #000000;\n", |
|
|
1278 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col4 {\n", |
|
|
1279 |
" background-color: #008000;\n", |
|
|
1280 |
" color: #f1f1f1;\n", |
|
|
1281 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col5 {\n", |
|
|
1282 |
" background-color: #e5ffe5;\n", |
|
|
1283 |
" color: #000000;\n", |
|
|
1284 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col6 {\n", |
|
|
1285 |
" background-color: #e0fce0;\n", |
|
|
1286 |
" color: #000000;\n", |
|
|
1287 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col7 {\n", |
|
|
1288 |
" background-color: #88cb88;\n", |
|
|
1289 |
" color: #000000;\n", |
|
|
1290 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col8 {\n", |
|
|
1291 |
" background-color: #e5ffe5;\n", |
|
|
1292 |
" color: #000000;\n", |
|
|
1293 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col0 {\n", |
|
|
1294 |
" background-color: #97d497;\n", |
|
|
1295 |
" color: #000000;\n", |
|
|
1296 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col1 {\n", |
|
|
1297 |
" background-color: #a9dea9;\n", |
|
|
1298 |
" color: #000000;\n", |
|
|
1299 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col2 {\n", |
|
|
1300 |
" background-color: #4dab4d;\n", |
|
|
1301 |
" color: #000000;\n", |
|
|
1302 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col3 {\n", |
|
|
1303 |
" background-color: #e4fee4;\n", |
|
|
1304 |
" color: #000000;\n", |
|
|
1305 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col4 {\n", |
|
|
1306 |
" background-color: #008000;\n", |
|
|
1307 |
" color: #f1f1f1;\n", |
|
|
1308 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col5 {\n", |
|
|
1309 |
" background-color: #e3fee3;\n", |
|
|
1310 |
" color: #000000;\n", |
|
|
1311 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col6 {\n", |
|
|
1312 |
" background-color: #defbde;\n", |
|
|
1313 |
" color: #000000;\n", |
|
|
1314 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col7 {\n", |
|
|
1315 |
" background-color: #8cce8c;\n", |
|
|
1316 |
" color: #000000;\n", |
|
|
1317 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col8 {\n", |
|
|
1318 |
" background-color: #e5ffe5;\n", |
|
|
1319 |
" color: #000000;\n", |
|
|
1320 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col0 {\n", |
|
|
1321 |
" background-color: #3ca13c;\n", |
|
|
1322 |
" color: #000000;\n", |
|
|
1323 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col1 {\n", |
|
|
1324 |
" background-color: #c3ecc3;\n", |
|
|
1325 |
" color: #000000;\n", |
|
|
1326 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col2 {\n", |
|
|
1327 |
" background-color: #3aa03a;\n", |
|
|
1328 |
" color: #000000;\n", |
|
|
1329 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col3 {\n", |
|
|
1330 |
" background-color: #e3fee3;\n", |
|
|
1331 |
" color: #000000;\n", |
|
|
1332 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col4 {\n", |
|
|
1333 |
" background-color: #008000;\n", |
|
|
1334 |
" color: #f1f1f1;\n", |
|
|
1335 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col5 {\n", |
|
|
1336 |
" background-color: #e3fee3;\n", |
|
|
1337 |
" color: #000000;\n", |
|
|
1338 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col6 {\n", |
|
|
1339 |
" background-color: #dcfadc;\n", |
|
|
1340 |
" color: #000000;\n", |
|
|
1341 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col7 {\n", |
|
|
1342 |
" background-color: #71bf71;\n", |
|
|
1343 |
" color: #000000;\n", |
|
|
1344 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col8 {\n", |
|
|
1345 |
" background-color: #e5ffe5;\n", |
|
|
1346 |
" color: #000000;\n", |
|
|
1347 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col0 {\n", |
|
|
1348 |
" background-color: #7bc47b;\n", |
|
|
1349 |
" color: #000000;\n", |
|
|
1350 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col1 {\n", |
|
|
1351 |
" background-color: #69ba69;\n", |
|
|
1352 |
" color: #000000;\n", |
|
|
1353 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col2 {\n", |
|
|
1354 |
" background-color: #048204;\n", |
|
|
1355 |
" color: #f1f1f1;\n", |
|
|
1356 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col3 {\n", |
|
|
1357 |
" background-color: #e1fde1;\n", |
|
|
1358 |
" color: #000000;\n", |
|
|
1359 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col4 {\n", |
|
|
1360 |
" background-color: #178d17;\n", |
|
|
1361 |
" color: #000000;\n", |
|
|
1362 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col5 {\n", |
|
|
1363 |
" background-color: #e4fee4;\n", |
|
|
1364 |
" color: #000000;\n", |
|
|
1365 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col6 {\n", |
|
|
1366 |
" background-color: #d8f8d8;\n", |
|
|
1367 |
" color: #000000;\n", |
|
|
1368 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col7 {\n", |
|
|
1369 |
" background-color: #008000;\n", |
|
|
1370 |
" color: #f1f1f1;\n", |
|
|
1371 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col8 {\n", |
|
|
1372 |
" background-color: #e5ffe5;\n", |
|
|
1373 |
" color: #000000;\n", |
|
|
1374 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col0 {\n", |
|
|
1375 |
" background-color: #b9e7b9;\n", |
|
|
1376 |
" color: #000000;\n", |
|
|
1377 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col1 {\n", |
|
|
1378 |
" background-color: #c3ecc3;\n", |
|
|
1379 |
" color: #000000;\n", |
|
|
1380 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col2 {\n", |
|
|
1381 |
" background-color: #5eb45e;\n", |
|
|
1382 |
" color: #000000;\n", |
|
|
1383 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col3 {\n", |
|
|
1384 |
" background-color: #dffcdf;\n", |
|
|
1385 |
" color: #000000;\n", |
|
|
1386 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col4 {\n", |
|
|
1387 |
" background-color: #008000;\n", |
|
|
1388 |
" color: #f1f1f1;\n", |
|
|
1389 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col5 {\n", |
|
|
1390 |
" background-color: #e4fee4;\n", |
|
|
1391 |
" color: #000000;\n", |
|
|
1392 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col6 {\n", |
|
|
1393 |
" background-color: #ddfbdd;\n", |
|
|
1394 |
" color: #000000;\n", |
|
|
1395 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col7 {\n", |
|
|
1396 |
" background-color: #84c984;\n", |
|
|
1397 |
" color: #000000;\n", |
|
|
1398 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col8 {\n", |
|
|
1399 |
" background-color: #e5ffe5;\n", |
|
|
1400 |
" color: #000000;\n", |
|
|
1401 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col0 {\n", |
|
|
1402 |
" background-color: #3aa03a;\n", |
|
|
1403 |
" color: #000000;\n", |
|
|
1404 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col1 {\n", |
|
|
1405 |
" background-color: #5cb35c;\n", |
|
|
1406 |
" color: #000000;\n", |
|
|
1407 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col2 {\n", |
|
|
1408 |
" background-color: #0d870d;\n", |
|
|
1409 |
" color: #f1f1f1;\n", |
|
|
1410 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col3 {\n", |
|
|
1411 |
" background-color: #e3fee3;\n", |
|
|
1412 |
" color: #000000;\n", |
|
|
1413 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col4 {\n", |
|
|
1414 |
" background-color: #008000;\n", |
|
|
1415 |
" color: #f1f1f1;\n", |
|
|
1416 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col5 {\n", |
|
|
1417 |
" background-color: #e4fee4;\n", |
|
|
1418 |
" color: #000000;\n", |
|
|
1419 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col6 {\n", |
|
|
1420 |
" background-color: #daf9da;\n", |
|
|
1421 |
" color: #000000;\n", |
|
|
1422 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col7 {\n", |
|
|
1423 |
" background-color: #5eb45e;\n", |
|
|
1424 |
" color: #000000;\n", |
|
|
1425 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col8 {\n", |
|
|
1426 |
" background-color: #e5ffe5;\n", |
|
|
1427 |
" color: #000000;\n", |
|
|
1428 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col0 {\n", |
|
|
1429 |
" background-color: #b6e5b6;\n", |
|
|
1430 |
" color: #000000;\n", |
|
|
1431 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col1 {\n", |
|
|
1432 |
" background-color: #a8dda8;\n", |
|
|
1433 |
" color: #000000;\n", |
|
|
1434 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col2 {\n", |
|
|
1435 |
" background-color: #79c379;\n", |
|
|
1436 |
" color: #000000;\n", |
|
|
1437 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col3 {\n", |
|
|
1438 |
" background-color: #e4fee4;\n", |
|
|
1439 |
" color: #000000;\n", |
|
|
1440 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col4 {\n", |
|
|
1441 |
" background-color: #008000;\n", |
|
|
1442 |
" color: #f1f1f1;\n", |
|
|
1443 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col5 {\n", |
|
|
1444 |
" background-color: #e4fee4;\n", |
|
|
1445 |
" color: #000000;\n", |
|
|
1446 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col6 {\n", |
|
|
1447 |
" background-color: #dbf9db;\n", |
|
|
1448 |
" color: #000000;\n", |
|
|
1449 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col7 {\n", |
|
|
1450 |
" background-color: #4eab4e;\n", |
|
|
1451 |
" color: #000000;\n", |
|
|
1452 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col8 {\n", |
|
|
1453 |
" background-color: #e5ffe5;\n", |
|
|
1454 |
" color: #000000;\n", |
|
|
1455 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col0 {\n", |
|
|
1456 |
" background-color: #b5e4b5;\n", |
|
|
1457 |
" color: #000000;\n", |
|
|
1458 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col1 {\n", |
|
|
1459 |
" background-color: #bce8bc;\n", |
|
|
1460 |
" color: #000000;\n", |
|
|
1461 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col2 {\n", |
|
|
1462 |
" background-color: #008000;\n", |
|
|
1463 |
" color: #f1f1f1;\n", |
|
|
1464 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col3 {\n", |
|
|
1465 |
" background-color: #e5ffe5;\n", |
|
|
1466 |
" color: #000000;\n", |
|
|
1467 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col4 {\n", |
|
|
1468 |
" background-color: #4eab4e;\n", |
|
|
1469 |
" color: #000000;\n", |
|
|
1470 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col5 {\n", |
|
|
1471 |
" background-color: #ddfbdd;\n", |
|
|
1472 |
" color: #000000;\n", |
|
|
1473 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col6 {\n", |
|
|
1474 |
" background-color: #dffcdf;\n", |
|
|
1475 |
" color: #000000;\n", |
|
|
1476 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col7 {\n", |
|
|
1477 |
" background-color: #289628;\n", |
|
|
1478 |
" color: #000000;\n", |
|
|
1479 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col8 {\n", |
|
|
1480 |
" background-color: #e5ffe5;\n", |
|
|
1481 |
" color: #000000;\n", |
|
|
1482 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col0 {\n", |
|
|
1483 |
" background-color: #7cc57c;\n", |
|
|
1484 |
" color: #000000;\n", |
|
|
1485 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col1 {\n", |
|
|
1486 |
" background-color: #b8e6b8;\n", |
|
|
1487 |
" color: #000000;\n", |
|
|
1488 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col2 {\n", |
|
|
1489 |
" background-color: #6fbd6f;\n", |
|
|
1490 |
" color: #000000;\n", |
|
|
1491 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col3 {\n", |
|
|
1492 |
" background-color: #e4fee4;\n", |
|
|
1493 |
" color: #000000;\n", |
|
|
1494 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col4 {\n", |
|
|
1495 |
" background-color: #008000;\n", |
|
|
1496 |
" color: #f1f1f1;\n", |
|
|
1497 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col5 {\n", |
|
|
1498 |
" background-color: #e5ffe5;\n", |
|
|
1499 |
" color: #000000;\n", |
|
|
1500 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col6 {\n", |
|
|
1501 |
" background-color: #defbde;\n", |
|
|
1502 |
" color: #000000;\n", |
|
|
1503 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col7 {\n", |
|
|
1504 |
" background-color: #9ed79e;\n", |
|
|
1505 |
" color: #000000;\n", |
|
|
1506 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col8 {\n", |
|
|
1507 |
" background-color: #e5ffe5;\n", |
|
|
1508 |
" color: #000000;\n", |
|
|
1509 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col0 {\n", |
|
|
1510 |
" background-color: #69ba69;\n", |
|
|
1511 |
" color: #000000;\n", |
|
|
1512 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col1 {\n", |
|
|
1513 |
" background-color: #afe1af;\n", |
|
|
1514 |
" color: #000000;\n", |
|
|
1515 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col2 {\n", |
|
|
1516 |
" background-color: #69ba69;\n", |
|
|
1517 |
" color: #000000;\n", |
|
|
1518 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col3 {\n", |
|
|
1519 |
" background-color: #e4fee4;\n", |
|
|
1520 |
" color: #000000;\n", |
|
|
1521 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col4 {\n", |
|
|
1522 |
" background-color: #008000;\n", |
|
|
1523 |
" color: #f1f1f1;\n", |
|
|
1524 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col5 {\n", |
|
|
1525 |
" background-color: #e4fee4;\n", |
|
|
1526 |
" color: #000000;\n", |
|
|
1527 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col6 {\n", |
|
|
1528 |
" background-color: #dbf9db;\n", |
|
|
1529 |
" color: #000000;\n", |
|
|
1530 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col7 {\n", |
|
|
1531 |
" background-color: #a2daa2;\n", |
|
|
1532 |
" color: #000000;\n", |
|
|
1533 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col8 {\n", |
|
|
1534 |
" background-color: #e5ffe5;\n", |
|
|
1535 |
" color: #000000;\n", |
|
|
1536 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col0 {\n", |
|
|
1537 |
" background-color: #b9e7b9;\n", |
|
|
1538 |
" color: #000000;\n", |
|
|
1539 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col1 {\n", |
|
|
1540 |
" background-color: #b8e6b8;\n", |
|
|
1541 |
" color: #000000;\n", |
|
|
1542 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col2 {\n", |
|
|
1543 |
" background-color: #58b158;\n", |
|
|
1544 |
" color: #000000;\n", |
|
|
1545 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col3 {\n", |
|
|
1546 |
" background-color: #e3fee3;\n", |
|
|
1547 |
" color: #000000;\n", |
|
|
1548 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col4 {\n", |
|
|
1549 |
" background-color: #5db35d;\n", |
|
|
1550 |
" color: #000000;\n", |
|
|
1551 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col5 {\n", |
|
|
1552 |
" background-color: #e4fee4;\n", |
|
|
1553 |
" color: #000000;\n", |
|
|
1554 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col6 {\n", |
|
|
1555 |
" background-color: #dbf9db;\n", |
|
|
1556 |
" color: #000000;\n", |
|
|
1557 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col7 {\n", |
|
|
1558 |
" background-color: #008000;\n", |
|
|
1559 |
" color: #f1f1f1;\n", |
|
|
1560 |
" } #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col8 {\n", |
|
|
1561 |
" background-color: #e5ffe5;\n", |
|
|
1562 |
" color: #000000;\n", |
|
|
1563 |
" }</style><table id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002\" ><thead> <tr> <th class=\"blank level0\" ></th> <th class=\"col_heading level0 col0\" >chest_ACC_x</th> <th class=\"col_heading level0 col1\" >chest_ACC_y</th> <th class=\"col_heading level0 col2\" >chest_ACC_z</th> <th class=\"col_heading level0 col3\" >chest_ECG</th> <th class=\"col_heading level0 col4\" >chest_EDA</th> <th class=\"col_heading level0 col5\" >chest_EMG</th> <th class=\"col_heading level0 col6\" >chest_Resp</th> <th class=\"col_heading level0 col7\" >chest_Temp</th> <th class=\"col_heading level0 col8\" >subject</th> </tr></thead><tbody>\n", |
|
|
1564 |
" <tr>\n", |
|
|
1565 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row0\" class=\"row_heading level0 row0\" >6</th>\n", |
|
|
1566 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col0\" class=\"data row0 col0\" >0.130067</td>\n", |
|
|
1567 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col1\" class=\"data row0 col1\" >0.196886</td>\n", |
|
|
1568 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col2\" class=\"data row0 col2\" >0.245812</td>\n", |
|
|
1569 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col3\" class=\"data row0 col3\" >0.00322659</td>\n", |
|
|
1570 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col4\" class=\"data row0 col4\" >0.24669</td>\n", |
|
|
1571 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col5\" class=\"data row0 col5\" >0.00368036</td>\n", |
|
|
1572 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col6\" class=\"data row0 col6\" >0.0141936</td>\n", |
|
|
1573 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col7\" class=\"data row0 col7\" >0.159445</td>\n", |
|
|
1574 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col8\" class=\"data row0 col8\" >0</td>\n", |
|
|
1575 |
" </tr>\n", |
|
|
1576 |
" <tr>\n", |
|
|
1577 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row1\" class=\"row_heading level0 row1\" >11</th>\n", |
|
|
1578 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col0\" class=\"data row1 col0\" >0.0402476</td>\n", |
|
|
1579 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col1\" class=\"data row1 col1\" >0.156532</td>\n", |
|
|
1580 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col2\" class=\"data row1 col2\" >0.118306</td>\n", |
|
|
1581 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col3\" class=\"data row1 col3\" >0.00792284</td>\n", |
|
|
1582 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col4\" class=\"data row1 col4\" >0.363283</td>\n", |
|
|
1583 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col5\" class=\"data row1 col5\" >0.00634898</td>\n", |
|
|
1584 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col6\" class=\"data row1 col6\" >0.0455099</td>\n", |
|
|
1585 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col7\" class=\"data row1 col7\" >0.26185</td>\n", |
|
|
1586 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col8\" class=\"data row1 col8\" >0</td>\n", |
|
|
1587 |
" </tr>\n", |
|
|
1588 |
" <tr>\n", |
|
|
1589 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row2\" class=\"row_heading level0 row2\" >14</th>\n", |
|
|
1590 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col0\" class=\"data row2 col0\" >0.103752</td>\n", |
|
|
1591 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col1\" class=\"data row2 col1\" >0.18531</td>\n", |
|
|
1592 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col2\" class=\"data row2 col2\" >0.215454</td>\n", |
|
|
1593 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col3\" class=\"data row2 col3\" >0.00859503</td>\n", |
|
|
1594 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col4\" class=\"data row2 col4\" >0.253825</td>\n", |
|
|
1595 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col5\" class=\"data row2 col5\" >0.005167</td>\n", |
|
|
1596 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col6\" class=\"data row2 col6\" >0.020111</td>\n", |
|
|
1597 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col7\" class=\"data row2 col7\" >0.207787</td>\n", |
|
|
1598 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col8\" class=\"data row2 col8\" >0</td>\n", |
|
|
1599 |
" </tr>\n", |
|
|
1600 |
" <tr>\n", |
|
|
1601 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row3\" class=\"row_heading level0 row3\" >8</th>\n", |
|
|
1602 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col0\" class=\"data row3 col0\" >0.143474</td>\n", |
|
|
1603 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col1\" class=\"data row3 col1\" >0.240658</td>\n", |
|
|
1604 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col2\" class=\"data row3 col2\" >0.267763</td>\n", |
|
|
1605 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col3\" class=\"data row3 col3\" >0.00571155</td>\n", |
|
|
1606 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col4\" class=\"data row3 col4\" >0.238707</td>\n", |
|
|
1607 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col5\" class=\"data row3 col5\" >0.00391849</td>\n", |
|
|
1608 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col6\" class=\"data row3 col6\" >0.0156329</td>\n", |
|
|
1609 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col7\" class=\"data row3 col7\" >0.0841353</td>\n", |
|
|
1610 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col8\" class=\"data row3 col8\" >0</td>\n", |
|
|
1611 |
" </tr>\n", |
|
|
1612 |
" <tr>\n", |
|
|
1613 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row4\" class=\"row_heading level0 row4\" >15</th>\n", |
|
|
1614 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col0\" class=\"data row4 col0\" >0.112318</td>\n", |
|
|
1615 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col1\" class=\"data row4 col1\" >0.0822026</td>\n", |
|
|
1616 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col2\" class=\"data row4 col2\" >0.208225</td>\n", |
|
|
1617 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col3\" class=\"data row4 col3\" >0.00308661</td>\n", |
|
|
1618 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col4\" class=\"data row4 col4\" >0.413194</td>\n", |
|
|
1619 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col5\" class=\"data row4 col5\" >0.00259768</td>\n", |
|
|
1620 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col6\" class=\"data row4 col6\" >0.00994311</td>\n", |
|
|
1621 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col7\" class=\"data row4 col7\" >0.168433</td>\n", |
|
|
1622 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col8\" class=\"data row4 col8\" >0</td>\n", |
|
|
1623 |
" </tr>\n", |
|
|
1624 |
" <tr>\n", |
|
|
1625 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row5\" class=\"row_heading level0 row5\" >9</th>\n", |
|
|
1626 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col0\" class=\"data row5 col0\" >0.125616</td>\n", |
|
|
1627 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col1\" class=\"data row5 col1\" >0.0970257</td>\n", |
|
|
1628 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col2\" class=\"data row5 col2\" >0.243847</td>\n", |
|
|
1629 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col3\" class=\"data row5 col3\" >0.00399517</td>\n", |
|
|
1630 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col4\" class=\"data row5 col4\" >0.368804</td>\n", |
|
|
1631 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col5\" class=\"data row5 col5\" >0.00541761</td>\n", |
|
|
1632 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col6\" class=\"data row5 col6\" >0.012257</td>\n", |
|
|
1633 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col7\" class=\"data row5 col7\" >0.143038</td>\n", |
|
|
1634 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col8\" class=\"data row5 col8\" >0</td>\n", |
|
|
1635 |
" </tr>\n", |
|
|
1636 |
" <tr>\n", |
|
|
1637 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row6\" class=\"row_heading level0 row6\" >10</th>\n", |
|
|
1638 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col0\" class=\"data row6 col0\" >0.228821</td>\n", |
|
|
1639 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col1\" class=\"data row6 col1\" >0.0473266</td>\n", |
|
|
1640 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col2\" class=\"data row6 col2\" >0.232215</td>\n", |
|
|
1641 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col3\" class=\"data row6 col3\" >0.00480146</td>\n", |
|
|
1642 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col4\" class=\"data row6 col4\" >0.311581</td>\n", |
|
|
1643 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col5\" class=\"data row6 col5\" >0.00451235</td>\n", |
|
|
1644 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col6\" class=\"data row6 col6\" >0.0126273</td>\n", |
|
|
1645 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col7\" class=\"data row6 col7\" >0.158116</td>\n", |
|
|
1646 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col8\" class=\"data row6 col8\" >0</td>\n", |
|
|
1647 |
" </tr>\n", |
|
|
1648 |
" <tr>\n", |
|
|
1649 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row7\" class=\"row_heading level0 row7\" >2</th>\n", |
|
|
1650 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col0\" class=\"data row7 col0\" >0.116685</td>\n", |
|
|
1651 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col1\" class=\"data row7 col1\" >0.135971</td>\n", |
|
|
1652 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col2\" class=\"data row7 col2\" >0.246757</td>\n", |
|
|
1653 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col3\" class=\"data row7 col3\" >0.00499274</td>\n", |
|
|
1654 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col4\" class=\"data row7 col4\" >0.225879</td>\n", |
|
|
1655 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col5\" class=\"data row7 col5\" >0.00248697</td>\n", |
|
|
1656 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col6\" class=\"data row7 col6\" >0.0156665</td>\n", |
|
|
1657 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col7\" class=\"data row7 col7\" >0.251563</td>\n", |
|
|
1658 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col8\" class=\"data row7 col8\" >0</td>\n", |
|
|
1659 |
" </tr>\n", |
|
|
1660 |
" <tr>\n", |
|
|
1661 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row8\" class=\"row_heading level0 row8\" >16</th>\n", |
|
|
1662 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col0\" class=\"data row8 col0\" >0.079223</td>\n", |
|
|
1663 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col1\" class=\"data row8 col1\" >0.0615543</td>\n", |
|
|
1664 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col2\" class=\"data row8 col2\" >0.2439</td>\n", |
|
|
1665 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col3\" class=\"data row8 col3\" >0.0121258</td>\n", |
|
|
1666 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col4\" class=\"data row8 col4\" >0.410867</td>\n", |
|
|
1667 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col5\" class=\"data row8 col5\" >0.003252</td>\n", |
|
|
1668 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col6\" class=\"data row8 col6\" >0.0150713</td>\n", |
|
|
1669 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col7\" class=\"data row8 col7\" >0.174006</td>\n", |
|
|
1670 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col8\" class=\"data row8 col8\" >0</td>\n", |
|
|
1671 |
" </tr>\n", |
|
|
1672 |
" <tr>\n", |
|
|
1673 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row9\" class=\"row_heading level0 row9\" >4</th>\n", |
|
|
1674 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col0\" class=\"data row9 col0\" >0.188891</td>\n", |
|
|
1675 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col1\" class=\"data row9 col1\" >0.151533</td>\n", |
|
|
1676 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col2\" class=\"data row9 col2\" >0.237827</td>\n", |
|
|
1677 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col3\" class=\"data row9 col3\" >0.0036051</td>\n", |
|
|
1678 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col4\" class=\"data row9 col4\" >0.252502</td>\n", |
|
|
1679 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col5\" class=\"data row9 col5\" >0.00286907</td>\n", |
|
|
1680 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col6\" class=\"data row9 col6\" >0.0129631</td>\n", |
|
|
1681 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col7\" class=\"data row9 col7\" >0.149809</td>\n", |
|
|
1682 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col8\" class=\"data row9 col8\" >0</td>\n", |
|
|
1683 |
" </tr>\n", |
|
|
1684 |
" <tr>\n", |
|
|
1685 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row10\" class=\"row_heading level0 row10\" >13</th>\n", |
|
|
1686 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col0\" class=\"data row10 col0\" >0.0780342</td>\n", |
|
|
1687 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col1\" class=\"data row10 col1\" >0.099748</td>\n", |
|
|
1688 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col2\" class=\"data row10 col2\" >0.177701</td>\n", |
|
|
1689 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col3\" class=\"data row10 col3\" >0.00341687</td>\n", |
|
|
1690 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col4\" class=\"data row10 col4\" >0.374009</td>\n", |
|
|
1691 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col5\" class=\"data row10 col5\" >0.00344406</td>\n", |
|
|
1692 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col6\" class=\"data row10 col6\" >0.0176205</td>\n", |
|
|
1693 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col7\" class=\"data row10 col7\" >0.246026</td>\n", |
|
|
1694 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col8\" class=\"data row10 col8\" >0</td>\n", |
|
|
1695 |
" </tr>\n", |
|
|
1696 |
" <tr>\n", |
|
|
1697 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row11\" class=\"row_heading level0 row11\" >3</th>\n", |
|
|
1698 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col0\" class=\"data row11 col0\" >0.0718872</td>\n", |
|
|
1699 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col1\" class=\"data row11 col1\" >0.0618597</td>\n", |
|
|
1700 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col2\" class=\"data row11 col2\" >0.338983</td>\n", |
|
|
1701 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col3\" class=\"data row11 col3\" >0.00253341</td>\n", |
|
|
1702 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col4\" class=\"data row11 col4\" >0.223472</td>\n", |
|
|
1703 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col5\" class=\"data row11 col5\" >0.0123329</td>\n", |
|
|
1704 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col6\" class=\"data row11 col6\" >0.00967329</td>\n", |
|
|
1705 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col7\" class=\"data row11 col7\" >0.279259</td>\n", |
|
|
1706 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col8\" class=\"data row11 col8\" >0</td>\n", |
|
|
1707 |
" </tr>\n", |
|
|
1708 |
" <tr>\n", |
|
|
1709 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row12\" class=\"row_heading level0 row12\" >17</th>\n", |
|
|
1710 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col0\" class=\"data row12 col0\" >0.18045</td>\n", |
|
|
1711 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col1\" class=\"data row12 col1\" >0.0773686</td>\n", |
|
|
1712 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col2\" class=\"data row12 col2\" >0.204798</td>\n", |
|
|
1713 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col3\" class=\"data row12 col3\" >0.00341523</td>\n", |
|
|
1714 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col4\" class=\"data row12 col4\" >0.394643</td>\n", |
|
|
1715 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col5\" class=\"data row12 col5\" >0.00253238</td>\n", |
|
|
1716 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col6\" class=\"data row12 col6\" >0.0133942</td>\n", |
|
|
1717 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col7\" class=\"data row12 col7\" >0.123399</td>\n", |
|
|
1718 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col8\" class=\"data row12 col8\" >0</td>\n", |
|
|
1719 |
" </tr>\n", |
|
|
1720 |
" <tr>\n", |
|
|
1721 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row13\" class=\"row_heading level0 row13\" >5</th>\n", |
|
|
1722 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col0\" class=\"data row13 col0\" >0.201678</td>\n", |
|
|
1723 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col1\" class=\"data row13 col1\" >0.0891404</td>\n", |
|
|
1724 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col2\" class=\"data row13 col2\" >0.201403</td>\n", |
|
|
1725 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col3\" class=\"data row13 col3\" >0.00435131</td>\n", |
|
|
1726 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col4\" class=\"data row13 col4\" >0.371525</td>\n", |
|
|
1727 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col5\" class=\"data row13 col5\" >0.00415276</td>\n", |
|
|
1728 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col6\" class=\"data row13 col6\" >0.0187201</td>\n", |
|
|
1729 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col7\" class=\"data row13 col7\" >0.10903</td>\n", |
|
|
1730 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col8\" class=\"data row13 col8\" >0</td>\n", |
|
|
1731 |
" </tr>\n", |
|
|
1732 |
" <tr>\n", |
|
|
1733 |
" <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row14\" class=\"row_heading level0 row14\" >7</th>\n", |
|
|
1734 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col0\" class=\"data row14 col0\" >0.0719902</td>\n", |
|
|
1735 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col1\" class=\"data row14 col1\" >0.0738758</td>\n", |
|
|
1736 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col2\" class=\"data row14 col2\" >0.230683</td>\n", |
|
|
1737 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col3\" class=\"data row14 col3\" >0.00452829</td>\n", |
|
|
1738 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col4\" class=\"data row14 col4\" >0.222243</td>\n", |
|
|
1739 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col5\" class=\"data row14 col5\" >0.00347192</td>\n", |
|
|
1740 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col6\" class=\"data row14 col6\" >0.0189801</td>\n", |
|
|
1741 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col7\" class=\"data row14 col7\" >0.374228</td>\n", |
|
|
1742 |
" <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col8\" class=\"data row14 col8\" >0</td>\n", |
|
|
1743 |
" </tr>\n", |
|
|
1744 |
" </tbody></table>" |
|
|
1745 |
], |
|
|
1746 |
"text/plain": [ |
|
|
1747 |
"<pandas.io.formats.style.Styler at 0x7fa017af0898>" |
|
|
1748 |
] |
|
|
1749 |
}, |
|
|
1750 |
"execution_count": 23, |
|
|
1751 |
"metadata": {}, |
|
|
1752 |
"output_type": "execute_result" |
|
|
1753 |
} |
|
|
1754 |
], |
|
|
1755 |
"source": [ |
|
|
1756 |
"import seaborn as sns\n", |
|
|
1757 |
"\n", |
|
|
1758 |
"cm = sns.light_palette(\"green\", as_cmap=True)\n", |
|
|
1759 |
"\n", |
|
|
1760 |
"s = feature_importance_all_subjects.style.background_gradient(cmap=cm,axis = 1)\n", |
|
|
1761 |
"s" |
|
|
1762 |
] |
|
|
1763 |
}, |
|
|
1764 |
{ |
|
|
1765 |
"cell_type": "code", |
|
|
1766 |
"execution_count": 25, |
|
|
1767 |
"metadata": {}, |
|
|
1768 |
"outputs": [], |
|
|
1769 |
"source": [ |
|
|
1770 |
"feature_importance_all_subjects.to_csv('feature_importance_all_subjects.csv' )" |
|
|
1771 |
] |
|
|
1772 |
}, |
|
|
1773 |
{ |
|
|
1774 |
"cell_type": "code", |
|
|
1775 |
"execution_count": null, |
|
|
1776 |
"metadata": {}, |
|
|
1777 |
"outputs": [], |
|
|
1778 |
"source": [] |
|
|
1779 |
} |
|
|
1780 |
], |
|
|
1781 |
"metadata": { |
|
|
1782 |
"kernelspec": { |
|
|
1783 |
"display_name": "Python 3", |
|
|
1784 |
"language": "python", |
|
|
1785 |
"name": "python3" |
|
|
1786 |
}, |
|
|
1787 |
"language_info": { |
|
|
1788 |
"codemirror_mode": { |
|
|
1789 |
"name": "ipython", |
|
|
1790 |
"version": 3 |
|
|
1791 |
}, |
|
|
1792 |
"file_extension": ".py", |
|
|
1793 |
"mimetype": "text/x-python", |
|
|
1794 |
"name": "python", |
|
|
1795 |
"nbconvert_exporter": "python", |
|
|
1796 |
"pygments_lexer": "ipython3", |
|
|
1797 |
"version": "3.6.8" |
|
|
1798 |
} |
|
|
1799 |
}, |
|
|
1800 |
"nbformat": 4, |
|
|
1801 |
"nbformat_minor": 2 |
|
|
1802 |
} |