|
a |
|
b/Dependent Vs Independent.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 2, |
|
|
6 |
"metadata": { |
|
|
7 |
"ExecuteTime": { |
|
|
8 |
"end_time": "2019-07-21T03:28:20.614469Z", |
|
|
9 |
"start_time": "2019-07-21T03:28:19.208340Z" |
|
|
10 |
} |
|
|
11 |
}, |
|
|
12 |
"outputs": [ |
|
|
13 |
{ |
|
|
14 |
"name": "stderr", |
|
|
15 |
"output_type": "stream", |
|
|
16 |
"text": [ |
|
|
17 |
"Using TensorFlow backend.\n" |
|
|
18 |
] |
|
|
19 |
} |
|
|
20 |
], |
|
|
21 |
"source": [ |
|
|
22 |
"#This code is for adaptive GPU usage\n", |
|
|
23 |
"import keras.backend as K\n", |
|
|
24 |
"cfg = K.tf.ConfigProto()\n", |
|
|
25 |
"cfg.gpu_options.allow_growth = True\n", |
|
|
26 |
"K.set_session(K.tf.Session(config=cfg))" |
|
|
27 |
] |
|
|
28 |
}, |
|
|
29 |
{ |
|
|
30 |
"cell_type": "code", |
|
|
31 |
"execution_count": 1, |
|
|
32 |
"metadata": { |
|
|
33 |
"ExecuteTime": { |
|
|
34 |
"end_time": "2019-07-23T12:10:14.715612Z", |
|
|
35 |
"start_time": "2019-07-23T12:10:14.196989Z" |
|
|
36 |
} |
|
|
37 |
}, |
|
|
38 |
"outputs": [], |
|
|
39 |
"source": [ |
|
|
40 |
"import pandas as pd\n", |
|
|
41 |
"import numpy as np\n", |
|
|
42 |
"from sklearn.ensemble import ExtraTreesClassifier\n", |
|
|
43 |
"from sklearn.metrics import classification_report\n", |
|
|
44 |
"from sklearn.model_selection import train_test_split" |
|
|
45 |
] |
|
|
46 |
}, |
|
|
47 |
{ |
|
|
48 |
"cell_type": "code", |
|
|
49 |
"execution_count": 2, |
|
|
50 |
"metadata": { |
|
|
51 |
"ExecuteTime": { |
|
|
52 |
"end_time": "2019-07-23T13:09:10.760608Z", |
|
|
53 |
"start_time": "2019-07-23T13:09:10.743179Z" |
|
|
54 |
} |
|
|
55 |
}, |
|
|
56 |
"outputs": [ |
|
|
57 |
{ |
|
|
58 |
"data": { |
|
|
59 |
"text/plain": [ |
|
|
60 |
"15" |
|
|
61 |
] |
|
|
62 |
}, |
|
|
63 |
"execution_count": 2, |
|
|
64 |
"metadata": {}, |
|
|
65 |
"output_type": "execute_result" |
|
|
66 |
} |
|
|
67 |
], |
|
|
68 |
"source": [ |
|
|
69 |
"subject=[2,3,4,5,6,7,8,9,10,11,13,14,15,16,17]\n", |
|
|
70 |
"len(subject)" |
|
|
71 |
] |
|
|
72 |
}, |
|
|
73 |
{ |
|
|
74 |
"cell_type": "code", |
|
|
75 |
"execution_count": 3, |
|
|
76 |
"metadata": { |
|
|
77 |
"ExecuteTime": { |
|
|
78 |
"end_time": "2019-07-23T12:10:50.414237Z", |
|
|
79 |
"start_time": "2019-07-23T12:10:23.407112Z" |
|
|
80 |
} |
|
|
81 |
}, |
|
|
82 |
"outputs": [ |
|
|
83 |
{ |
|
|
84 |
"name": "stdout", |
|
|
85 |
"output_type": "stream", |
|
|
86 |
"text": [ |
|
|
87 |
"subject_2\n", |
|
|
88 |
"subject_3\n" |
|
|
89 |
] |
|
|
90 |
}, |
|
|
91 |
{ |
|
|
92 |
"ename": "KeyboardInterrupt", |
|
|
93 |
"evalue": "", |
|
|
94 |
"output_type": "error", |
|
|
95 |
"traceback": [ |
|
|
96 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
97 |
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
|
|
98 |
"\u001b[0;32m<ipython-input-3-8c3302bbf9e7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msubject\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mglobals\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'subject_%s'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Sub_\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\".csv\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mglobals\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'subject_%s'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mglobals\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'subject_%s'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mglobals\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'subject_%s'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'label'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0msubject_2_train\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0msubject_2_test\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtrain_test_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubject_2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'subject_'\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
99 |
"\u001b[0;32m/opt/anaconda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, doublequote, delim_whitespace, low_memory, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 676\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 677\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 678\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 679\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 680\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
100 |
"\u001b[0;32m/opt/anaconda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 444\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 445\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 446\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 447\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0mparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
101 |
"\u001b[0;32m/opt/anaconda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self, nrows)\u001b[0m\n\u001b[1;32m 1034\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'skipfooter not supported for iteration'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1035\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1036\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1037\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1038\u001b[0m \u001b[0;31m# May alter columns / col_dict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
102 |
"\u001b[0;32m/opt/anaconda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self, nrows)\u001b[0m\n\u001b[1;32m 1846\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnrows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1847\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1848\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnrows\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1849\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1850\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_first_chunk\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
103 |
"\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.read\u001b[0;34m()\u001b[0m\n", |
|
|
104 |
"\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._read_low_memory\u001b[0;34m()\u001b[0m\n", |
|
|
105 |
"\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers._concatenate_chunks\u001b[0;34m()\u001b[0m\n", |
|
|
106 |
"\u001b[0;32m/opt/anaconda/lib/python3.6/site-packages/pandas/core/dtypes/common.py\u001b[0m in \u001b[0;36mis_categorical_dtype\u001b[0;34m(arr_or_dtype)\u001b[0m\n\u001b[1;32m 511\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 513\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0mis_categorical_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr_or_dtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 514\u001b[0m \"\"\"\n\u001b[1;32m 515\u001b[0m \u001b[0mCheck\u001b[0m \u001b[0mwhether\u001b[0m \u001b[0man\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mlike\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mdtype\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mof\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mCategorical\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
107 |
"\u001b[0;31mKeyboardInterrupt\u001b[0m: " |
|
|
108 |
] |
|
|
109 |
} |
|
|
110 |
], |
|
|
111 |
"source": [ |
|
|
112 |
"for i in subject:\n", |
|
|
113 |
" globals()['subject_%s' % i] = pd.read_csv(\"Sub_\"+str(i)+\".csv\")\n", |
|
|
114 |
" globals()['subject_%s' % i]=globals()['subject_%s' % i][globals()['subject_%s' % i]['label'] <= 4]\n", |
|
|
115 |
" #subject_2_train,subject_2_test=train_test_split(subject_2, test_size=0.3)\n", |
|
|
116 |
" print('subject_'+str(i))" |
|
|
117 |
] |
|
|
118 |
}, |
|
|
119 |
{ |
|
|
120 |
"cell_type": "code", |
|
|
121 |
"execution_count": null, |
|
|
122 |
"metadata": {}, |
|
|
123 |
"outputs": [], |
|
|
124 |
"source": [ |
|
|
125 |
"%%time\n", |
|
|
126 |
"df = pd.read_csv(\"master_data.csv\")\n" |
|
|
127 |
] |
|
|
128 |
}, |
|
|
129 |
{ |
|
|
130 |
"cell_type": "code", |
|
|
131 |
"execution_count": null, |
|
|
132 |
"metadata": {}, |
|
|
133 |
"outputs": [], |
|
|
134 |
"source": [ |
|
|
135 |
"df=df[df['target']!=0]\n", |
|
|
136 |
"df" |
|
|
137 |
] |
|
|
138 |
}, |
|
|
139 |
{ |
|
|
140 |
"cell_type": "code", |
|
|
141 |
"execution_count": 4, |
|
|
142 |
"metadata": { |
|
|
143 |
"ExecuteTime": { |
|
|
144 |
"end_time": "2019-07-21T03:48:13.626469Z", |
|
|
145 |
"start_time": "2019-07-21T03:48:11.630785Z" |
|
|
146 |
} |
|
|
147 |
}, |
|
|
148 |
"outputs": [], |
|
|
149 |
"source": [ |
|
|
150 |
"train=pd.concat([subject_2,subject_3,subject_4,subject_5,subject_6,subject_7,subject_8,subject_9,subject_10,subject_11])" |
|
|
151 |
] |
|
|
152 |
}, |
|
|
153 |
{ |
|
|
154 |
"cell_type": "code", |
|
|
155 |
"execution_count": 5, |
|
|
156 |
"metadata": { |
|
|
157 |
"ExecuteTime": { |
|
|
158 |
"end_time": "2019-07-21T03:48:14.534888Z", |
|
|
159 |
"start_time": "2019-07-21T03:48:13.628414Z" |
|
|
160 |
} |
|
|
161 |
}, |
|
|
162 |
"outputs": [], |
|
|
163 |
"source": [ |
|
|
164 |
"test=pd.concat([subject_13,subject_14,subject_15,subject_16,subject_17])" |
|
|
165 |
] |
|
|
166 |
}, |
|
|
167 |
{ |
|
|
168 |
"cell_type": "code", |
|
|
169 |
"execution_count": 6, |
|
|
170 |
"metadata": { |
|
|
171 |
"ExecuteTime": { |
|
|
172 |
"end_time": "2019-07-21T03:48:14.544552Z", |
|
|
173 |
"start_time": "2019-07-21T03:48:14.536781Z" |
|
|
174 |
} |
|
|
175 |
}, |
|
|
176 |
"outputs": [ |
|
|
177 |
{ |
|
|
178 |
"name": "stdout", |
|
|
179 |
"output_type": "stream", |
|
|
180 |
"text": [ |
|
|
181 |
"Index 321148792\n", |
|
|
182 |
"subject 321148792\n", |
|
|
183 |
"ACC_x 321148792\n", |
|
|
184 |
"ACC_y 321148792\n", |
|
|
185 |
"ACC_z 321148792\n", |
|
|
186 |
"ECG 321148792\n", |
|
|
187 |
"EMG 321148792\n", |
|
|
188 |
"EDA 321148792\n", |
|
|
189 |
"Temp 321148792\n", |
|
|
190 |
"Resp 321148792\n", |
|
|
191 |
"label 321148792\n", |
|
|
192 |
"dtype: int64\n", |
|
|
193 |
"Index 151855208\n", |
|
|
194 |
"subject 151855208\n", |
|
|
195 |
"ACC_x 151855208\n", |
|
|
196 |
"ACC_y 151855208\n", |
|
|
197 |
"ACC_z 151855208\n", |
|
|
198 |
"ECG 151855208\n", |
|
|
199 |
"EMG 151855208\n", |
|
|
200 |
"EDA 151855208\n", |
|
|
201 |
"Temp 151855208\n", |
|
|
202 |
"Resp 151855208\n", |
|
|
203 |
"label 151855208\n", |
|
|
204 |
"dtype: int64\n" |
|
|
205 |
] |
|
|
206 |
} |
|
|
207 |
], |
|
|
208 |
"source": [ |
|
|
209 |
"print(train.memory_usage(index=True, deep=False))\n", |
|
|
210 |
"print(test.memory_usage(index=True, deep=False))" |
|
|
211 |
] |
|
|
212 |
}, |
|
|
213 |
{ |
|
|
214 |
"cell_type": "code", |
|
|
215 |
"execution_count": 7, |
|
|
216 |
"metadata": { |
|
|
217 |
"ExecuteTime": { |
|
|
218 |
"end_time": "2019-07-21T03:48:15.689593Z", |
|
|
219 |
"start_time": "2019-07-21T03:48:14.546129Z" |
|
|
220 |
} |
|
|
221 |
}, |
|
|
222 |
"outputs": [ |
|
|
223 |
{ |
|
|
224 |
"name": "stdout", |
|
|
225 |
"output_type": "stream", |
|
|
226 |
"text": [ |
|
|
227 |
"<class 'pandas.core.frame.DataFrame'>\n", |
|
|
228 |
"Int64Index: 40143599 entries, 0 to 3663099\n", |
|
|
229 |
"Data columns (total 10 columns):\n", |
|
|
230 |
"subject int64\n", |
|
|
231 |
"ACC_x float64\n", |
|
|
232 |
"ACC_y float64\n", |
|
|
233 |
"ACC_z float64\n", |
|
|
234 |
"ECG float64\n", |
|
|
235 |
"EMG float64\n", |
|
|
236 |
"EDA float64\n", |
|
|
237 |
"Temp float64\n", |
|
|
238 |
"Resp float64\n", |
|
|
239 |
"label int64\n", |
|
|
240 |
"dtypes: float64(8), int64(2)\n", |
|
|
241 |
"memory usage: 3.3 GB\n", |
|
|
242 |
"None\n", |
|
|
243 |
"<class 'pandas.core.frame.DataFrame'>\n", |
|
|
244 |
"Int64Index: 18981901 entries, 0 to 4143999\n", |
|
|
245 |
"Data columns (total 10 columns):\n", |
|
|
246 |
"subject int64\n", |
|
|
247 |
"ACC_x float64\n", |
|
|
248 |
"ACC_y float64\n", |
|
|
249 |
"ACC_z float64\n", |
|
|
250 |
"ECG float64\n", |
|
|
251 |
"EMG float64\n", |
|
|
252 |
"EDA float64\n", |
|
|
253 |
"Temp float64\n", |
|
|
254 |
"Resp float64\n", |
|
|
255 |
"label int64\n", |
|
|
256 |
"dtypes: float64(8), int64(2)\n", |
|
|
257 |
"memory usage: 1.6 GB\n", |
|
|
258 |
"None\n" |
|
|
259 |
] |
|
|
260 |
} |
|
|
261 |
], |
|
|
262 |
"source": [ |
|
|
263 |
"print(train.info(memory_usage='deep'))\n", |
|
|
264 |
"print(test.info(memory_usage='deep'))" |
|
|
265 |
] |
|
|
266 |
}, |
|
|
267 |
{ |
|
|
268 |
"cell_type": "code", |
|
|
269 |
"execution_count": 2, |
|
|
270 |
"metadata": { |
|
|
271 |
"ExecuteTime": { |
|
|
272 |
"end_time": "2019-07-23T13:09:21.798204Z", |
|
|
273 |
"start_time": "2019-07-23T13:09:21.793394Z" |
|
|
274 |
} |
|
|
275 |
}, |
|
|
276 |
"outputs": [], |
|
|
277 |
"source": [ |
|
|
278 |
"features=['subject','ACC_x','ACC_y','ACC_z','ECG','EMG','EDA','Temp','Resp']\n", |
|
|
279 |
"target=['label']" |
|
|
280 |
] |
|
|
281 |
}, |
|
|
282 |
{ |
|
|
283 |
"cell_type": "code", |
|
|
284 |
"execution_count": 12, |
|
|
285 |
"metadata": { |
|
|
286 |
"ExecuteTime": { |
|
|
287 |
"end_time": "2019-07-21T03:57:26.901617Z", |
|
|
288 |
"start_time": "2019-07-21T03:50:57.031138Z" |
|
|
289 |
} |
|
|
290 |
}, |
|
|
291 |
"outputs": [ |
|
|
292 |
{ |
|
|
293 |
"name": "stderr", |
|
|
294 |
"output_type": "stream", |
|
|
295 |
"text": [ |
|
|
296 |
"/opt/anaconda/lib/python3.6/site-packages/ipykernel_launcher.py:2: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", |
|
|
297 |
" \n" |
|
|
298 |
] |
|
|
299 |
}, |
|
|
300 |
{ |
|
|
301 |
"name": "stdout", |
|
|
302 |
"output_type": "stream", |
|
|
303 |
"text": [ |
|
|
304 |
"building tree 1 of 50\n", |
|
|
305 |
"building tree 2 of 50\n", |
|
|
306 |
"building tree 3 of 50\n", |
|
|
307 |
"building tree 4 of 50\n", |
|
|
308 |
"building tree 5 of 50\n", |
|
|
309 |
"building tree 6 of 50\n", |
|
|
310 |
"building tree 7 of 50\n", |
|
|
311 |
"building tree 8 of 50\n", |
|
|
312 |
"building tree 9 of 50\n", |
|
|
313 |
"building tree 10 of 50\n", |
|
|
314 |
"building tree 11 of 50\n", |
|
|
315 |
"building tree 12 of 50\n", |
|
|
316 |
"building tree 13 of 50\n", |
|
|
317 |
"building tree 14 of 50\n", |
|
|
318 |
"building tree 15 of 50\n", |
|
|
319 |
"building tree 16 of 50\n", |
|
|
320 |
"building tree 17 of 50\n", |
|
|
321 |
"building tree 18 of 50\n", |
|
|
322 |
"building tree 19 of 50\n", |
|
|
323 |
"building tree 20 of 50\n", |
|
|
324 |
"building tree 21 of 50\n", |
|
|
325 |
"building tree 22 of 50\n", |
|
|
326 |
"building tree 23 of 50\n", |
|
|
327 |
"building tree 24 of 50\n", |
|
|
328 |
"building tree 25 of 50\n", |
|
|
329 |
"building tree 26 of 50\n", |
|
|
330 |
"building tree 27 of 50\n", |
|
|
331 |
"building tree 28 of 50\n", |
|
|
332 |
"building tree 29 of 50\n", |
|
|
333 |
"building tree 30 of 50\n", |
|
|
334 |
"building tree 31 of 50\n" |
|
|
335 |
] |
|
|
336 |
}, |
|
|
337 |
{ |
|
|
338 |
"name": "stderr", |
|
|
339 |
"output_type": "stream", |
|
|
340 |
"text": [ |
|
|
341 |
"[Parallel(n_jobs=10)]: Done 21 tasks | elapsed: 3.0min\n" |
|
|
342 |
] |
|
|
343 |
}, |
|
|
344 |
{ |
|
|
345 |
"name": "stdout", |
|
|
346 |
"output_type": "stream", |
|
|
347 |
"text": [ |
|
|
348 |
"building tree 32 of 50\n", |
|
|
349 |
"building tree 33 of 50\n", |
|
|
350 |
"building tree 34 of 50\n", |
|
|
351 |
"building tree 35 of 50\n", |
|
|
352 |
"building tree 36 of 50\n", |
|
|
353 |
"building tree 37 of 50building tree 38 of 50\n", |
|
|
354 |
"\n", |
|
|
355 |
"building tree 39 of 50\n", |
|
|
356 |
"building tree 40 of 50\n", |
|
|
357 |
"building tree 41 of 50\n", |
|
|
358 |
"building tree 42 of 50\n", |
|
|
359 |
"building tree 43 of 50\n", |
|
|
360 |
"building tree 44 of 50\n", |
|
|
361 |
"building tree 45 of 50\n", |
|
|
362 |
"building tree 46 of 50\n", |
|
|
363 |
"building tree 47 of 50\n", |
|
|
364 |
"building tree 48 of 50\n", |
|
|
365 |
"building tree 49 of 50\n", |
|
|
366 |
"building tree 50 of 50\n" |
|
|
367 |
] |
|
|
368 |
}, |
|
|
369 |
{ |
|
|
370 |
"name": "stderr", |
|
|
371 |
"output_type": "stream", |
|
|
372 |
"text": [ |
|
|
373 |
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 5.9min finished\n", |
|
|
374 |
"[Parallel(n_jobs=10)]: Done 21 tasks | elapsed: 12.6s\n", |
|
|
375 |
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 24.5s finished\n" |
|
|
376 |
] |
|
|
377 |
} |
|
|
378 |
], |
|
|
379 |
"source": [ |
|
|
380 |
"et = ExtraTreesClassifier(n_estimators=50, n_jobs=10, verbose=2)\n", |
|
|
381 |
"et.fit(train[features],train[target])\n", |
|
|
382 |
"y_pred=et.predict(test[features])" |
|
|
383 |
] |
|
|
384 |
}, |
|
|
385 |
{ |
|
|
386 |
"cell_type": "code", |
|
|
387 |
"execution_count": 15, |
|
|
388 |
"metadata": { |
|
|
389 |
"ExecuteTime": { |
|
|
390 |
"end_time": "2019-07-21T03:57:45.807406Z", |
|
|
391 |
"start_time": "2019-07-21T03:57:40.672071Z" |
|
|
392 |
} |
|
|
393 |
}, |
|
|
394 |
"outputs": [ |
|
|
395 |
{ |
|
|
396 |
"name": "stdout", |
|
|
397 |
"output_type": "stream", |
|
|
398 |
"text": [ |
|
|
399 |
" precision recall f1-score support\n", |
|
|
400 |
"\n", |
|
|
401 |
" 0 0.43 0.75 0.55 8419601\n", |
|
|
402 |
" 1 0.04 0.04 0.04 4127201\n", |
|
|
403 |
" 2 0.15 0.01 0.03 2394701\n", |
|
|
404 |
" 3 0.00 0.00 0.00 1306201\n", |
|
|
405 |
" 4 0.00 0.00 0.00 2734197\n", |
|
|
406 |
"\n", |
|
|
407 |
"avg / total 0.22 0.34 0.25 18981901\n", |
|
|
408 |
"\n" |
|
|
409 |
] |
|
|
410 |
}, |
|
|
411 |
{ |
|
|
412 |
"name": "stderr", |
|
|
413 |
"output_type": "stream", |
|
|
414 |
"text": [ |
|
|
415 |
"/opt/anaconda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", |
|
|
416 |
" 'precision', 'predicted', average, warn_for)\n" |
|
|
417 |
] |
|
|
418 |
} |
|
|
419 |
], |
|
|
420 |
"source": [ |
|
|
421 |
"print(classification_report(test[target],y_pred ))" |
|
|
422 |
] |
|
|
423 |
}, |
|
|
424 |
{ |
|
|
425 |
"cell_type": "code", |
|
|
426 |
"execution_count": 16, |
|
|
427 |
"metadata": { |
|
|
428 |
"ExecuteTime": { |
|
|
429 |
"end_time": "2019-07-21T03:57:54.022571Z", |
|
|
430 |
"start_time": "2019-07-21T03:57:53.711601Z" |
|
|
431 |
} |
|
|
432 |
}, |
|
|
433 |
"outputs": [ |
|
|
434 |
{ |
|
|
435 |
"data": { |
|
|
436 |
"text/plain": [ |
|
|
437 |
"array([0.08156137, 0.10834554, 0.12135855, 0.19428681, 0.0057354 ,\n", |
|
|
438 |
" 0.00575368, 0.24000214, 0.21983822, 0.02311827])" |
|
|
439 |
] |
|
|
440 |
}, |
|
|
441 |
"execution_count": 16, |
|
|
442 |
"metadata": {}, |
|
|
443 |
"output_type": "execute_result" |
|
|
444 |
} |
|
|
445 |
], |
|
|
446 |
"source": [ |
|
|
447 |
"et.feature_importances_" |
|
|
448 |
] |
|
|
449 |
}, |
|
|
450 |
{ |
|
|
451 |
"cell_type": "code", |
|
|
452 |
"execution_count": 3, |
|
|
453 |
"metadata": { |
|
|
454 |
"ExecuteTime": { |
|
|
455 |
"end_time": "2019-07-23T13:09:31.720954Z", |
|
|
456 |
"start_time": "2019-07-23T13:09:31.713668Z" |
|
|
457 |
} |
|
|
458 |
}, |
|
|
459 |
"outputs": [ |
|
|
460 |
{ |
|
|
461 |
"data": { |
|
|
462 |
"text/plain": [ |
|
|
463 |
"['subject', 'ACC_x', 'ACC_y', 'ACC_z', 'ECG', 'EMG', 'EDA', 'Temp', 'Resp']" |
|
|
464 |
] |
|
|
465 |
}, |
|
|
466 |
"execution_count": 3, |
|
|
467 |
"metadata": {}, |
|
|
468 |
"output_type": "execute_result" |
|
|
469 |
} |
|
|
470 |
], |
|
|
471 |
"source": [ |
|
|
472 |
"features" |
|
|
473 |
] |
|
|
474 |
}, |
|
|
475 |
{ |
|
|
476 |
"cell_type": "markdown", |
|
|
477 |
"metadata": {}, |
|
|
478 |
"source": [ |
|
|
479 |
"# 70-30 all subject" |
|
|
480 |
] |
|
|
481 |
}, |
|
|
482 |
{ |
|
|
483 |
"cell_type": "code", |
|
|
484 |
"execution_count": 21, |
|
|
485 |
"metadata": { |
|
|
486 |
"ExecuteTime": { |
|
|
487 |
"end_time": "2019-07-21T04:03:43.043681Z", |
|
|
488 |
"start_time": "2019-07-21T04:01:34.361732Z" |
|
|
489 |
} |
|
|
490 |
}, |
|
|
491 |
"outputs": [ |
|
|
492 |
{ |
|
|
493 |
"name": "stdout", |
|
|
494 |
"output_type": "stream", |
|
|
495 |
"text": [ |
|
|
496 |
"subject_2\n", |
|
|
497 |
"subject_3\n", |
|
|
498 |
"subject_4\n", |
|
|
499 |
"subject_5\n", |
|
|
500 |
"subject_6\n", |
|
|
501 |
"subject_7\n", |
|
|
502 |
"subject_8\n", |
|
|
503 |
"subject_9\n", |
|
|
504 |
"subject_10\n", |
|
|
505 |
"subject_11\n", |
|
|
506 |
"subject_13\n", |
|
|
507 |
"subject_14\n", |
|
|
508 |
"subject_15\n", |
|
|
509 |
"subject_16\n", |
|
|
510 |
"subject_17\n" |
|
|
511 |
] |
|
|
512 |
} |
|
|
513 |
], |
|
|
514 |
"source": [ |
|
|
515 |
"for i in subject:\n", |
|
|
516 |
" globals()['subject_%s' % i] = pd.read_csv(\"Sub_\"+str(i)+\".csv\")\n", |
|
|
517 |
" globals()['subject_%s' % i]=globals()['subject_%s' % i][globals()['subject_%s' % i]['label'] <= 4]\n", |
|
|
518 |
" globals()['subject_%s_train' % i],globals()['subject_%s_test' % i]=train_test_split(globals()['subject_%s' % i], test_size=0.3)\n", |
|
|
519 |
" print('subject_'+str(i))" |
|
|
520 |
] |
|
|
521 |
}, |
|
|
522 |
{ |
|
|
523 |
"cell_type": "code", |
|
|
524 |
"execution_count": 20, |
|
|
525 |
"metadata": { |
|
|
526 |
"ExecuteTime": { |
|
|
527 |
"end_time": "2019-07-21T04:01:07.867253Z", |
|
|
528 |
"start_time": "2019-07-21T04:01:07.861501Z" |
|
|
529 |
} |
|
|
530 |
}, |
|
|
531 |
"outputs": [ |
|
|
532 |
{ |
|
|
533 |
"name": "stdout", |
|
|
534 |
"output_type": "stream", |
|
|
535 |
"text": [ |
|
|
536 |
"ExtraTreesClassifier\t autopep8\t classification_report\t features\t i\t json\t np\t pd\t subject\t \n", |
|
|
537 |
"subject_10\t subject_11\t subject_13\t subject_14\t subject_15\t subject_16\t subject_17\t subject_2\t subject_2_test\t \n", |
|
|
538 |
"subject_2_train\t subject_3\t subject_4\t subject_5\t subject_6\t subject_7\t subject_8\t subject_9\t target\t \n", |
|
|
539 |
"test\t train\t train_test_split\t y_pred\t \n" |
|
|
540 |
] |
|
|
541 |
} |
|
|
542 |
], |
|
|
543 |
"source": [ |
|
|
544 |
"who" |
|
|
545 |
] |
|
|
546 |
}, |
|
|
547 |
{ |
|
|
548 |
"cell_type": "code", |
|
|
549 |
"execution_count": 22, |
|
|
550 |
"metadata": { |
|
|
551 |
"ExecuteTime": { |
|
|
552 |
"end_time": "2019-07-21T04:03:53.417465Z", |
|
|
553 |
"start_time": "2019-07-21T04:03:50.257592Z" |
|
|
554 |
} |
|
|
555 |
}, |
|
|
556 |
"outputs": [], |
|
|
557 |
"source": [ |
|
|
558 |
"train=pd.concat([subject_2_train,subject_3_train,subject_4_train,subject_5_train,subject_6_train,subject_7_train,subject_8_train,subject_9_train,subject_10_train,subject_11_train,subject_13_train,subject_14_train,subject_15_train,subject_16_train,subject_17_train])\n", |
|
|
559 |
"test=pd.concat([subject_2_test,subject_3_test,subject_4_test,subject_5_test,subject_6_test,subject_7_test,subject_8_test,subject_9_test,subject_10_test,subject_11_test,subject_13_test,subject_14_test,subject_15_test,subject_16_test,subject_17_test])" |
|
|
560 |
] |
|
|
561 |
}, |
|
|
562 |
{ |
|
|
563 |
"cell_type": "code", |
|
|
564 |
"execution_count": 23, |
|
|
565 |
"metadata": { |
|
|
566 |
"ExecuteTime": { |
|
|
567 |
"end_time": "2019-07-21T04:04:12.276243Z", |
|
|
568 |
"start_time": "2019-07-21T04:04:12.271442Z" |
|
|
569 |
} |
|
|
570 |
}, |
|
|
571 |
"outputs": [], |
|
|
572 |
"source": [ |
|
|
573 |
"features=['subject','ACC_x','ACC_y','ACC_z','ECG','EMG','EDA','Temp','Resp']\n", |
|
|
574 |
"target=['label']" |
|
|
575 |
] |
|
|
576 |
}, |
|
|
577 |
{ |
|
|
578 |
"cell_type": "code", |
|
|
579 |
"execution_count": null, |
|
|
580 |
"metadata": {}, |
|
|
581 |
"outputs": [], |
|
|
582 |
"source": [] |
|
|
583 |
}, |
|
|
584 |
{ |
|
|
585 |
"cell_type": "code", |
|
|
586 |
"execution_count": null, |
|
|
587 |
"metadata": { |
|
|
588 |
"ExecuteTime": { |
|
|
589 |
"start_time": "2019-07-21T04:04:25.485Z" |
|
|
590 |
} |
|
|
591 |
}, |
|
|
592 |
"outputs": [ |
|
|
593 |
{ |
|
|
594 |
"name": "stderr", |
|
|
595 |
"output_type": "stream", |
|
|
596 |
"text": [ |
|
|
597 |
"/opt/anaconda/lib/python3.6/site-packages/ipykernel_launcher.py:2: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().\n", |
|
|
598 |
" \n" |
|
|
599 |
] |
|
|
600 |
}, |
|
|
601 |
{ |
|
|
602 |
"name": "stdout", |
|
|
603 |
"output_type": "stream", |
|
|
604 |
"text": [ |
|
|
605 |
"building tree 1 of 50\n", |
|
|
606 |
"building tree 2 of 50\n", |
|
|
607 |
"building tree 3 of 50\n", |
|
|
608 |
"building tree 4 of 50\n", |
|
|
609 |
"building tree 5 of 50\n", |
|
|
610 |
"building tree 6 of 50\n", |
|
|
611 |
"building tree 7 of 50\n", |
|
|
612 |
"building tree 8 of 50\n", |
|
|
613 |
"building tree 9 of 50\n", |
|
|
614 |
"building tree 10 of 50\n", |
|
|
615 |
"building tree 11 of 50\n", |
|
|
616 |
"building tree 12 of 50\n", |
|
|
617 |
"building tree 13 of 50\n", |
|
|
618 |
"building tree 14 of 50\n", |
|
|
619 |
"building tree 15 of 50\n", |
|
|
620 |
"building tree 16 of 50\n", |
|
|
621 |
"building tree 17 of 50\n", |
|
|
622 |
"building tree 18 of 50\n", |
|
|
623 |
"building tree 19 of 50\n", |
|
|
624 |
"building tree 20 of 50\n", |
|
|
625 |
"building tree 21 of 50\n", |
|
|
626 |
"building tree 22 of 50\n", |
|
|
627 |
"building tree 23 of 50\n", |
|
|
628 |
"building tree 24 of 50\n", |
|
|
629 |
"building tree 25 of 50\n", |
|
|
630 |
"building tree 26 of 50\n", |
|
|
631 |
"building tree 27 of 50\n", |
|
|
632 |
"building tree 28 of 50\n", |
|
|
633 |
"building tree 29 of 50\n", |
|
|
634 |
"building tree 30 of 50\n", |
|
|
635 |
"building tree 31 of 50\n" |
|
|
636 |
] |
|
|
637 |
}, |
|
|
638 |
{ |
|
|
639 |
"name": "stderr", |
|
|
640 |
"output_type": "stream", |
|
|
641 |
"text": [ |
|
|
642 |
"[Parallel(n_jobs=10)]: Done 21 tasks | elapsed: 10.6min\n" |
|
|
643 |
] |
|
|
644 |
}, |
|
|
645 |
{ |
|
|
646 |
"name": "stdout", |
|
|
647 |
"output_type": "stream", |
|
|
648 |
"text": [ |
|
|
649 |
"building tree 32 of 50\n", |
|
|
650 |
"building tree 33 of 50\n", |
|
|
651 |
"building tree 34 of 50\n", |
|
|
652 |
"building tree 35 of 50\n", |
|
|
653 |
"building tree 36 of 50\n", |
|
|
654 |
"building tree 37 of 50\n", |
|
|
655 |
"building tree 38 of 50\n", |
|
|
656 |
"building tree 39 of 50\n", |
|
|
657 |
"building tree 40 of 50\n", |
|
|
658 |
"building tree 41 of 50\n", |
|
|
659 |
"building tree 42 of 50\n", |
|
|
660 |
"building tree 43 of 50\n", |
|
|
661 |
"building tree 44 of 50\n", |
|
|
662 |
"building tree 45 of 50\n", |
|
|
663 |
"building tree 46 of 50\n", |
|
|
664 |
"building tree 47 of 50\n", |
|
|
665 |
"building tree 48 of 50\n", |
|
|
666 |
"building tree 49 of 50\n", |
|
|
667 |
"building tree 50 of 50\n" |
|
|
668 |
] |
|
|
669 |
}, |
|
|
670 |
{ |
|
|
671 |
"name": "stderr", |
|
|
672 |
"output_type": "stream", |
|
|
673 |
"text": [ |
|
|
674 |
"[Parallel(n_jobs=10)]: Done 50 out of 50 | elapsed: 18.3min finished\n", |
|
|
675 |
"[Parallel(n_jobs=10)]: Done 21 tasks | elapsed: 26.6s\n" |
|
|
676 |
] |
|
|
677 |
} |
|
|
678 |
], |
|
|
679 |
"source": [ |
|
|
680 |
"et = ExtraTreesClassifier(n_estimators=50, n_jobs=10, verbose=2)\n", |
|
|
681 |
"et.fit(train[features],train[target])\n", |
|
|
682 |
"y_pred=et.predict(test[features])" |
|
|
683 |
] |
|
|
684 |
}, |
|
|
685 |
{ |
|
|
686 |
"cell_type": "code", |
|
|
687 |
"execution_count": 27, |
|
|
688 |
"metadata": { |
|
|
689 |
"ExecuteTime": { |
|
|
690 |
"end_time": "2019-07-21T04:40:10.287166Z", |
|
|
691 |
"start_time": "2019-07-21T04:40:03.793730Z" |
|
|
692 |
} |
|
|
693 |
}, |
|
|
694 |
"outputs": [ |
|
|
695 |
{ |
|
|
696 |
"name": "stdout", |
|
|
697 |
"output_type": "stream", |
|
|
698 |
"text": [ |
|
|
699 |
" precision recall f1-score support\n", |
|
|
700 |
"\n", |
|
|
701 |
" 0 1.00 0.99 1.00 8296151\n", |
|
|
702 |
" 1 1.00 1.00 1.00 3699449\n", |
|
|
703 |
" 2 1.00 1.00 1.00 2093592\n", |
|
|
704 |
" 3 0.98 0.99 0.99 1169776\n", |
|
|
705 |
" 4 0.99 1.00 0.99 2478684\n", |
|
|
706 |
"\n", |
|
|
707 |
"avg / total 1.00 1.00 1.00 17737652\n", |
|
|
708 |
"\n" |
|
|
709 |
] |
|
|
710 |
} |
|
|
711 |
], |
|
|
712 |
"source": [ |
|
|
713 |
"print(classification_report(test[target],y_pred ))" |
|
|
714 |
] |
|
|
715 |
}, |
|
|
716 |
{ |
|
|
717 |
"cell_type": "code", |
|
|
718 |
"execution_count": null, |
|
|
719 |
"metadata": {}, |
|
|
720 |
"outputs": [], |
|
|
721 |
"source": [] |
|
|
722 |
} |
|
|
723 |
], |
|
|
724 |
"metadata": { |
|
|
725 |
"kernelspec": { |
|
|
726 |
"display_name": "Python 3", |
|
|
727 |
"language": "python", |
|
|
728 |
"name": "python3" |
|
|
729 |
}, |
|
|
730 |
"language_info": { |
|
|
731 |
"codemirror_mode": { |
|
|
732 |
"name": "ipython", |
|
|
733 |
"version": 3 |
|
|
734 |
}, |
|
|
735 |
"file_extension": ".py", |
|
|
736 |
"mimetype": "text/x-python", |
|
|
737 |
"name": "python", |
|
|
738 |
"nbconvert_exporter": "python", |
|
|
739 |
"pygments_lexer": "ipython3", |
|
|
740 |
"version": "3.6.8" |
|
|
741 |
} |
|
|
742 |
}, |
|
|
743 |
"nbformat": 4, |
|
|
744 |
"nbformat_minor": 2 |
|
|
745 |
} |