a b/Feature Importance for 15 subjects.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 26,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import pandas as pd\n",
10
    "from sklearn.ensemble import RandomForestClassifier \n",
11
    "from sklearn.model_selection import train_test_split\n",
12
    "from sklearn.metrics import classification_report"
13
   ]
14
  },
15
  {
16
   "cell_type": "code",
17
   "execution_count": 3,
18
   "metadata": {},
19
   "outputs": [],
20
   "source": [
21
    "df = pd.read_csv(\"master_data.csv\")"
22
   ]
23
  },
24
  {
25
   "cell_type": "code",
26
   "execution_count": 4,
27
   "metadata": {},
28
   "outputs": [
29
    {
30
     "name": "stdout",
31
     "output_type": "stream",
32
     "text": [
33
      "<class 'pandas.core.frame.DataFrame'>\n",
34
      "RangeIndex: 59125500 entries, 0 to 59125499\n",
35
      "Data columns (total 10 columns):\n",
36
      "target         int64\n",
37
      "subject        int64\n",
38
      "chest_ACC_x    float64\n",
39
      "chest_ACC_y    float64\n",
40
      "chest_ACC_z    float64\n",
41
      "chest_ECG      float64\n",
42
      "chest_EMG      float64\n",
43
      "chest_EDA      float64\n",
44
      "chest_Temp     float64\n",
45
      "chest_Resp     float64\n",
46
      "dtypes: float64(8), int64(2)\n",
47
      "memory usage: 4.4 GB\n"
48
     ]
49
    }
50
   ],
51
   "source": [
52
    "df.info()"
53
   ]
54
  },
55
  {
56
   "cell_type": "code",
57
   "execution_count": 5,
58
   "metadata": {},
59
   "outputs": [
60
    {
61
     "data": {
62
      "text/plain": [
63
       "6     4825799\n",
64
       "3     4400200\n",
65
       "4     4393200\n",
66
       "5     4250400\n",
67
       "2     4165000\n",
68
       "17    4022201\n",
69
       "16    3826200\n",
70
       "13    3794000\n",
71
       "14    3763200\n",
72
       "10    3740100\n",
73
       "8     3719799\n",
74
       "15    3576300\n",
75
       "7     3563700\n",
76
       "11    3556701\n",
77
       "9     3528700\n",
78
       "Name: subject, dtype: int64"
79
      ]
80
     },
81
     "execution_count": 5,
82
     "metadata": {},
83
     "output_type": "execute_result"
84
    }
85
   ],
86
   "source": [
87
    "df['subject'].value_counts()"
88
   ]
89
  },
90
  {
91
   "cell_type": "code",
92
   "execution_count": 6,
93
   "metadata": {},
94
   "outputs": [],
95
   "source": [
96
    "feature_importances_list = []"
97
   ]
98
  },
99
  {
100
   "cell_type": "code",
101
   "execution_count": 27,
102
   "metadata": {
103
    "scrolled": false
104
   },
105
   "outputs": [
106
    {
107
     "name": "stdout",
108
     "output_type": "stream",
109
     "text": [
110
      "6\n"
111
     ]
112
    },
113
    {
114
     "name": "stderr",
115
     "output_type": "stream",
116
     "text": [
117
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
118
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
119
     ]
120
    },
121
    {
122
     "name": "stdout",
123
     "output_type": "stream",
124
     "text": [
125
      "0.9981689328947815\n",
126
      "              precision    recall  f1-score   support\n",
127
      "\n",
128
      "           0       1.00      1.00      1.00    902929\n",
129
      "           1       1.00      1.00      1.00    271725\n",
130
      "           2       1.00      1.00      1.00    150059\n",
131
      "           3       1.00      0.99      1.00     86152\n",
132
      "           4       1.00      1.00      1.00    181649\n",
133
      "\n",
134
      "    accuracy                           1.00   1592514\n",
135
      "   macro avg       1.00      1.00      1.00   1592514\n",
136
      "weighted avg       1.00      1.00      1.00   1592514\n",
137
      "\n",
138
      "11\n"
139
     ]
140
    },
141
    {
142
     "name": "stderr",
143
     "output_type": "stream",
144
     "text": [
145
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
146
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
147
     ]
148
    },
149
    {
150
     "name": "stdout",
151
     "output_type": "stream",
152
     "text": [
153
      "0.9880933312430988\n",
154
      "              precision    recall  f1-score   support\n",
155
      "\n",
156
      "           0       0.99      0.99      0.99    475759\n",
157
      "           1       1.00      1.00      1.00    272833\n",
158
      "           2       1.00      0.99      1.00    157039\n",
159
      "           3       0.98      0.98      0.98     85341\n",
160
      "           4       0.98      0.98      0.98    182740\n",
161
      "\n",
162
      "    accuracy                           0.99   1173712\n",
163
      "   macro avg       0.99      0.99      0.99   1173712\n",
164
      "weighted avg       0.99      0.99      0.99   1173712\n",
165
      "\n",
166
      "14\n"
167
     ]
168
    },
169
    {
170
     "name": "stderr",
171
     "output_type": "stream",
172
     "text": [
173
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
174
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
175
     ]
176
    },
177
    {
178
     "name": "stdout",
179
     "output_type": "stream",
180
     "text": [
181
      "0.9876434948979592\n",
182
      "              precision    recall  f1-score   support\n",
183
      "\n",
184
      "           0       0.99      0.99      0.99    543791\n",
185
      "           1       1.00      1.00      1.00    272719\n",
186
      "           2       0.98      0.98      0.98    155792\n",
187
      "           3       0.98      0.97      0.97     85954\n",
188
      "           4       0.99      0.99      0.99    183600\n",
189
      "\n",
190
      "    accuracy                           0.99   1241856\n",
191
      "   macro avg       0.99      0.98      0.98   1241856\n",
192
      "weighted avg       0.99      0.99      0.99   1241856\n",
193
      "\n",
194
      "8\n"
195
     ]
196
    },
197
    {
198
     "name": "stderr",
199
     "output_type": "stream",
200
     "text": [
201
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
202
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
203
     ]
204
    },
205
    {
206
     "name": "stdout",
207
     "output_type": "stream",
208
     "text": [
209
      "0.99311057779255\n",
210
      "              precision    recall  f1-score   support\n",
211
      "\n",
212
      "           0       0.99      0.99      0.99    533239\n",
213
      "           1       1.00      1.00      1.00    270630\n",
214
      "           2       0.99      0.99      0.99    155051\n",
215
      "           3       0.99      0.99      0.99     85349\n",
216
      "           4       0.99      0.99      0.99    183265\n",
217
      "\n",
218
      "    accuracy                           0.99   1227534\n",
219
      "   macro avg       0.99      0.99      0.99   1227534\n",
220
      "weighted avg       0.99      0.99      0.99   1227534\n",
221
      "\n",
222
      "15\n"
223
     ]
224
    },
225
    {
226
     "name": "stderr",
227
     "output_type": "stream",
228
     "text": [
229
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
230
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
231
     ]
232
    },
233
    {
234
     "name": "stdout",
235
     "output_type": "stream",
236
     "text": [
237
      "0.9935704668529096\n",
238
      "              precision    recall  f1-score   support\n",
239
      "\n",
240
      "           0       0.99      0.99      0.99    481153\n",
241
      "           1       1.00      1.00      1.00    271736\n",
242
      "           2       1.00      1.00      1.00    158288\n",
243
      "           3       0.99      0.99      0.99     85801\n",
244
      "           4       1.00      1.00      1.00    183201\n",
245
      "\n",
246
      "    accuracy                           0.99   1180179\n",
247
      "   macro avg       0.99      0.99      0.99   1180179\n",
248
      "weighted avg       0.99      0.99      0.99   1180179\n",
249
      "\n",
250
      "9\n"
251
     ]
252
    },
253
    {
254
     "name": "stderr",
255
     "output_type": "stream",
256
     "text": [
257
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
258
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
259
     ]
260
    },
261
    {
262
     "name": "stdout",
263
     "output_type": "stream",
264
     "text": [
265
      "0.9942205516496332\n",
266
      "              precision    recall  f1-score   support\n",
267
      "\n",
268
      "           0       0.99      0.99      0.99    473496\n",
269
      "           1       1.00      1.00      1.00    272821\n",
270
      "           2       1.00      1.00      1.00    148833\n",
271
      "           3       0.98      0.99      0.99     86077\n",
272
      "           4       0.99      0.99      0.99    183244\n",
273
      "\n",
274
      "    accuracy                           0.99   1164471\n",
275
      "   macro avg       0.99      0.99      0.99   1164471\n",
276
      "weighted avg       0.99      0.99      0.99   1164471\n",
277
      "\n",
278
      "10\n"
279
     ]
280
    },
281
    {
282
     "name": "stderr",
283
     "output_type": "stream",
284
     "text": [
285
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
286
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
287
     ]
288
    },
289
    {
290
     "name": "stdout",
291
     "output_type": "stream",
292
     "text": [
293
      "0.9887095872497332\n",
294
      "              precision    recall  f1-score   support\n",
295
      "\n",
296
      "           0       0.99      0.98      0.99    524557\n",
297
      "           1       1.00      1.00      1.00    272919\n",
298
      "           2       0.99      0.99      0.99    167514\n",
299
      "           3       0.97      0.98      0.98     85925\n",
300
      "           4       0.98      0.99      0.99    183318\n",
301
      "\n",
302
      "    accuracy                           0.99   1234233\n",
303
      "   macro avg       0.99      0.99      0.99   1234233\n",
304
      "weighted avg       0.99      0.99      0.99   1234233\n",
305
      "\n",
306
      "2\n"
307
     ]
308
    },
309
    {
310
     "name": "stderr",
311
     "output_type": "stream",
312
     "text": [
313
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
314
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
315
     ]
316
    },
317
    {
318
     "name": "stdout",
319
     "output_type": "stream",
320
     "text": [
321
      "0.9942551566080978\n",
322
      "              precision    recall  f1-score   support\n",
323
      "\n",
324
      "           0       0.99      0.99      0.99    707930\n",
325
      "           1       1.00      1.00      1.00    264291\n",
326
      "           2       0.99      0.99      0.99    141472\n",
327
      "           3       0.99      0.99      0.99     83882\n",
328
      "           4       0.99      0.99      0.99    176875\n",
329
      "\n",
330
      "    accuracy                           0.99   1374450\n",
331
      "   macro avg       0.99      0.99      0.99   1374450\n",
332
      "weighted avg       0.99      0.99      0.99   1374450\n",
333
      "\n",
334
      "16\n"
335
     ]
336
    },
337
    {
338
     "name": "stderr",
339
     "output_type": "stream",
340
     "text": [
341
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
342
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
343
     ]
344
    },
345
    {
346
     "name": "stdout",
347
     "output_type": "stream",
348
     "text": [
349
      "0.9909420375940683\n",
350
      "              precision    recall  f1-score   support\n",
351
      "\n",
352
      "           0       0.99      0.99      0.99    566286\n",
353
      "           1       1.00      1.00      1.00    273173\n",
354
      "           2       1.00      0.99      1.00    155403\n",
355
      "           3       0.97      0.97      0.97     84900\n",
356
      "           4       0.99      0.99      0.99    182884\n",
357
      "\n",
358
      "    accuracy                           0.99   1262646\n",
359
      "   macro avg       0.99      0.99      0.99   1262646\n",
360
      "weighted avg       0.99      0.99      0.99   1262646\n",
361
      "\n",
362
      "4\n"
363
     ]
364
    },
365
    {
366
     "name": "stderr",
367
     "output_type": "stream",
368
     "text": [
369
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
370
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
371
     ]
372
    },
373
    {
374
     "name": "stdout",
375
     "output_type": "stream",
376
     "text": [
377
      "0.9948501678903209\n",
378
      "              precision    recall  f1-score   support\n",
379
      "\n",
380
      "           0       1.00      0.99      1.00    763459\n",
381
      "           1       1.00      1.00      1.00    267545\n",
382
      "           2       1.00      1.00      1.00    147129\n",
383
      "           3       0.97      0.99      0.98     86069\n",
384
      "           4       1.00      1.00      1.00    185554\n",
385
      "\n",
386
      "    accuracy                           0.99   1449756\n",
387
      "   macro avg       0.99      0.99      0.99   1449756\n",
388
      "weighted avg       0.99      0.99      0.99   1449756\n",
389
      "\n",
390
      "13\n"
391
     ]
392
    },
393
    {
394
     "name": "stderr",
395
     "output_type": "stream",
396
     "text": [
397
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
398
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
399
     ]
400
    },
401
    {
402
     "name": "stdout",
403
     "output_type": "stream",
404
     "text": [
405
      "0.9953618951773934\n",
406
      "              precision    recall  f1-score   support\n",
407
      "\n",
408
      "           0       0.99      1.00      0.99    554003\n",
409
      "           1       1.00      1.00      1.00    273008\n",
410
      "           2       1.00      1.00      1.00    153832\n",
411
      "           3       0.99      0.99      0.99     88025\n",
412
      "           4       1.00      0.99      1.00    183152\n",
413
      "\n",
414
      "    accuracy                           1.00   1252020\n",
415
      "   macro avg       1.00      0.99      0.99   1252020\n",
416
      "weighted avg       1.00      1.00      1.00   1252020\n",
417
      "\n",
418
      "3\n"
419
     ]
420
    },
421
    {
422
     "name": "stderr",
423
     "output_type": "stream",
424
     "text": [
425
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
426
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
427
     ]
428
    },
429
    {
430
     "name": "stdout",
431
     "output_type": "stream",
432
     "text": [
433
      "0.9984215593506081\n",
434
      "              precision    recall  f1-score   support\n",
435
      "\n",
436
      "           0       1.00      1.00      1.00    774757\n",
437
      "           1       1.00      1.00      1.00    263230\n",
438
      "           2       1.00      1.00      1.00    147381\n",
439
      "           3       1.00      1.00      1.00     86832\n",
440
      "           4       1.00      1.00      1.00    179866\n",
441
      "\n",
442
      "    accuracy                           1.00   1452066\n",
443
      "   macro avg       1.00      1.00      1.00   1452066\n",
444
      "weighted avg       1.00      1.00      1.00   1452066\n",
445
      "\n",
446
      "17\n"
447
     ]
448
    },
449
    {
450
     "name": "stderr",
451
     "output_type": "stream",
452
     "text": [
453
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
454
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
455
     ]
456
    },
457
    {
458
     "name": "stdout",
459
     "output_type": "stream",
460
     "text": [
461
      "0.9960514628271707\n",
462
      "              precision    recall  f1-score   support\n",
463
      "\n",
464
      "           0       1.00      1.00      1.00    632614\n",
465
      "           1       1.00      1.00      1.00    273250\n",
466
      "           2       1.00      1.00      1.00    167191\n",
467
      "           3       0.99      0.99      0.99     85889\n",
468
      "           4       0.99      0.99      0.99    168383\n",
469
      "\n",
470
      "    accuracy                           1.00   1327327\n",
471
      "   macro avg       0.99      1.00      1.00   1327327\n",
472
      "weighted avg       1.00      1.00      1.00   1327327\n",
473
      "\n",
474
      "5\n"
475
     ]
476
    },
477
    {
478
     "name": "stderr",
479
     "output_type": "stream",
480
     "text": [
481
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
482
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
483
     ]
484
    },
485
    {
486
     "name": "stdout",
487
     "output_type": "stream",
488
     "text": [
489
      "0.9962292319011686\n",
490
      "              precision    recall  f1-score   support\n",
491
      "\n",
492
      "           0       1.00      1.00      1.00    706523\n",
493
      "           1       1.00      1.00      1.00    276704\n",
494
      "           2       0.99      0.99      0.99    149255\n",
495
      "           3       1.00      1.00      1.00     86753\n",
496
      "           4       1.00      1.00      1.00    183397\n",
497
      "\n",
498
      "    accuracy                           1.00   1402632\n",
499
      "   macro avg       1.00      1.00      1.00   1402632\n",
500
      "weighted avg       1.00      1.00      1.00   1402632\n",
501
      "\n",
502
      "7\n"
503
     ]
504
    },
505
    {
506
     "name": "stderr",
507
     "output_type": "stream",
508
     "text": [
509
      "/home/sf/.local/lib/python3.6/site-packages/sklearn/ensemble/forest.py:245: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
510
      "  \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
511
     ]
512
    },
513
    {
514
     "name": "stdout",
515
     "output_type": "stream",
516
     "text": [
517
      "0.9961871429166657\n",
518
      "              precision    recall  f1-score   support\n",
519
      "\n",
520
      "           0       1.00      1.00      1.00    486045\n",
521
      "           1       1.00      1.00      1.00    274312\n",
522
      "           2       1.00      1.00      1.00    147644\n",
523
      "           3       0.99      0.99      0.99     85832\n",
524
      "           4       1.00      1.00      1.00    182188\n",
525
      "\n",
526
      "    accuracy                           1.00   1176021\n",
527
      "   macro avg       1.00      1.00      1.00   1176021\n",
528
      "weighted avg       1.00      1.00      1.00   1176021\n",
529
      "\n",
530
      "CPU times: user 1h 2min 21s, sys: 35.1 s, total: 1h 2min 56s\n",
531
      "Wall time: 1h 2min 56s\n"
532
     ]
533
    }
534
   ],
535
   "source": [
536
    "%%time\n",
537
    "for subject in df['subject'].unique():\n",
538
    "    print (subject)\n",
539
    "    temp = df[df['subject'] == subject]\n",
540
    "    y = temp['target']\n",
541
    "    X = temp.drop('target', 1)\n",
542
    "    \n",
543
    "    rf = RandomForestClassifier() \n",
544
    "    \n",
545
    "    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)\n",
546
    "    \n",
547
    "    rf.fit(X_train, y_train)\n",
548
    "    print (rf.score(X_test, y_test))\n",
549
    "    \n",
550
    "    print(classification_report(y_test, rf.predict(X_test)))\n",
551
    "    \n",
552
    "    feature_importances = pd.DataFrame(rf.feature_importances_,index = X_train.columns,columns=[str(subject)])\n",
553
    "    feature_importances_dict = feature_importances.to_dict()\n",
554
    "    feature_importances_list.append(feature_importances_dict)\n",
555
    "       "
556
   ]
557
  },
558
  {
559
   "cell_type": "code",
560
   "execution_count": 8,
561
   "metadata": {},
562
   "outputs": [
563
    {
564
     "data": {
565
      "text/plain": [
566
       "[{'6': {'subject': 0.0,\n",
567
       "   'chest_ACC_x': 0.1300669764504841,\n",
568
       "   'chest_ACC_y': 0.1968860170043269,\n",
569
       "   'chest_ACC_z': 0.24581151008517166,\n",
570
       "   'chest_ECG': 0.0032265901153278563,\n",
571
       "   'chest_EMG': 0.0036803586156519685,\n",
572
       "   'chest_EDA': 0.24669042461389065,\n",
573
       "   'chest_Temp': 0.15944455526109153,\n",
574
       "   'chest_Resp': 0.014193567854055431}},\n",
575
       " {'11': {'subject': 0.0,\n",
576
       "   'chest_ACC_x': 0.04024757292461694,\n",
577
       "   'chest_ACC_y': 0.1565318618203392,\n",
578
       "   'chest_ACC_z': 0.11830625071942938,\n",
579
       "   'chest_ECG': 0.007922838269133713,\n",
580
       "   'chest_EMG': 0.006348978002092723,\n",
581
       "   'chest_EDA': 0.36328293249601246,\n",
582
       "   'chest_Temp': 0.2618496659465971,\n",
583
       "   'chest_Resp': 0.045509899821778596}},\n",
584
       " {'14': {'subject': 0.0,\n",
585
       "   'chest_ACC_x': 0.10375227203200195,\n",
586
       "   'chest_ACC_y': 0.1853095383931324,\n",
587
       "   'chest_ACC_z': 0.215453524103329,\n",
588
       "   'chest_ECG': 0.008595033425546683,\n",
589
       "   'chest_EMG': 0.0051670030825727055,\n",
590
       "   'chest_EDA': 0.25382475947777666,\n",
591
       "   'chest_Temp': 0.2077869105964587,\n",
592
       "   'chest_Resp': 0.020110958889181855}},\n",
593
       " {'8': {'subject': 0.0,\n",
594
       "   'chest_ACC_x': 0.14347363122864362,\n",
595
       "   'chest_ACC_y': 0.24065811924766892,\n",
596
       "   'chest_ACC_z': 0.267762938257923,\n",
597
       "   'chest_ECG': 0.005711548638591734,\n",
598
       "   'chest_EMG': 0.003918487469962929,\n",
599
       "   'chest_EDA': 0.2387070057305599,\n",
600
       "   'chest_Temp': 0.08413531983996998,\n",
601
       "   'chest_Resp': 0.01563294958667973}},\n",
602
       " {'15': {'subject': 0.0,\n",
603
       "   'chest_ACC_x': 0.11231814251034679,\n",
604
       "   'chest_ACC_y': 0.08220255608689836,\n",
605
       "   'chest_ACC_z': 0.20822479510318542,\n",
606
       "   'chest_ECG': 0.0030866105842708154,\n",
607
       "   'chest_EMG': 0.002597678771338352,\n",
608
       "   'chest_EDA': 0.41319383692544054,\n",
609
       "   'chest_Temp': 0.1684332696165509,\n",
610
       "   'chest_Resp': 0.009943110401968736}},\n",
611
       " {'9': {'subject': 0.0,\n",
612
       "   'chest_ACC_x': 0.12561607603440622,\n",
613
       "   'chest_ACC_y': 0.09702573688756252,\n",
614
       "   'chest_ACC_z': 0.24384679962004108,\n",
615
       "   'chest_ECG': 0.003995169023835594,\n",
616
       "   'chest_EMG': 0.0054176080210714085,\n",
617
       "   'chest_EDA': 0.36880376616830607,\n",
618
       "   'chest_Temp': 0.14303779961937815,\n",
619
       "   'chest_Resp': 0.012257044625398936}},\n",
620
       " {'10': {'subject': 0.0,\n",
621
       "   'chest_ACC_x': 0.22882102161026965,\n",
622
       "   'chest_ACC_y': 0.04732657436997019,\n",
623
       "   'chest_ACC_z': 0.2322145246566627,\n",
624
       "   'chest_ECG': 0.004801462002461738,\n",
625
       "   'chest_EMG': 0.0045123477972814855,\n",
626
       "   'chest_EDA': 0.31158122644140307,\n",
627
       "   'chest_Temp': 0.1581155419253945,\n",
628
       "   'chest_Resp': 0.012627301196556704}},\n",
629
       " {'2': {'subject': 0.0,\n",
630
       "   'chest_ACC_x': 0.11668464543524892,\n",
631
       "   'chest_ACC_y': 0.13597111186938743,\n",
632
       "   'chest_ACC_z': 0.24675670252898294,\n",
633
       "   'chest_ECG': 0.0049927372104148,\n",
634
       "   'chest_EMG': 0.0024869718274109194,\n",
635
       "   'chest_EDA': 0.22587860975496904,\n",
636
       "   'chest_Temp': 0.25156271388019963,\n",
637
       "   'chest_Resp': 0.015666507493386436}},\n",
638
       " {'16': {'subject': 0.0,\n",
639
       "   'chest_ACC_x': 0.07922301732289758,\n",
640
       "   'chest_ACC_y': 0.06155434121985866,\n",
641
       "   'chest_ACC_z': 0.2439000711979064,\n",
642
       "   'chest_ECG': 0.012125844832497342,\n",
643
       "   'chest_EMG': 0.003252002142311649,\n",
644
       "   'chest_EDA': 0.4108674411007088,\n",
645
       "   'chest_Temp': 0.1740060304072016,\n",
646
       "   'chest_Resp': 0.0150712517766179}},\n",
647
       " {'4': {'subject': 0.0,\n",
648
       "   'chest_ACC_x': 0.1888912770202422,\n",
649
       "   'chest_ACC_y': 0.1515329160303108,\n",
650
       "   'chest_ACC_z': 0.23782728420548904,\n",
651
       "   'chest_ECG': 0.003605102562460383,\n",
652
       "   'chest_EMG': 0.002869069393522499,\n",
653
       "   'chest_EDA': 0.2525019555539589,\n",
654
       "   'chest_Temp': 0.1498092548768111,\n",
655
       "   'chest_Resp': 0.012963140357205296}},\n",
656
       " {'13': {'subject': 0.0,\n",
657
       "   'chest_ACC_x': 0.07803417203388363,\n",
658
       "   'chest_ACC_y': 0.09974802002465204,\n",
659
       "   'chest_ACC_z': 0.1777006613688301,\n",
660
       "   'chest_ECG': 0.0034168687514631547,\n",
661
       "   'chest_EMG': 0.0034440563788113777,\n",
662
       "   'chest_EDA': 0.37400948926186695,\n",
663
       "   'chest_Temp': 0.2460262689411883,\n",
664
       "   'chest_Resp': 0.017620463239304454}},\n",
665
       " {'3': {'subject': 0.0,\n",
666
       "   'chest_ACC_x': 0.07188722001251066,\n",
667
       "   'chest_ACC_y': 0.061859702055979716,\n",
668
       "   'chest_ACC_z': 0.33898272660534673,\n",
669
       "   'chest_ECG': 0.002533408376087527,\n",
670
       "   'chest_EMG': 0.012332865584837815,\n",
671
       "   'chest_EDA': 0.22347187550642342,\n",
672
       "   'chest_Temp': 0.2792589111675616,\n",
673
       "   'chest_Resp': 0.009673290691252574}},\n",
674
       " {'17': {'subject': 0.0,\n",
675
       "   'chest_ACC_x': 0.18044989325378819,\n",
676
       "   'chest_ACC_y': 0.07736863340070056,\n",
677
       "   'chest_ACC_z': 0.20479809095955676,\n",
678
       "   'chest_ECG': 0.003415233725763734,\n",
679
       "   'chest_EMG': 0.0025323836092819166,\n",
680
       "   'chest_EDA': 0.39464251796388494,\n",
681
       "   'chest_Temp': 0.12339909371098787,\n",
682
       "   'chest_Resp': 0.013394153376035991}},\n",
683
       " {'5': {'subject': 0.0,\n",
684
       "   'chest_ACC_x': 0.20167807887040695,\n",
685
       "   'chest_ACC_y': 0.08914038474449766,\n",
686
       "   'chest_ACC_z': 0.2014025757829614,\n",
687
       "   'chest_ECG': 0.004351308801137371,\n",
688
       "   'chest_EMG': 0.004152757849246086,\n",
689
       "   'chest_EDA': 0.37152507620617825,\n",
690
       "   'chest_Temp': 0.10902969536748346,\n",
691
       "   'chest_Resp': 0.01872012237808883}},\n",
692
       " {'7': {'subject': 0.0,\n",
693
       "   'chest_ACC_x': 0.07199023148411884,\n",
694
       "   'chest_ACC_y': 0.0738758141531722,\n",
695
       "   'chest_ACC_z': 0.2306827752142297,\n",
696
       "   'chest_ECG': 0.004528291130553968,\n",
697
       "   'chest_EMG': 0.003471923752608401,\n",
698
       "   'chest_EDA': 0.22224281102614607,\n",
699
       "   'chest_Temp': 0.3742280348025795,\n",
700
       "   'chest_Resp': 0.0189801184365914}}]"
701
      ]
702
     },
703
     "execution_count": 8,
704
     "metadata": {},
705
     "output_type": "execute_result"
706
    }
707
   ],
708
   "source": [
709
    "feature_importances_list"
710
   ]
711
  },
712
  {
713
   "cell_type": "code",
714
   "execution_count": 9,
715
   "metadata": {},
716
   "outputs": [
717
    {
718
     "data": {
719
      "text/plain": [
720
       "15"
721
      ]
722
     },
723
     "execution_count": 9,
724
     "metadata": {},
725
     "output_type": "execute_result"
726
    }
727
   ],
728
   "source": [
729
    "len(feature_importances_list)"
730
   ]
731
  },
732
  {
733
   "cell_type": "code",
734
   "execution_count": 15,
735
   "metadata": {},
736
   "outputs": [],
737
   "source": [
738
    "list_df = []\n",
739
    "for val in feature_importances_list:\n",
740
    "    list_df.append(pd.DataFrame.from_dict(val).T)\n",
741
    "    "
742
   ]
743
  },
744
  {
745
   "cell_type": "code",
746
   "execution_count": 16,
747
   "metadata": {},
748
   "outputs": [
749
    {
750
     "data": {
751
      "text/plain": [
752
       "[   chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
753
       " 6     0.130067     0.196886     0.245812   0.003227    0.24669    0.00368   \n",
754
       " \n",
755
       "    chest_Resp  chest_Temp  subject  \n",
756
       " 6    0.014194    0.159445      0.0  ,\n",
757
       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
758
       " 11     0.040248     0.156532     0.118306   0.007923   0.363283   0.006349   \n",
759
       " \n",
760
       "     chest_Resp  chest_Temp  subject  \n",
761
       " 11     0.04551     0.26185      0.0  ,\n",
762
       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
763
       " 14     0.103752      0.18531     0.215454   0.008595   0.253825   0.005167   \n",
764
       " \n",
765
       "     chest_Resp  chest_Temp  subject  \n",
766
       " 14    0.020111    0.207787      0.0  ,\n",
767
       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
768
       " 8     0.143474     0.240658     0.267763   0.005712   0.238707   0.003918   \n",
769
       " \n",
770
       "    chest_Resp  chest_Temp  subject  \n",
771
       " 8    0.015633    0.084135      0.0  ,\n",
772
       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
773
       " 15     0.112318     0.082203     0.208225   0.003087   0.413194   0.002598   \n",
774
       " \n",
775
       "     chest_Resp  chest_Temp  subject  \n",
776
       " 15    0.009943    0.168433      0.0  ,\n",
777
       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
778
       " 9     0.125616     0.097026     0.243847   0.003995   0.368804   0.005418   \n",
779
       " \n",
780
       "    chest_Resp  chest_Temp  subject  \n",
781
       " 9    0.012257    0.143038      0.0  ,\n",
782
       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
783
       " 10     0.228821     0.047327     0.232215   0.004801   0.311581   0.004512   \n",
784
       " \n",
785
       "     chest_Resp  chest_Temp  subject  \n",
786
       " 10    0.012627    0.158116      0.0  ,\n",
787
       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
788
       " 2     0.116685     0.135971     0.246757   0.004993   0.225879   0.002487   \n",
789
       " \n",
790
       "    chest_Resp  chest_Temp  subject  \n",
791
       " 2    0.015667    0.251563      0.0  ,\n",
792
       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
793
       " 16     0.079223     0.061554       0.2439   0.012126   0.410867   0.003252   \n",
794
       " \n",
795
       "     chest_Resp  chest_Temp  subject  \n",
796
       " 16    0.015071    0.174006      0.0  ,\n",
797
       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
798
       " 4     0.188891     0.151533     0.237827   0.003605   0.252502   0.002869   \n",
799
       " \n",
800
       "    chest_Resp  chest_Temp  subject  \n",
801
       " 4    0.012963    0.149809      0.0  ,\n",
802
       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
803
       " 13     0.078034     0.099748     0.177701   0.003417   0.374009   0.003444   \n",
804
       " \n",
805
       "     chest_Resp  chest_Temp  subject  \n",
806
       " 13     0.01762    0.246026      0.0  ,\n",
807
       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
808
       " 3     0.071887      0.06186     0.338983   0.002533   0.223472   0.012333   \n",
809
       " \n",
810
       "    chest_Resp  chest_Temp  subject  \n",
811
       " 3    0.009673    0.279259      0.0  ,\n",
812
       "     chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
813
       " 17      0.18045     0.077369     0.204798   0.003415   0.394643   0.002532   \n",
814
       " \n",
815
       "     chest_Resp  chest_Temp  subject  \n",
816
       " 17    0.013394    0.123399      0.0  ,\n",
817
       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
818
       " 5     0.201678      0.08914     0.201403   0.004351   0.371525   0.004153   \n",
819
       " \n",
820
       "    chest_Resp  chest_Temp  subject  \n",
821
       " 5     0.01872     0.10903      0.0  ,\n",
822
       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
823
       " 7      0.07199     0.073876     0.230683   0.004528   0.222243   0.003472   \n",
824
       " \n",
825
       "    chest_Resp  chest_Temp  subject  \n",
826
       " 7     0.01898    0.374228      0.0  ]"
827
      ]
828
     },
829
     "execution_count": 16,
830
     "metadata": {},
831
     "output_type": "execute_result"
832
    }
833
   ],
834
   "source": [
835
    "list_df"
836
   ]
837
  },
838
  {
839
   "cell_type": "code",
840
   "execution_count": 18,
841
   "metadata": {},
842
   "outputs": [],
843
   "source": [
844
    "feature_importance_all_subjects = pd.concat(list_df)"
845
   ]
846
  },
847
  {
848
   "cell_type": "code",
849
   "execution_count": 19,
850
   "metadata": {},
851
   "outputs": [
852
    {
853
     "data": {
854
      "text/html": [
855
       "<div>\n",
856
       "<style scoped>\n",
857
       "    .dataframe tbody tr th:only-of-type {\n",
858
       "        vertical-align: middle;\n",
859
       "    }\n",
860
       "\n",
861
       "    .dataframe tbody tr th {\n",
862
       "        vertical-align: top;\n",
863
       "    }\n",
864
       "\n",
865
       "    .dataframe thead th {\n",
866
       "        text-align: right;\n",
867
       "    }\n",
868
       "</style>\n",
869
       "<table border=\"1\" class=\"dataframe\">\n",
870
       "  <thead>\n",
871
       "    <tr style=\"text-align: right;\">\n",
872
       "      <th></th>\n",
873
       "      <th>chest_ACC_x</th>\n",
874
       "      <th>chest_ACC_y</th>\n",
875
       "      <th>chest_ACC_z</th>\n",
876
       "      <th>chest_ECG</th>\n",
877
       "      <th>chest_EDA</th>\n",
878
       "      <th>chest_EMG</th>\n",
879
       "      <th>chest_Resp</th>\n",
880
       "      <th>chest_Temp</th>\n",
881
       "      <th>subject</th>\n",
882
       "    </tr>\n",
883
       "  </thead>\n",
884
       "  <tbody>\n",
885
       "    <tr>\n",
886
       "      <th>6</th>\n",
887
       "      <td>0.130067</td>\n",
888
       "      <td>0.196886</td>\n",
889
       "      <td>0.245812</td>\n",
890
       "      <td>0.003227</td>\n",
891
       "      <td>0.246690</td>\n",
892
       "      <td>0.003680</td>\n",
893
       "      <td>0.014194</td>\n",
894
       "      <td>0.159445</td>\n",
895
       "      <td>0.0</td>\n",
896
       "    </tr>\n",
897
       "    <tr>\n",
898
       "      <th>11</th>\n",
899
       "      <td>0.040248</td>\n",
900
       "      <td>0.156532</td>\n",
901
       "      <td>0.118306</td>\n",
902
       "      <td>0.007923</td>\n",
903
       "      <td>0.363283</td>\n",
904
       "      <td>0.006349</td>\n",
905
       "      <td>0.045510</td>\n",
906
       "      <td>0.261850</td>\n",
907
       "      <td>0.0</td>\n",
908
       "    </tr>\n",
909
       "    <tr>\n",
910
       "      <th>14</th>\n",
911
       "      <td>0.103752</td>\n",
912
       "      <td>0.185310</td>\n",
913
       "      <td>0.215454</td>\n",
914
       "      <td>0.008595</td>\n",
915
       "      <td>0.253825</td>\n",
916
       "      <td>0.005167</td>\n",
917
       "      <td>0.020111</td>\n",
918
       "      <td>0.207787</td>\n",
919
       "      <td>0.0</td>\n",
920
       "    </tr>\n",
921
       "    <tr>\n",
922
       "      <th>8</th>\n",
923
       "      <td>0.143474</td>\n",
924
       "      <td>0.240658</td>\n",
925
       "      <td>0.267763</td>\n",
926
       "      <td>0.005712</td>\n",
927
       "      <td>0.238707</td>\n",
928
       "      <td>0.003918</td>\n",
929
       "      <td>0.015633</td>\n",
930
       "      <td>0.084135</td>\n",
931
       "      <td>0.0</td>\n",
932
       "    </tr>\n",
933
       "    <tr>\n",
934
       "      <th>15</th>\n",
935
       "      <td>0.112318</td>\n",
936
       "      <td>0.082203</td>\n",
937
       "      <td>0.208225</td>\n",
938
       "      <td>0.003087</td>\n",
939
       "      <td>0.413194</td>\n",
940
       "      <td>0.002598</td>\n",
941
       "      <td>0.009943</td>\n",
942
       "      <td>0.168433</td>\n",
943
       "      <td>0.0</td>\n",
944
       "    </tr>\n",
945
       "    <tr>\n",
946
       "      <th>9</th>\n",
947
       "      <td>0.125616</td>\n",
948
       "      <td>0.097026</td>\n",
949
       "      <td>0.243847</td>\n",
950
       "      <td>0.003995</td>\n",
951
       "      <td>0.368804</td>\n",
952
       "      <td>0.005418</td>\n",
953
       "      <td>0.012257</td>\n",
954
       "      <td>0.143038</td>\n",
955
       "      <td>0.0</td>\n",
956
       "    </tr>\n",
957
       "    <tr>\n",
958
       "      <th>10</th>\n",
959
       "      <td>0.228821</td>\n",
960
       "      <td>0.047327</td>\n",
961
       "      <td>0.232215</td>\n",
962
       "      <td>0.004801</td>\n",
963
       "      <td>0.311581</td>\n",
964
       "      <td>0.004512</td>\n",
965
       "      <td>0.012627</td>\n",
966
       "      <td>0.158116</td>\n",
967
       "      <td>0.0</td>\n",
968
       "    </tr>\n",
969
       "    <tr>\n",
970
       "      <th>2</th>\n",
971
       "      <td>0.116685</td>\n",
972
       "      <td>0.135971</td>\n",
973
       "      <td>0.246757</td>\n",
974
       "      <td>0.004993</td>\n",
975
       "      <td>0.225879</td>\n",
976
       "      <td>0.002487</td>\n",
977
       "      <td>0.015667</td>\n",
978
       "      <td>0.251563</td>\n",
979
       "      <td>0.0</td>\n",
980
       "    </tr>\n",
981
       "    <tr>\n",
982
       "      <th>16</th>\n",
983
       "      <td>0.079223</td>\n",
984
       "      <td>0.061554</td>\n",
985
       "      <td>0.243900</td>\n",
986
       "      <td>0.012126</td>\n",
987
       "      <td>0.410867</td>\n",
988
       "      <td>0.003252</td>\n",
989
       "      <td>0.015071</td>\n",
990
       "      <td>0.174006</td>\n",
991
       "      <td>0.0</td>\n",
992
       "    </tr>\n",
993
       "    <tr>\n",
994
       "      <th>4</th>\n",
995
       "      <td>0.188891</td>\n",
996
       "      <td>0.151533</td>\n",
997
       "      <td>0.237827</td>\n",
998
       "      <td>0.003605</td>\n",
999
       "      <td>0.252502</td>\n",
1000
       "      <td>0.002869</td>\n",
1001
       "      <td>0.012963</td>\n",
1002
       "      <td>0.149809</td>\n",
1003
       "      <td>0.0</td>\n",
1004
       "    </tr>\n",
1005
       "    <tr>\n",
1006
       "      <th>13</th>\n",
1007
       "      <td>0.078034</td>\n",
1008
       "      <td>0.099748</td>\n",
1009
       "      <td>0.177701</td>\n",
1010
       "      <td>0.003417</td>\n",
1011
       "      <td>0.374009</td>\n",
1012
       "      <td>0.003444</td>\n",
1013
       "      <td>0.017620</td>\n",
1014
       "      <td>0.246026</td>\n",
1015
       "      <td>0.0</td>\n",
1016
       "    </tr>\n",
1017
       "    <tr>\n",
1018
       "      <th>3</th>\n",
1019
       "      <td>0.071887</td>\n",
1020
       "      <td>0.061860</td>\n",
1021
       "      <td>0.338983</td>\n",
1022
       "      <td>0.002533</td>\n",
1023
       "      <td>0.223472</td>\n",
1024
       "      <td>0.012333</td>\n",
1025
       "      <td>0.009673</td>\n",
1026
       "      <td>0.279259</td>\n",
1027
       "      <td>0.0</td>\n",
1028
       "    </tr>\n",
1029
       "    <tr>\n",
1030
       "      <th>17</th>\n",
1031
       "      <td>0.180450</td>\n",
1032
       "      <td>0.077369</td>\n",
1033
       "      <td>0.204798</td>\n",
1034
       "      <td>0.003415</td>\n",
1035
       "      <td>0.394643</td>\n",
1036
       "      <td>0.002532</td>\n",
1037
       "      <td>0.013394</td>\n",
1038
       "      <td>0.123399</td>\n",
1039
       "      <td>0.0</td>\n",
1040
       "    </tr>\n",
1041
       "    <tr>\n",
1042
       "      <th>5</th>\n",
1043
       "      <td>0.201678</td>\n",
1044
       "      <td>0.089140</td>\n",
1045
       "      <td>0.201403</td>\n",
1046
       "      <td>0.004351</td>\n",
1047
       "      <td>0.371525</td>\n",
1048
       "      <td>0.004153</td>\n",
1049
       "      <td>0.018720</td>\n",
1050
       "      <td>0.109030</td>\n",
1051
       "      <td>0.0</td>\n",
1052
       "    </tr>\n",
1053
       "    <tr>\n",
1054
       "      <th>7</th>\n",
1055
       "      <td>0.071990</td>\n",
1056
       "      <td>0.073876</td>\n",
1057
       "      <td>0.230683</td>\n",
1058
       "      <td>0.004528</td>\n",
1059
       "      <td>0.222243</td>\n",
1060
       "      <td>0.003472</td>\n",
1061
       "      <td>0.018980</td>\n",
1062
       "      <td>0.374228</td>\n",
1063
       "      <td>0.0</td>\n",
1064
       "    </tr>\n",
1065
       "  </tbody>\n",
1066
       "</table>\n",
1067
       "</div>"
1068
      ],
1069
      "text/plain": [
1070
       "    chest_ACC_x  chest_ACC_y  chest_ACC_z  chest_ECG  chest_EDA  chest_EMG  \\\n",
1071
       "6      0.130067     0.196886     0.245812   0.003227   0.246690   0.003680   \n",
1072
       "11     0.040248     0.156532     0.118306   0.007923   0.363283   0.006349   \n",
1073
       "14     0.103752     0.185310     0.215454   0.008595   0.253825   0.005167   \n",
1074
       "8      0.143474     0.240658     0.267763   0.005712   0.238707   0.003918   \n",
1075
       "15     0.112318     0.082203     0.208225   0.003087   0.413194   0.002598   \n",
1076
       "9      0.125616     0.097026     0.243847   0.003995   0.368804   0.005418   \n",
1077
       "10     0.228821     0.047327     0.232215   0.004801   0.311581   0.004512   \n",
1078
       "2      0.116685     0.135971     0.246757   0.004993   0.225879   0.002487   \n",
1079
       "16     0.079223     0.061554     0.243900   0.012126   0.410867   0.003252   \n",
1080
       "4      0.188891     0.151533     0.237827   0.003605   0.252502   0.002869   \n",
1081
       "13     0.078034     0.099748     0.177701   0.003417   0.374009   0.003444   \n",
1082
       "3      0.071887     0.061860     0.338983   0.002533   0.223472   0.012333   \n",
1083
       "17     0.180450     0.077369     0.204798   0.003415   0.394643   0.002532   \n",
1084
       "5      0.201678     0.089140     0.201403   0.004351   0.371525   0.004153   \n",
1085
       "7      0.071990     0.073876     0.230683   0.004528   0.222243   0.003472   \n",
1086
       "\n",
1087
       "    chest_Resp  chest_Temp  subject  \n",
1088
       "6     0.014194    0.159445      0.0  \n",
1089
       "11    0.045510    0.261850      0.0  \n",
1090
       "14    0.020111    0.207787      0.0  \n",
1091
       "8     0.015633    0.084135      0.0  \n",
1092
       "15    0.009943    0.168433      0.0  \n",
1093
       "9     0.012257    0.143038      0.0  \n",
1094
       "10    0.012627    0.158116      0.0  \n",
1095
       "2     0.015667    0.251563      0.0  \n",
1096
       "16    0.015071    0.174006      0.0  \n",
1097
       "4     0.012963    0.149809      0.0  \n",
1098
       "13    0.017620    0.246026      0.0  \n",
1099
       "3     0.009673    0.279259      0.0  \n",
1100
       "17    0.013394    0.123399      0.0  \n",
1101
       "5     0.018720    0.109030      0.0  \n",
1102
       "7     0.018980    0.374228      0.0  "
1103
      ]
1104
     },
1105
     "execution_count": 19,
1106
     "metadata": {},
1107
     "output_type": "execute_result"
1108
    }
1109
   ],
1110
   "source": [
1111
    "feature_importance_all_subjects"
1112
   ]
1113
  },
1114
  {
1115
   "cell_type": "code",
1116
   "execution_count": 21,
1117
   "metadata": {},
1118
   "outputs": [
1119
    {
1120
     "data": {
1121
      "text/plain": [
1122
       "6     1.0\n",
1123
       "11    1.0\n",
1124
       "14    1.0\n",
1125
       "8     1.0\n",
1126
       "15    1.0\n",
1127
       "9     1.0\n",
1128
       "10    1.0\n",
1129
       "2     1.0\n",
1130
       "16    1.0\n",
1131
       "4     1.0\n",
1132
       "13    1.0\n",
1133
       "3     1.0\n",
1134
       "17    1.0\n",
1135
       "5     1.0\n",
1136
       "7     1.0\n",
1137
       "dtype: float64"
1138
      ]
1139
     },
1140
     "execution_count": 21,
1141
     "metadata": {},
1142
     "output_type": "execute_result"
1143
    }
1144
   ],
1145
   "source": [
1146
    "feature_importance_all_subjects.sum(axis = 1, skipna = True) "
1147
   ]
1148
  },
1149
  {
1150
   "cell_type": "code",
1151
   "execution_count": 23,
1152
   "metadata": {},
1153
   "outputs": [
1154
    {
1155
     "data": {
1156
      "text/html": [
1157
       "<style  type=\"text/css\" >\n",
1158
       "    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col0 {\n",
1159
       "            background-color:  #6dbc6d;\n",
1160
       "            color:  #000000;\n",
1161
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col1 {\n",
1162
       "            background-color:  #2e992e;\n",
1163
       "            color:  #000000;\n",
1164
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col2 {\n",
1165
       "            background-color:  #008000;\n",
1166
       "            color:  #f1f1f1;\n",
1167
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col3 {\n",
1168
       "            background-color:  #e3fee3;\n",
1169
       "            color:  #000000;\n",
1170
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col4 {\n",
1171
       "            background-color:  #008000;\n",
1172
       "            color:  #f1f1f1;\n",
1173
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col5 {\n",
1174
       "            background-color:  #e3fee3;\n",
1175
       "            color:  #000000;\n",
1176
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col6 {\n",
1177
       "            background-color:  #d9f8d9;\n",
1178
       "            color:  #000000;\n",
1179
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col7 {\n",
1180
       "            background-color:  #51ad51;\n",
1181
       "            color:  #000000;\n",
1182
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col8 {\n",
1183
       "            background-color:  #e5ffe5;\n",
1184
       "            color:  #000000;\n",
1185
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col0 {\n",
1186
       "            background-color:  #ccf1cc;\n",
1187
       "            color:  #000000;\n",
1188
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col1 {\n",
1189
       "            background-color:  #82c882;\n",
1190
       "            color:  #000000;\n",
1191
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col2 {\n",
1192
       "            background-color:  #9bd69b;\n",
1193
       "            color:  #000000;\n",
1194
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col3 {\n",
1195
       "            background-color:  #e1fde1;\n",
1196
       "            color:  #000000;\n",
1197
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col4 {\n",
1198
       "            background-color:  #008000;\n",
1199
       "            color:  #f1f1f1;\n",
1200
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col5 {\n",
1201
       "            background-color:  #e2fde2;\n",
1202
       "            color:  #000000;\n",
1203
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col6 {\n",
1204
       "            background-color:  #c9efc9;\n",
1205
       "            color:  #000000;\n",
1206
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col7 {\n",
1207
       "            background-color:  #40a340;\n",
1208
       "            color:  #000000;\n",
1209
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col8 {\n",
1210
       "            background-color:  #e5ffe5;\n",
1211
       "            color:  #000000;\n",
1212
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col0 {\n",
1213
       "            background-color:  #88cb88;\n",
1214
       "            color:  #000000;\n",
1215
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col1 {\n",
1216
       "            background-color:  #3ea23e;\n",
1217
       "            color:  #000000;\n",
1218
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col2 {\n",
1219
       "            background-color:  #229322;\n",
1220
       "            color:  #000000;\n",
1221
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col3 {\n",
1222
       "            background-color:  #defbde;\n",
1223
       "            color:  #000000;\n",
1224
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col4 {\n",
1225
       "            background-color:  #008000;\n",
1226
       "            color:  #f1f1f1;\n",
1227
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col5 {\n",
1228
       "            background-color:  #e1fde1;\n",
1229
       "            color:  #000000;\n",
1230
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col6 {\n",
1231
       "            background-color:  #d3f5d3;\n",
1232
       "            color:  #000000;\n",
1233
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col7 {\n",
1234
       "            background-color:  #299729;\n",
1235
       "            color:  #000000;\n",
1236
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col8 {\n",
1237
       "            background-color:  #e5ffe5;\n",
1238
       "            color:  #000000;\n",
1239
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col0 {\n",
1240
       "            background-color:  #6abb6a;\n",
1241
       "            color:  #000000;\n",
1242
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col1 {\n",
1243
       "            background-color:  #178c17;\n",
1244
       "            color:  #000000;\n",
1245
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col2 {\n",
1246
       "            background-color:  #008000;\n",
1247
       "            color:  #f1f1f1;\n",
1248
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col3 {\n",
1249
       "            background-color:  #e1fde1;\n",
1250
       "            color:  #000000;\n",
1251
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col4 {\n",
1252
       "            background-color:  #188d18;\n",
1253
       "            color:  #000000;\n",
1254
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col5 {\n",
1255
       "            background-color:  #e3fee3;\n",
1256
       "            color:  #000000;\n",
1257
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col6 {\n",
1258
       "            background-color:  #d9f8d9;\n",
1259
       "            color:  #000000;\n",
1260
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col7 {\n",
1261
       "            background-color:  #9ed79e;\n",
1262
       "            color:  #000000;\n",
1263
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col8 {\n",
1264
       "            background-color:  #e5ffe5;\n",
1265
       "            color:  #000000;\n",
1266
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col0 {\n",
1267
       "            background-color:  #a7dda7;\n",
1268
       "            color:  #000000;\n",
1269
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col1 {\n",
1270
       "            background-color:  #b8e6b8;\n",
1271
       "            color:  #000000;\n",
1272
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col2 {\n",
1273
       "            background-color:  #71bf71;\n",
1274
       "            color:  #000000;\n",
1275
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col3 {\n",
1276
       "            background-color:  #e5ffe5;\n",
1277
       "            color:  #000000;\n",
1278
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col4 {\n",
1279
       "            background-color:  #008000;\n",
1280
       "            color:  #f1f1f1;\n",
1281
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col5 {\n",
1282
       "            background-color:  #e5ffe5;\n",
1283
       "            color:  #000000;\n",
1284
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col6 {\n",
1285
       "            background-color:  #e0fce0;\n",
1286
       "            color:  #000000;\n",
1287
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col7 {\n",
1288
       "            background-color:  #88cb88;\n",
1289
       "            color:  #000000;\n",
1290
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col8 {\n",
1291
       "            background-color:  #e5ffe5;\n",
1292
       "            color:  #000000;\n",
1293
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col0 {\n",
1294
       "            background-color:  #97d497;\n",
1295
       "            color:  #000000;\n",
1296
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col1 {\n",
1297
       "            background-color:  #a9dea9;\n",
1298
       "            color:  #000000;\n",
1299
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col2 {\n",
1300
       "            background-color:  #4dab4d;\n",
1301
       "            color:  #000000;\n",
1302
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col3 {\n",
1303
       "            background-color:  #e4fee4;\n",
1304
       "            color:  #000000;\n",
1305
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col4 {\n",
1306
       "            background-color:  #008000;\n",
1307
       "            color:  #f1f1f1;\n",
1308
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col5 {\n",
1309
       "            background-color:  #e3fee3;\n",
1310
       "            color:  #000000;\n",
1311
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col6 {\n",
1312
       "            background-color:  #defbde;\n",
1313
       "            color:  #000000;\n",
1314
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col7 {\n",
1315
       "            background-color:  #8cce8c;\n",
1316
       "            color:  #000000;\n",
1317
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col8 {\n",
1318
       "            background-color:  #e5ffe5;\n",
1319
       "            color:  #000000;\n",
1320
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col0 {\n",
1321
       "            background-color:  #3ca13c;\n",
1322
       "            color:  #000000;\n",
1323
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col1 {\n",
1324
       "            background-color:  #c3ecc3;\n",
1325
       "            color:  #000000;\n",
1326
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col2 {\n",
1327
       "            background-color:  #3aa03a;\n",
1328
       "            color:  #000000;\n",
1329
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col3 {\n",
1330
       "            background-color:  #e3fee3;\n",
1331
       "            color:  #000000;\n",
1332
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col4 {\n",
1333
       "            background-color:  #008000;\n",
1334
       "            color:  #f1f1f1;\n",
1335
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col5 {\n",
1336
       "            background-color:  #e3fee3;\n",
1337
       "            color:  #000000;\n",
1338
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col6 {\n",
1339
       "            background-color:  #dcfadc;\n",
1340
       "            color:  #000000;\n",
1341
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col7 {\n",
1342
       "            background-color:  #71bf71;\n",
1343
       "            color:  #000000;\n",
1344
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col8 {\n",
1345
       "            background-color:  #e5ffe5;\n",
1346
       "            color:  #000000;\n",
1347
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col0 {\n",
1348
       "            background-color:  #7bc47b;\n",
1349
       "            color:  #000000;\n",
1350
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col1 {\n",
1351
       "            background-color:  #69ba69;\n",
1352
       "            color:  #000000;\n",
1353
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col2 {\n",
1354
       "            background-color:  #048204;\n",
1355
       "            color:  #f1f1f1;\n",
1356
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col3 {\n",
1357
       "            background-color:  #e1fde1;\n",
1358
       "            color:  #000000;\n",
1359
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col4 {\n",
1360
       "            background-color:  #178d17;\n",
1361
       "            color:  #000000;\n",
1362
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col5 {\n",
1363
       "            background-color:  #e4fee4;\n",
1364
       "            color:  #000000;\n",
1365
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col6 {\n",
1366
       "            background-color:  #d8f8d8;\n",
1367
       "            color:  #000000;\n",
1368
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col7 {\n",
1369
       "            background-color:  #008000;\n",
1370
       "            color:  #f1f1f1;\n",
1371
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col8 {\n",
1372
       "            background-color:  #e5ffe5;\n",
1373
       "            color:  #000000;\n",
1374
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col0 {\n",
1375
       "            background-color:  #b9e7b9;\n",
1376
       "            color:  #000000;\n",
1377
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col1 {\n",
1378
       "            background-color:  #c3ecc3;\n",
1379
       "            color:  #000000;\n",
1380
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col2 {\n",
1381
       "            background-color:  #5eb45e;\n",
1382
       "            color:  #000000;\n",
1383
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col3 {\n",
1384
       "            background-color:  #dffcdf;\n",
1385
       "            color:  #000000;\n",
1386
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col4 {\n",
1387
       "            background-color:  #008000;\n",
1388
       "            color:  #f1f1f1;\n",
1389
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col5 {\n",
1390
       "            background-color:  #e4fee4;\n",
1391
       "            color:  #000000;\n",
1392
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col6 {\n",
1393
       "            background-color:  #ddfbdd;\n",
1394
       "            color:  #000000;\n",
1395
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col7 {\n",
1396
       "            background-color:  #84c984;\n",
1397
       "            color:  #000000;\n",
1398
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col8 {\n",
1399
       "            background-color:  #e5ffe5;\n",
1400
       "            color:  #000000;\n",
1401
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col0 {\n",
1402
       "            background-color:  #3aa03a;\n",
1403
       "            color:  #000000;\n",
1404
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col1 {\n",
1405
       "            background-color:  #5cb35c;\n",
1406
       "            color:  #000000;\n",
1407
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col2 {\n",
1408
       "            background-color:  #0d870d;\n",
1409
       "            color:  #f1f1f1;\n",
1410
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col3 {\n",
1411
       "            background-color:  #e3fee3;\n",
1412
       "            color:  #000000;\n",
1413
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col4 {\n",
1414
       "            background-color:  #008000;\n",
1415
       "            color:  #f1f1f1;\n",
1416
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col5 {\n",
1417
       "            background-color:  #e4fee4;\n",
1418
       "            color:  #000000;\n",
1419
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col6 {\n",
1420
       "            background-color:  #daf9da;\n",
1421
       "            color:  #000000;\n",
1422
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col7 {\n",
1423
       "            background-color:  #5eb45e;\n",
1424
       "            color:  #000000;\n",
1425
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col8 {\n",
1426
       "            background-color:  #e5ffe5;\n",
1427
       "            color:  #000000;\n",
1428
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col0 {\n",
1429
       "            background-color:  #b6e5b6;\n",
1430
       "            color:  #000000;\n",
1431
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col1 {\n",
1432
       "            background-color:  #a8dda8;\n",
1433
       "            color:  #000000;\n",
1434
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col2 {\n",
1435
       "            background-color:  #79c379;\n",
1436
       "            color:  #000000;\n",
1437
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col3 {\n",
1438
       "            background-color:  #e4fee4;\n",
1439
       "            color:  #000000;\n",
1440
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col4 {\n",
1441
       "            background-color:  #008000;\n",
1442
       "            color:  #f1f1f1;\n",
1443
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col5 {\n",
1444
       "            background-color:  #e4fee4;\n",
1445
       "            color:  #000000;\n",
1446
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col6 {\n",
1447
       "            background-color:  #dbf9db;\n",
1448
       "            color:  #000000;\n",
1449
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col7 {\n",
1450
       "            background-color:  #4eab4e;\n",
1451
       "            color:  #000000;\n",
1452
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col8 {\n",
1453
       "            background-color:  #e5ffe5;\n",
1454
       "            color:  #000000;\n",
1455
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col0 {\n",
1456
       "            background-color:  #b5e4b5;\n",
1457
       "            color:  #000000;\n",
1458
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col1 {\n",
1459
       "            background-color:  #bce8bc;\n",
1460
       "            color:  #000000;\n",
1461
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col2 {\n",
1462
       "            background-color:  #008000;\n",
1463
       "            color:  #f1f1f1;\n",
1464
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col3 {\n",
1465
       "            background-color:  #e5ffe5;\n",
1466
       "            color:  #000000;\n",
1467
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col4 {\n",
1468
       "            background-color:  #4eab4e;\n",
1469
       "            color:  #000000;\n",
1470
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col5 {\n",
1471
       "            background-color:  #ddfbdd;\n",
1472
       "            color:  #000000;\n",
1473
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col6 {\n",
1474
       "            background-color:  #dffcdf;\n",
1475
       "            color:  #000000;\n",
1476
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col7 {\n",
1477
       "            background-color:  #289628;\n",
1478
       "            color:  #000000;\n",
1479
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col8 {\n",
1480
       "            background-color:  #e5ffe5;\n",
1481
       "            color:  #000000;\n",
1482
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col0 {\n",
1483
       "            background-color:  #7cc57c;\n",
1484
       "            color:  #000000;\n",
1485
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col1 {\n",
1486
       "            background-color:  #b8e6b8;\n",
1487
       "            color:  #000000;\n",
1488
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col2 {\n",
1489
       "            background-color:  #6fbd6f;\n",
1490
       "            color:  #000000;\n",
1491
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col3 {\n",
1492
       "            background-color:  #e4fee4;\n",
1493
       "            color:  #000000;\n",
1494
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col4 {\n",
1495
       "            background-color:  #008000;\n",
1496
       "            color:  #f1f1f1;\n",
1497
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col5 {\n",
1498
       "            background-color:  #e5ffe5;\n",
1499
       "            color:  #000000;\n",
1500
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col6 {\n",
1501
       "            background-color:  #defbde;\n",
1502
       "            color:  #000000;\n",
1503
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col7 {\n",
1504
       "            background-color:  #9ed79e;\n",
1505
       "            color:  #000000;\n",
1506
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col8 {\n",
1507
       "            background-color:  #e5ffe5;\n",
1508
       "            color:  #000000;\n",
1509
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col0 {\n",
1510
       "            background-color:  #69ba69;\n",
1511
       "            color:  #000000;\n",
1512
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col1 {\n",
1513
       "            background-color:  #afe1af;\n",
1514
       "            color:  #000000;\n",
1515
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col2 {\n",
1516
       "            background-color:  #69ba69;\n",
1517
       "            color:  #000000;\n",
1518
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col3 {\n",
1519
       "            background-color:  #e4fee4;\n",
1520
       "            color:  #000000;\n",
1521
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col4 {\n",
1522
       "            background-color:  #008000;\n",
1523
       "            color:  #f1f1f1;\n",
1524
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col5 {\n",
1525
       "            background-color:  #e4fee4;\n",
1526
       "            color:  #000000;\n",
1527
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col6 {\n",
1528
       "            background-color:  #dbf9db;\n",
1529
       "            color:  #000000;\n",
1530
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col7 {\n",
1531
       "            background-color:  #a2daa2;\n",
1532
       "            color:  #000000;\n",
1533
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col8 {\n",
1534
       "            background-color:  #e5ffe5;\n",
1535
       "            color:  #000000;\n",
1536
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col0 {\n",
1537
       "            background-color:  #b9e7b9;\n",
1538
       "            color:  #000000;\n",
1539
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col1 {\n",
1540
       "            background-color:  #b8e6b8;\n",
1541
       "            color:  #000000;\n",
1542
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col2 {\n",
1543
       "            background-color:  #58b158;\n",
1544
       "            color:  #000000;\n",
1545
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col3 {\n",
1546
       "            background-color:  #e3fee3;\n",
1547
       "            color:  #000000;\n",
1548
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col4 {\n",
1549
       "            background-color:  #5db35d;\n",
1550
       "            color:  #000000;\n",
1551
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col5 {\n",
1552
       "            background-color:  #e4fee4;\n",
1553
       "            color:  #000000;\n",
1554
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col6 {\n",
1555
       "            background-color:  #dbf9db;\n",
1556
       "            color:  #000000;\n",
1557
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col7 {\n",
1558
       "            background-color:  #008000;\n",
1559
       "            color:  #f1f1f1;\n",
1560
       "        }    #T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col8 {\n",
1561
       "            background-color:  #e5ffe5;\n",
1562
       "            color:  #000000;\n",
1563
       "        }</style><table id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002\" ><thead>    <tr>        <th class=\"blank level0\" ></th>        <th class=\"col_heading level0 col0\" >chest_ACC_x</th>        <th class=\"col_heading level0 col1\" >chest_ACC_y</th>        <th class=\"col_heading level0 col2\" >chest_ACC_z</th>        <th class=\"col_heading level0 col3\" >chest_ECG</th>        <th class=\"col_heading level0 col4\" >chest_EDA</th>        <th class=\"col_heading level0 col5\" >chest_EMG</th>        <th class=\"col_heading level0 col6\" >chest_Resp</th>        <th class=\"col_heading level0 col7\" >chest_Temp</th>        <th class=\"col_heading level0 col8\" >subject</th>    </tr></thead><tbody>\n",
1564
       "                <tr>\n",
1565
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row0\" class=\"row_heading level0 row0\" >6</th>\n",
1566
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col0\" class=\"data row0 col0\" >0.130067</td>\n",
1567
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col1\" class=\"data row0 col1\" >0.196886</td>\n",
1568
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col2\" class=\"data row0 col2\" >0.245812</td>\n",
1569
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col3\" class=\"data row0 col3\" >0.00322659</td>\n",
1570
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col4\" class=\"data row0 col4\" >0.24669</td>\n",
1571
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col5\" class=\"data row0 col5\" >0.00368036</td>\n",
1572
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col6\" class=\"data row0 col6\" >0.0141936</td>\n",
1573
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col7\" class=\"data row0 col7\" >0.159445</td>\n",
1574
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row0_col8\" class=\"data row0 col8\" >0</td>\n",
1575
       "            </tr>\n",
1576
       "            <tr>\n",
1577
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row1\" class=\"row_heading level0 row1\" >11</th>\n",
1578
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col0\" class=\"data row1 col0\" >0.0402476</td>\n",
1579
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col1\" class=\"data row1 col1\" >0.156532</td>\n",
1580
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col2\" class=\"data row1 col2\" >0.118306</td>\n",
1581
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col3\" class=\"data row1 col3\" >0.00792284</td>\n",
1582
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col4\" class=\"data row1 col4\" >0.363283</td>\n",
1583
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col5\" class=\"data row1 col5\" >0.00634898</td>\n",
1584
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col6\" class=\"data row1 col6\" >0.0455099</td>\n",
1585
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col7\" class=\"data row1 col7\" >0.26185</td>\n",
1586
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row1_col8\" class=\"data row1 col8\" >0</td>\n",
1587
       "            </tr>\n",
1588
       "            <tr>\n",
1589
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row2\" class=\"row_heading level0 row2\" >14</th>\n",
1590
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col0\" class=\"data row2 col0\" >0.103752</td>\n",
1591
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col1\" class=\"data row2 col1\" >0.18531</td>\n",
1592
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col2\" class=\"data row2 col2\" >0.215454</td>\n",
1593
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col3\" class=\"data row2 col3\" >0.00859503</td>\n",
1594
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col4\" class=\"data row2 col4\" >0.253825</td>\n",
1595
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col5\" class=\"data row2 col5\" >0.005167</td>\n",
1596
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col6\" class=\"data row2 col6\" >0.020111</td>\n",
1597
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col7\" class=\"data row2 col7\" >0.207787</td>\n",
1598
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row2_col8\" class=\"data row2 col8\" >0</td>\n",
1599
       "            </tr>\n",
1600
       "            <tr>\n",
1601
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row3\" class=\"row_heading level0 row3\" >8</th>\n",
1602
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col0\" class=\"data row3 col0\" >0.143474</td>\n",
1603
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col1\" class=\"data row3 col1\" >0.240658</td>\n",
1604
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col2\" class=\"data row3 col2\" >0.267763</td>\n",
1605
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col3\" class=\"data row3 col3\" >0.00571155</td>\n",
1606
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col4\" class=\"data row3 col4\" >0.238707</td>\n",
1607
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col5\" class=\"data row3 col5\" >0.00391849</td>\n",
1608
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col6\" class=\"data row3 col6\" >0.0156329</td>\n",
1609
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col7\" class=\"data row3 col7\" >0.0841353</td>\n",
1610
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row3_col8\" class=\"data row3 col8\" >0</td>\n",
1611
       "            </tr>\n",
1612
       "            <tr>\n",
1613
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row4\" class=\"row_heading level0 row4\" >15</th>\n",
1614
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col0\" class=\"data row4 col0\" >0.112318</td>\n",
1615
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col1\" class=\"data row4 col1\" >0.0822026</td>\n",
1616
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col2\" class=\"data row4 col2\" >0.208225</td>\n",
1617
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col3\" class=\"data row4 col3\" >0.00308661</td>\n",
1618
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col4\" class=\"data row4 col4\" >0.413194</td>\n",
1619
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col5\" class=\"data row4 col5\" >0.00259768</td>\n",
1620
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col6\" class=\"data row4 col6\" >0.00994311</td>\n",
1621
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col7\" class=\"data row4 col7\" >0.168433</td>\n",
1622
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row4_col8\" class=\"data row4 col8\" >0</td>\n",
1623
       "            </tr>\n",
1624
       "            <tr>\n",
1625
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row5\" class=\"row_heading level0 row5\" >9</th>\n",
1626
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col0\" class=\"data row5 col0\" >0.125616</td>\n",
1627
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col1\" class=\"data row5 col1\" >0.0970257</td>\n",
1628
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col2\" class=\"data row5 col2\" >0.243847</td>\n",
1629
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col3\" class=\"data row5 col3\" >0.00399517</td>\n",
1630
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col4\" class=\"data row5 col4\" >0.368804</td>\n",
1631
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col5\" class=\"data row5 col5\" >0.00541761</td>\n",
1632
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col6\" class=\"data row5 col6\" >0.012257</td>\n",
1633
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col7\" class=\"data row5 col7\" >0.143038</td>\n",
1634
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row5_col8\" class=\"data row5 col8\" >0</td>\n",
1635
       "            </tr>\n",
1636
       "            <tr>\n",
1637
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row6\" class=\"row_heading level0 row6\" >10</th>\n",
1638
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col0\" class=\"data row6 col0\" >0.228821</td>\n",
1639
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col1\" class=\"data row6 col1\" >0.0473266</td>\n",
1640
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col2\" class=\"data row6 col2\" >0.232215</td>\n",
1641
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col3\" class=\"data row6 col3\" >0.00480146</td>\n",
1642
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col4\" class=\"data row6 col4\" >0.311581</td>\n",
1643
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col5\" class=\"data row6 col5\" >0.00451235</td>\n",
1644
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col6\" class=\"data row6 col6\" >0.0126273</td>\n",
1645
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col7\" class=\"data row6 col7\" >0.158116</td>\n",
1646
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row6_col8\" class=\"data row6 col8\" >0</td>\n",
1647
       "            </tr>\n",
1648
       "            <tr>\n",
1649
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row7\" class=\"row_heading level0 row7\" >2</th>\n",
1650
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col0\" class=\"data row7 col0\" >0.116685</td>\n",
1651
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col1\" class=\"data row7 col1\" >0.135971</td>\n",
1652
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col2\" class=\"data row7 col2\" >0.246757</td>\n",
1653
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col3\" class=\"data row7 col3\" >0.00499274</td>\n",
1654
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col4\" class=\"data row7 col4\" >0.225879</td>\n",
1655
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col5\" class=\"data row7 col5\" >0.00248697</td>\n",
1656
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col6\" class=\"data row7 col6\" >0.0156665</td>\n",
1657
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col7\" class=\"data row7 col7\" >0.251563</td>\n",
1658
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row7_col8\" class=\"data row7 col8\" >0</td>\n",
1659
       "            </tr>\n",
1660
       "            <tr>\n",
1661
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row8\" class=\"row_heading level0 row8\" >16</th>\n",
1662
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col0\" class=\"data row8 col0\" >0.079223</td>\n",
1663
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col1\" class=\"data row8 col1\" >0.0615543</td>\n",
1664
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col2\" class=\"data row8 col2\" >0.2439</td>\n",
1665
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col3\" class=\"data row8 col3\" >0.0121258</td>\n",
1666
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col4\" class=\"data row8 col4\" >0.410867</td>\n",
1667
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col5\" class=\"data row8 col5\" >0.003252</td>\n",
1668
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col6\" class=\"data row8 col6\" >0.0150713</td>\n",
1669
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col7\" class=\"data row8 col7\" >0.174006</td>\n",
1670
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row8_col8\" class=\"data row8 col8\" >0</td>\n",
1671
       "            </tr>\n",
1672
       "            <tr>\n",
1673
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row9\" class=\"row_heading level0 row9\" >4</th>\n",
1674
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col0\" class=\"data row9 col0\" >0.188891</td>\n",
1675
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col1\" class=\"data row9 col1\" >0.151533</td>\n",
1676
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col2\" class=\"data row9 col2\" >0.237827</td>\n",
1677
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col3\" class=\"data row9 col3\" >0.0036051</td>\n",
1678
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col4\" class=\"data row9 col4\" >0.252502</td>\n",
1679
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col5\" class=\"data row9 col5\" >0.00286907</td>\n",
1680
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col6\" class=\"data row9 col6\" >0.0129631</td>\n",
1681
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col7\" class=\"data row9 col7\" >0.149809</td>\n",
1682
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row9_col8\" class=\"data row9 col8\" >0</td>\n",
1683
       "            </tr>\n",
1684
       "            <tr>\n",
1685
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row10\" class=\"row_heading level0 row10\" >13</th>\n",
1686
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col0\" class=\"data row10 col0\" >0.0780342</td>\n",
1687
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col1\" class=\"data row10 col1\" >0.099748</td>\n",
1688
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col2\" class=\"data row10 col2\" >0.177701</td>\n",
1689
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col3\" class=\"data row10 col3\" >0.00341687</td>\n",
1690
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col4\" class=\"data row10 col4\" >0.374009</td>\n",
1691
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col5\" class=\"data row10 col5\" >0.00344406</td>\n",
1692
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col6\" class=\"data row10 col6\" >0.0176205</td>\n",
1693
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col7\" class=\"data row10 col7\" >0.246026</td>\n",
1694
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row10_col8\" class=\"data row10 col8\" >0</td>\n",
1695
       "            </tr>\n",
1696
       "            <tr>\n",
1697
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row11\" class=\"row_heading level0 row11\" >3</th>\n",
1698
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col0\" class=\"data row11 col0\" >0.0718872</td>\n",
1699
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col1\" class=\"data row11 col1\" >0.0618597</td>\n",
1700
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col2\" class=\"data row11 col2\" >0.338983</td>\n",
1701
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col3\" class=\"data row11 col3\" >0.00253341</td>\n",
1702
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col4\" class=\"data row11 col4\" >0.223472</td>\n",
1703
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col5\" class=\"data row11 col5\" >0.0123329</td>\n",
1704
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col6\" class=\"data row11 col6\" >0.00967329</td>\n",
1705
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col7\" class=\"data row11 col7\" >0.279259</td>\n",
1706
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row11_col8\" class=\"data row11 col8\" >0</td>\n",
1707
       "            </tr>\n",
1708
       "            <tr>\n",
1709
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row12\" class=\"row_heading level0 row12\" >17</th>\n",
1710
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col0\" class=\"data row12 col0\" >0.18045</td>\n",
1711
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col1\" class=\"data row12 col1\" >0.0773686</td>\n",
1712
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col2\" class=\"data row12 col2\" >0.204798</td>\n",
1713
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col3\" class=\"data row12 col3\" >0.00341523</td>\n",
1714
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col4\" class=\"data row12 col4\" >0.394643</td>\n",
1715
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col5\" class=\"data row12 col5\" >0.00253238</td>\n",
1716
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col6\" class=\"data row12 col6\" >0.0133942</td>\n",
1717
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col7\" class=\"data row12 col7\" >0.123399</td>\n",
1718
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row12_col8\" class=\"data row12 col8\" >0</td>\n",
1719
       "            </tr>\n",
1720
       "            <tr>\n",
1721
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row13\" class=\"row_heading level0 row13\" >5</th>\n",
1722
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col0\" class=\"data row13 col0\" >0.201678</td>\n",
1723
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col1\" class=\"data row13 col1\" >0.0891404</td>\n",
1724
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col2\" class=\"data row13 col2\" >0.201403</td>\n",
1725
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col3\" class=\"data row13 col3\" >0.00435131</td>\n",
1726
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col4\" class=\"data row13 col4\" >0.371525</td>\n",
1727
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col5\" class=\"data row13 col5\" >0.00415276</td>\n",
1728
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col6\" class=\"data row13 col6\" >0.0187201</td>\n",
1729
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col7\" class=\"data row13 col7\" >0.10903</td>\n",
1730
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row13_col8\" class=\"data row13 col8\" >0</td>\n",
1731
       "            </tr>\n",
1732
       "            <tr>\n",
1733
       "                        <th id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002level0_row14\" class=\"row_heading level0 row14\" >7</th>\n",
1734
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col0\" class=\"data row14 col0\" >0.0719902</td>\n",
1735
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col1\" class=\"data row14 col1\" >0.0738758</td>\n",
1736
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col2\" class=\"data row14 col2\" >0.230683</td>\n",
1737
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col3\" class=\"data row14 col3\" >0.00452829</td>\n",
1738
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col4\" class=\"data row14 col4\" >0.222243</td>\n",
1739
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col5\" class=\"data row14 col5\" >0.00347192</td>\n",
1740
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col6\" class=\"data row14 col6\" >0.0189801</td>\n",
1741
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col7\" class=\"data row14 col7\" >0.374228</td>\n",
1742
       "                        <td id=\"T_cf1e75b6_c071_11e9_a2b0_42010a800002row14_col8\" class=\"data row14 col8\" >0</td>\n",
1743
       "            </tr>\n",
1744
       "    </tbody></table>"
1745
      ],
1746
      "text/plain": [
1747
       "<pandas.io.formats.style.Styler at 0x7fa017af0898>"
1748
      ]
1749
     },
1750
     "execution_count": 23,
1751
     "metadata": {},
1752
     "output_type": "execute_result"
1753
    }
1754
   ],
1755
   "source": [
1756
    "import seaborn as sns\n",
1757
    "\n",
1758
    "cm = sns.light_palette(\"green\", as_cmap=True)\n",
1759
    "\n",
1760
    "s = feature_importance_all_subjects.style.background_gradient(cmap=cm,axis = 1)\n",
1761
    "s"
1762
   ]
1763
  },
1764
  {
1765
   "cell_type": "code",
1766
   "execution_count": 25,
1767
   "metadata": {},
1768
   "outputs": [],
1769
   "source": [
1770
    "feature_importance_all_subjects.to_csv('feature_importance_all_subjects.csv' )"
1771
   ]
1772
  },
1773
  {
1774
   "cell_type": "code",
1775
   "execution_count": null,
1776
   "metadata": {},
1777
   "outputs": [],
1778
   "source": []
1779
  }
1780
 ],
1781
 "metadata": {
1782
  "kernelspec": {
1783
   "display_name": "Python 3",
1784
   "language": "python",
1785
   "name": "python3"
1786
  },
1787
  "language_info": {
1788
   "codemirror_mode": {
1789
    "name": "ipython",
1790
    "version": 3
1791
   },
1792
   "file_extension": ".py",
1793
   "mimetype": "text/x-python",
1794
   "name": "python",
1795
   "nbconvert_exporter": "python",
1796
   "pygments_lexer": "ipython3",
1797
   "version": "3.6.8"
1798
  }
1799
 },
1800
 "nbformat": 4,
1801
 "nbformat_minor": 2
1802
}