[e55501]: / Notebooks / heart.ipynb

Download this file

3828 lines (3827 with data), 492.0 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "### Task to predict whether person has ckd or notckd??\n",
    "\n",
    "## ckd-chronic kidney disease\n",
    "## notckd-->> not crornic kidney disease"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import seaborn as sns\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>sex</th>\n",
       "      <th>cp</th>\n",
       "      <th>trestbps</th>\n",
       "      <th>chol</th>\n",
       "      <th>fbs</th>\n",
       "      <th>restecg</th>\n",
       "      <th>thalach</th>\n",
       "      <th>exang</th>\n",
       "      <th>oldpeak</th>\n",
       "      <th>slope</th>\n",
       "      <th>ca</th>\n",
       "      <th>thal</th>\n",
       "      <th>target</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>52</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>125</td>\n",
       "      <td>212</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>168</td>\n",
       "      <td>0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>53</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>140</td>\n",
       "      <td>203</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>155</td>\n",
       "      <td>1</td>\n",
       "      <td>3.1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>70</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>145</td>\n",
       "      <td>174</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>125</td>\n",
       "      <td>1</td>\n",
       "      <td>2.6</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>61</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>148</td>\n",
       "      <td>203</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>161</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>62</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>138</td>\n",
       "      <td>294</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>106</td>\n",
       "      <td>0</td>\n",
       "      <td>1.9</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  slope  \\\n",
       "0   52    1   0       125   212    0        1      168      0      1.0      2   \n",
       "1   53    1   0       140   203    1        0      155      1      3.1      0   \n",
       "2   70    1   0       145   174    0        1      125      1      2.6      0   \n",
       "3   61    1   0       148   203    0        1      161      0      0.0      2   \n",
       "4   62    0   0       138   294    1        1      106      0      1.9      1   \n",
       "\n",
       "   ca  thal  target  \n",
       "0   2     3       0  \n",
       "1   0     3       0  \n",
       "2   0     3       0  \n",
       "3   1     3       0  \n",
       "4   3     2       0  "
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df = pd.read_csv(r'C:/Users/ganes/projects/chronicproj/djangoMLDeployment/src/heart.csv')\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1025, 14)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.shape"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    1. Features:\n",
    "    age - age\n",
    "    bp - blood pressure\n",
    "    sg - specific gravity\n",
    "    al - albumin\n",
    "    su - sugar\n",
    "    rbc - red blood cells\n",
    "    pc - pus cell\n",
    "    pcc - pus cell clumps\n",
    "    ba - bacteria\n",
    "    bgr - blood glucose random\n",
    "    bu - blood urea\n",
    "    sc - serum creatinine\n",
    "    sod - sodium\n",
    "    pot - potassium\n",
    "    hemo - haemoglobin\n",
    "    pcv - packed cell volume\n",
    "    wc - white blood cell count\n",
    "    rc - red blood cell count\n",
    "    htn - hypertension\n",
    "    dm - diabetes mellitus\n",
    "    cad - coronary artery disease\n",
    "    appet - appetite\n",
    "    pe - pedal edema\n",
    "    ane - anemia\n",
    "    classification - class"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "### rename column names to make it more user-friendly"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"columns=pd.read_csv('C:/Users/ganes/projects/chronic/drive-download-20230312T132507Z-001/data_description.txt',sep='-')\\ncolumns=columns.reset_index()\\ncolumns.columns=['cols','abb_col_names']\""
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'''columns=pd.read_csv('C:/Users/ganes/projects/chronic/drive-download-20230312T132507Z-001/data_description.txt',sep='-')\n",
    "columns=columns.reset_index()\n",
    "columns.columns=['cols','abb_col_names']'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>sex</th>\n",
       "      <th>cp</th>\n",
       "      <th>trestbps</th>\n",
       "      <th>chol</th>\n",
       "      <th>fbs</th>\n",
       "      <th>restecg</th>\n",
       "      <th>thalach</th>\n",
       "      <th>exang</th>\n",
       "      <th>oldpeak</th>\n",
       "      <th>slope</th>\n",
       "      <th>ca</th>\n",
       "      <th>thal</th>\n",
       "      <th>target</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>52</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>125</td>\n",
       "      <td>212</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>168</td>\n",
       "      <td>0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>53</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>140</td>\n",
       "      <td>203</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>155</td>\n",
       "      <td>1</td>\n",
       "      <td>3.1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>70</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>145</td>\n",
       "      <td>174</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>125</td>\n",
       "      <td>1</td>\n",
       "      <td>2.6</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>61</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>148</td>\n",
       "      <td>203</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>161</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>62</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>138</td>\n",
       "      <td>294</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>106</td>\n",
       "      <td>0</td>\n",
       "      <td>1.9</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  slope  \\\n",
       "0   52    1   0       125   212    0        1      168      0      1.0      2   \n",
       "1   53    1   0       140   203    1        0      155      1      3.1      0   \n",
       "2   70    1   0       145   174    0        1      125      1      2.6      0   \n",
       "3   61    1   0       148   203    0        1      161      0      0.0      2   \n",
       "4   62    0   0       138   294    1        1      106      0      1.9      1   \n",
       "\n",
       "   ca  thal  target  \n",
       "0   2     3       0  \n",
       "1   0     3       0  \n",
       "2   0     3       0  \n",
       "3   1     3       0  \n",
       "4   3     2       0  "
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "#df.columns=columns['abb_col_names'].values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>sex</th>\n",
       "      <th>cp</th>\n",
       "      <th>trestbps</th>\n",
       "      <th>chol</th>\n",
       "      <th>fbs</th>\n",
       "      <th>restecg</th>\n",
       "      <th>thalach</th>\n",
       "      <th>exang</th>\n",
       "      <th>oldpeak</th>\n",
       "      <th>slope</th>\n",
       "      <th>ca</th>\n",
       "      <th>thal</th>\n",
       "      <th>target</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>52</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>125</td>\n",
       "      <td>212</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>168</td>\n",
       "      <td>0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>53</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>140</td>\n",
       "      <td>203</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>155</td>\n",
       "      <td>1</td>\n",
       "      <td>3.1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>70</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>145</td>\n",
       "      <td>174</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>125</td>\n",
       "      <td>1</td>\n",
       "      <td>2.6</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>61</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>148</td>\n",
       "      <td>203</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>161</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>62</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>138</td>\n",
       "      <td>294</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>106</td>\n",
       "      <td>0</td>\n",
       "      <td>1.9</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1020</th>\n",
       "      <td>59</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>140</td>\n",
       "      <td>221</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>164</td>\n",
       "      <td>1</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1021</th>\n",
       "      <td>60</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>125</td>\n",
       "      <td>258</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>141</td>\n",
       "      <td>1</td>\n",
       "      <td>2.8</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1022</th>\n",
       "      <td>47</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>110</td>\n",
       "      <td>275</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>118</td>\n",
       "      <td>1</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1023</th>\n",
       "      <td>50</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>110</td>\n",
       "      <td>254</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>159</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1024</th>\n",
       "      <td>54</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>120</td>\n",
       "      <td>188</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>113</td>\n",
       "      <td>0</td>\n",
       "      <td>1.4</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1025 rows × 14 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "      age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  \\\n",
       "0      52    1   0       125   212    0        1      168      0      1.0   \n",
       "1      53    1   0       140   203    1        0      155      1      3.1   \n",
       "2      70    1   0       145   174    0        1      125      1      2.6   \n",
       "3      61    1   0       148   203    0        1      161      0      0.0   \n",
       "4      62    0   0       138   294    1        1      106      0      1.9   \n",
       "...   ...  ...  ..       ...   ...  ...      ...      ...    ...      ...   \n",
       "1020   59    1   1       140   221    0        1      164      1      0.0   \n",
       "1021   60    1   0       125   258    0        0      141      1      2.8   \n",
       "1022   47    1   0       110   275    0        0      118      1      1.0   \n",
       "1023   50    0   0       110   254    0        0      159      0      0.0   \n",
       "1024   54    1   0       120   188    0        1      113      0      1.4   \n",
       "\n",
       "      slope  ca  thal  target  \n",
       "0         2   2     3       0  \n",
       "1         0   0     3       0  \n",
       "2         0   0     3       0  \n",
       "3         2   1     3       0  \n",
       "4         1   3     2       0  \n",
       "...     ...  ..   ...     ...  \n",
       "1020      2   0     2       1  \n",
       "1021      1   1     3       0  \n",
       "1022      1   1     2       0  \n",
       "1023      2   0     2       1  \n",
       "1024      1   1     3       0  \n",
       "\n",
       "[1025 rows x 14 columns]"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "age           int64\n",
       "sex           int64\n",
       "cp            int64\n",
       "trestbps      int64\n",
       "chol          int64\n",
       "fbs           int64\n",
       "restecg       int64\n",
       "thalach       int64\n",
       "exang         int64\n",
       "oldpeak     float64\n",
       "slope         int64\n",
       "ca            int64\n",
       "thal          int64\n",
       "target        int64\n",
       "dtype: object"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.dtypes"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    As it can be seen, red_blood_cell_count, packed_cell_volume and white_blood_cell_count are object type. We need to \n",
    "    change to numerical dtype."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "#features=['red blood cell count','packed cell volume','white blood cell count']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"def convert_dtype(df,feature):\\n    df[feature] = pd.to_numeric(df[feature], errors='coerce')\""
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'''def convert_dtype(df,feature):\n",
    "    df[feature] = pd.to_numeric(df[feature], errors='coerce')'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'for feature in features:\\n    convert_dtype(df,feature)'"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'''for feature in features:\n",
    "    convert_dtype(df,feature)'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "age           int64\n",
       "sex           int64\n",
       "cp            int64\n",
       "trestbps      int64\n",
       "chol          int64\n",
       "fbs           int64\n",
       "restecg       int64\n",
       "thalach       int64\n",
       "exang         int64\n",
       "oldpeak     float64\n",
       "slope         int64\n",
       "ca            int64\n",
       "thal          int64\n",
       "target        int64\n",
       "dtype: object"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.dtypes"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    Let's drop the id column. id column is seems to be an unique identifier for each row so we are dropping that it won't \n",
    "    help us to find any insights from the data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "#df.drop([\"id\"],axis=1,inplace=True) "
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Extract Numerical & Categorical Features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "def extract_cat_num(df):\n",
    "    cat_col=[col for col in df.columns if df[col].dtype=='object']\n",
    "    num_col=[col for col in df.columns if df[col].dtype!='object']\n",
    "    return cat_col,num_col"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "cat_col,num_col=extract_cat_num(df)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[]"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "cat_col"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['age',\n",
       " 'sex',\n",
       " 'cp',\n",
       " 'trestbps',\n",
       " 'chol',\n",
       " 'fbs',\n",
       " 'restecg',\n",
       " 'thalach',\n",
       " 'exang',\n",
       " 'oldpeak',\n",
       " 'slope',\n",
       " 'ca',\n",
       " 'thal',\n",
       " 'target']"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "num_col"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "### total unique categories in our categorical features to check if any dirtiness in data or not"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [],
   "source": [
    "for col in cat_col:\n",
    "    print('{} has {} values '.format(col,df[col].unique()))\n",
    "    print('\\n')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "## ckd-chronic kidney disease\n",
    "## notckd-->> not crornic kidney disease"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    So we need to correct 2 features and the target variable which contain certain discrepancy in some values."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"\\ndf['diabetes mellitus'].replace(to_replace = {'\\tno':'no','\\tyes':'yes',' yes':'yes'},inplace=True)\\n\\ndf['coronary artery disease'] = df['coronary artery disease'].replace(to_replace = '\\tno', value='no')\\n\\ndf['class'] = df['class'].replace(to_replace = 'ckd\\t', value = 'ckd')\""
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#Replace incorrect values\n",
    "'''\n",
    "df['diabetes mellitus'].replace(to_replace = {'\\tno':'no','\\tyes':'yes',' yes':'yes'},inplace=True)\n",
    "\n",
    "df['coronary artery disease'] = df['coronary artery disease'].replace(to_replace = '\\tno', value='no')\n",
    "\n",
    "df['class'] = df['class'].replace(to_replace = 'ckd\\t', value = 'ckd')'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "##df['diabetes mellitus'] = [float(str(i).replace(\",\", \"\")) for i in df['diabetes mellitus']]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "for col in cat_col:\n",
    "    print('{} has {} values  '.format(col, df[col].unique()))\n",
    "    print('\\n')"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    Looks good now apart from the NaNs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "14"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(num_col)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "###  Checking features distribution"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAACU0AAAZGCAYAAACRUxLMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3xU1b338W8SJhMCTGKQJETCxRsQLoJByIhWCiERU46UVMVSjMqRnpigkFaRPlwCKKFoi7cAailohVKxihUQMqDAUcItlqdcbA4omFaYxEpDBGQyJPv5wydzHBOUQDJ7wv68Xy9esPdas9dv8Vt7Znbmlz0hhmEYAgAAAAAAAAAAAAAAAACLCDU7AAAAAAAAAAAAAAAAAAAIJIqmAAAAAAAAAAAAAAAAAFgKRVMAAAAAAAAAAAAAAAAALIWiKQAAAAAAAAAAAAAAAACWQtEUAAAAAAAAAAAAAAAAAEuhaAoAAAAAAAAAAAAAAACApVA0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYCkUTQEAAAAAAAAAAAAAAACwFIqmAAAAAAAAAAAAAAAAAFgKRVMAAAAAAAAAAAAAAAAALIWiKQAAAAAAAAAAAAAAAACWQtEUAAAAAAAAAAAAAAAAAEuhaAoALjGffvqpHnzwQXXv3l2tW7dW+/btdccdd+jIkSP1+v7tb3/TLbfcotatW6tTp056/PHHtXTpUoWEhNTr/8477+jmm29WmzZt1K5dO2VkZGj//v2BmRQAAAAAS/nyyy81adIkde3aVXa7XbGxsRo+fLg+/PBDX58dO3bo1ltvVVRUlCIjI3XLLbfogw8+8LV/9NFHat26te655x6/Y7///vsKCwvTlClTAjYfAAAAAPjss880fvx4JSQkyG63q1u3bsrOzlZ1dbWWLVumkJAQbd26VT//+c/Vvn17ORwO3XPPPfr3v/9tdugAcMkKMQzDMDsIAEDTef311/X444/r9ttvV6dOnXTkyBEtWrRIDodDBw4cUGRkpKSv35z37dtXISEheuihh9SmTRv97ne/k91u1//9v/9Xhw8fVteuXSVJf/jDH5SVlaX09HRlZGTo9OnTWrRokSorK/XXv/7V1w8AAAAAmsLYsWP1+uuvKzc3V0lJSfriiy/0/vvv66677tLYsWP17rvvasSIEUpOTtZPfvIThYaGaunSpfr73/+u//7v/9bAgQMlSU899ZQeeeQRvfXWW/qP//gPnTp1Stddd53sdrs+/PBD2e12k2cKAAAAwAqOHj2qG264QZWVlZowYYJ69Oihzz77TK+//rq2bdum1atX67777lOfPn0UHR2tO+64Q6WlpVq0aJFuuukmbd68WSEhIWZPAwAuORRNAcAl5quvvlLr1q399m3fvl1Op1OvvPKKxo0bJ0l66KGH9Pzzz+vDDz9Uv379JEnHjx/XNddco+PHj/uKpk6ePKnExETdcccdevHFF33HLC8vV/fu3XXnnXf67QcAAACAixUdHa2f/exnev755+u1GYah7t2768orr9Q777zj++Dgq6++Uq9evXT11VerqKhIklRbW6tbbrlFBw8e1P79+zVz5ky98MILKi4u1oABAwI6JwAAAADWlZWVpVdffVU7duyody1iGIZefvll3XfffUpOTlZxcbFsNpsk6cknn9Sjjz7q+0UQAEDT4uv5AOAS882CKa/Xqy+++EJXX321oqOj/b7KYv369XI6nb6CKUmKiYnR2LFj/Y7ncrlUWVmpu+++W//61798f8LCwjRo0CC99957zT4nAAAAANYSHR2tHTt26OjRo/Xa9uzZo4MHD+qnP/2pvvjiC981yqlTpzRs2DBt3bpVtbW1kqTQ0FAtW7ZMJ0+e1IgRI7Rw4UJNnTqVgikAAAAAAVNbW6vVq1dr5MiRDV6LfPMOUhMmTPAVTElSdna2WrVqpXXr1gUkVgCwmlZmBwAAaFpfffWVCgoKtHTpUn322Wf65g0FT5w44fv3p59+KqfTWe/xV199td/2wYMHJUlDhw5tcDyHw9EUYQMAAACAz/z585WVlaXExEQlJyfrtttu0z333KMrr7zSd42SlZV1zsefOHFCl112mSTpqquuUn5+vh555BH17t1b06dPD8gcAAAAAECSPv/8c1VVVal3797f2/eaa67x227btq06duyoI0eONFN0AGBtFE0BwCVm4sSJWrp0qSZNmiSn06moqCiFhIRozJgxvt+2boy6x/zhD39QfHx8vfZWrXgpAQAAANC07rzzTt1888168803VVRUpCeffFK//vWv9cYbb/iuUZ588km/O+d+U9u2bf22676u7+jRo/riiy8avLYBAAAAAACAtfBJNwBcYl5//XVlZWXpN7/5jW/fmTNnVFlZ6devS5cuOnToUL3Hf3vfVVddJUmKjY1Vampq0wcMAAAAAA3o2LGjHnzwQT344IOqqKjQ9ddfryeeeEILFiyQ9PVdb8/nGmXx4sVyuVx64oknVFBQoJ///Od66623mjt8AAAAAJAkdejQQQ6HQ/v27fvevgcPHtQPf/hD3/bJkyd17Ngx3Xbbbc0ZIgBYVqjZAQAAmlZYWJjfV/JJ0nPPPaeamhq/fenp6SouLtaePXt8+44fP67ly5fX6+dwODR37lx5vd56433++edNFzwAAAAAy6upqfH7anHp61/iSEhIkMfjUXJysq666io99dRTOnnyZL3Hf/Ma5fDhw3rkkUeUmZmpX/3qV3rqqaf0l7/8Ra+88kqzzwMAAAAAJCk0NFSjRo3S22+/rd27d9dr/+ZnOi+++KLfZzGLFi3S2bNnNWLEiIDECgBWE2J8+5N1AECLlpWVpeXLlys3N1dJSUkqLi7Wxo0b9dVXX+lHP/qRli1bJkn6xz/+ob59+6pVq1aaOHGi2rRpo9/97neKiIjQnj17dOTIEXXp0kWStGLFCo0bN05JSUkaM2aMOnTooLKyMq1du1aDBw/W888/b+KMAQAAAFxKKisr1alTJ/3kJz/Rddddp7Zt22rjxo167bXX9Jvf/EZ5eXnavHmzRowYodjYWN1333264oor9Nlnn+m9996Tw+HQ22+/LcMwNHToUO3fv1/79+9Xhw4dJElpaWnatWuX9u/fr4SEBJNnCwAAAMAKPvvsMw0YMEBVVVWaMGGCevbsqWPHjmnVqlV6//33tXr1at13333q06ePoqOjdeedd6q0tFQLFy7UjTfeqK1btyokJMTsaQDAJYev5wOAS8wzzzyjsLAwLV++XGfOnNHgwYO1ceNGpaen+/VLTEzUe++9p4ceekhz585Vhw4dlJOTozZt2uihhx5SRESEr+9Pf/pTJSQkaN68eXryySfl8Xh0xRVX6Oabb9Z9990X6CkCAAAAuIRFRkbqwQcfVFFRkd544w3V1tbq6quv1sKFC5WdnS1JGjJkiIqLizVnzhw9//zzOnnypOLj4zVo0CD9/Oc/l/T1HXc3b96sP//5z76CKUlasmSJevfurQceeEBr1641ZY4AAAAArOWKK67Qjh07NH36dC1fvlxVVVW64oorNGLECEVGRvr6Pf/881q+fLlmzJghr9eru+++W88++ywFUwDQTLjTFADAz6RJk/TCCy/o5MmTCgsLMzscAAAAAAAAAACAS9qyZct03333adeuXRowYIDZ4QCAZYSaHQAAwDxfffWV3/YXX3yhP/zhD7rpppsomAIAAAAAAAAAAAAAXLL4ej4AsDCn06khQ4aoZ8+eKi8v15IlS1RVVaXp06ebHRoAAAAAAAAAAAAAAM2GoikAsLDbbrtNr7/+ul588UWFhITo+uuv15IlS/SDH/zA7NAAAAAAAAAAAAAAAGg2IYZhGGYHAQAAAAAAAAAAAAAAAACBEmp2AAAAAAAAAAAAAAAAAAAQSBRNAQAAAAAAAAAAAAAAALCUVmYHcCFqa2t19OhRtWvXTiEhIWaHAwAAAPgxDENffvmlEhISFBrK7ymgPq5pAAAAEMy4psF34XoGAAAAwawx1zMtsmjq6NGjSkxMNDsMAAAA4Dv94x//UKdOncwOA0GIaxoAAAC0BFzToCFczwAAAKAlOJ/rmRZZNNWuXTtJX0/Q4XCYHM3383q9KioqUlpammw2m9nhwCSsA7AGILEOwBqwiqqqKiUmJvretwLfZuY1Dc9D1kK+rYV8Ww85txbybS1m55trGnwXrmdwLuQnuJGf4EVughv5CV7kJriZmZ/GXM+0yKKputu9OhyOFlM0FRkZKYfDwclqYawDsAYgsQ7AGrAavqYA52LmNQ3PQ9ZCvq2FfFsPObcW8m0twZJvrmnQEK5ncC7kJ7iRn+BFboIb+Qle5Ca4BUN+zud6hi8jBwAAAAAAAAAAAAAAAGApFE0BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYCkVTAAAAAAAAAAAAAAAAACyFoikAAAAAAAAAAIAgl5+fr5CQEL8/PXr08LWfOXNGOTk5at++vdq2bavMzEyVl5f7HaOsrEwZGRmKjIxUbGysHnnkEZ09ezbQUwEAAACCQiuzAwAAAAAAAAAAAMD369WrlzZu3OjbbtXqfz/mmTx5stauXatVq1YpKipKubm5Gj16tD744ANJUk1NjTIyMhQfH69t27bp2LFjuueee2Sz2TR37tyAzwUAAAAwG0VTAAAAAAAAAAAALUCrVq0UHx9fb/+JEye0ZMkSrVixQkOHDpUkLV26VD179tT27duVkpKioqIiHThwQBs3blRcXJz69eunOXPmaMqUKcrPz1d4eHigpwMAAACYiqIpAAAAAAAAAACAFuDgwYNKSEhQRESEnE6nCgoK1LlzZ5WUlMjr9So1NdXXt0ePHurcubOKi4uVkpKi4uJi9enTR3Fxcb4+6enpys7O1v79+9W/f/8Gx/R4PPJ4PL7tqqoqSZLX65XX622mmTasbrxAj4vzQ36CG/kJXuQmuJGf4EVugpuZ+WnMmBRNAQAAAAAAAAAABLlBgwZp2bJl6t69u44dO6ZZs2bp5ptv1r59++R2uxUeHq7o6Gi/x8TFxcntdkuS3G63X8FUXXtd27kUFBRo1qxZ9fYXFRUpMjLyImd1YVwulynj4vyQn+BGfoIXuQlu5Cd4kZvgZkZ+Tp8+fd59KZoCAAAAAAAAAAAIciNGjPD9u2/fvho0aJC6dOmi1157Ta1bt262cadOnaq8vDzfdlVVlRITE5WWliaHw9Fs4zbE6/XK5XJp+PDhstlsAR0b34/8BDfyE7zITXAjP8GL3AQ3M/NTd2fU80HRFADA0ro+tjag49nDDM0fKPXO3yBPTUhAx/6mI/MyTBsbAMzUtWtXffrpp/X2P/jggyosLNSZM2f0i1/8QitXrpTH41F6eroWLlzo99vYZWVlys7O1nvvvae2bdsqKytLBQUFatWKyysAAIDmEOhr92BQ9/MD4LtER0fr2muv1aFDhzR8+HBVV1ersrLS725T5eXlio+PlyTFx8dr586dfscoLy/3tZ2L3W6X3W6vt99ms5n2AWX/J9419WdrZmkpP9Mzc23g+5Gf4EVughv5CV7kJriZkZ/GjBfajHEAAAAAQFDZtWuXjh075vtTd2vgO+64Q5I0efJkvf3221q1apW2bNmio0ePavTo0b7H19TUKCMjQ9XV1dq2bZtefvllLVu2TDNmzDBlPgAAAACs6+TJk/r444/VsWNHJScny2azadOmTb720tJSlZWVyel0SpKcTqf27t2riooKXx+XyyWHw6GkpKSAxw8AAACYjV+FBgAAAGAZHTp08NueN2+errrqKt1yyy06ceKElixZohUrVmjo0KGSpKVLl6pnz57avn27UlJSVFRUpAMHDmjjxo2Ki4tTv379NGfOHE2ZMkX5+fkKDw83Y1oAAAAALOCXv/ylRo4cqS5duujo0aOaOXOmwsLCdPfddysqKkrjx49XXl6eYmJi5HA4NHHiRDmdTqWkpEiS0tLSlJSUpHHjxmn+/Plyu92aNm2acnJyGryTFAAAAHCp405TAAAAACypurpar776qu6//36FhISopKREXq9Xqampvj49evRQ586dVVxcLEkqLi5Wnz59/L6uLz09XVVVVdq/f3/A5wAAAADAOv75z3/q7rvvVvfu3XXnnXeqffv22r59u++XQxYsWKAf/ehHyszM1A9+8APFx8frjTfe8D0+LCxMa9asUVhYmJxOp372s5/pnnvu0ezZs82aEgAAAGAq7jQFAAAAwJJWr16tyspK3XvvvZIkt9ut8PBwRUdH+/WLi4uT2+329flmwVRde13buXg8Hnk8Ht92VVWVJMnr9crr9V7sVBqlbrxAjwtzkG9rId/WQ86txcr5tocZZocQcPbQr+dsVr6tuM5agpUrV35ne0REhAoLC1VYWHjOPl26dNG6deuaOjQAAACgRaJoCgAAAIAlLVmyRCNGjFBCQkKzj1VQUKBZs2bV219UVKTIyMhmH78hLpfLlHFhDvJtLeTbesi5tVgx3/MHmh2BeczK9+nTp00ZFwAAAAACiaIpAAAAAJbz6aefauPGjX5fVREfH6/q6mpVVlb63W2qvLxc8fHxvj47d+70O1Z5ebmv7VymTp2qvLw833ZVVZUSExOVlpYmh8PRFFM6b16vVy6XS8OHD5fNZgvo2Ag88m0t5Nt6yLm1WDnfvfM3mB1CwNlDDc0ZUGtavuvujAoAAAAAlzKKpgAAAABYztKlSxUbG6uMjAzfvuTkZNlsNm3atEmZmZmSpNLSUpWVlcnpdEqSnE6nnnjiCVVUVCg2NlbS17/973A4lJSUdM7x7Ha77HZ7vf02m820Dz3NHBuBR76thXxbDzm3Fivm21MTYnYIpjEr31ZbYwAAAACsiaIpAAAAAJZSW1urpUuXKisrS61a/e8lUVRUlMaPH6+8vDzFxMTI4XBo4sSJcjqdSklJkSSlpaUpKSlJ48aN0/z58+V2uzVt2jTl5OQ0WBQFAAAAAAAAAACCE0VTAAAAACxl48aNKisr0/3331+vbcGCBQoNDVVmZqY8Ho/S09O1cOFCX3tYWJjWrFmj7OxsOZ1OtWnTRllZWZo9e3YgpwAAAAAAAAAAAC4SRVMAAAAALCUtLU2GYTTYFhERocLCQhUWFp7z8V26dNG6deuaKzwAAAAAAAAAABAAoWYHAAAAAAAAAAAAAAAAAACBRNEUAAAAAAAAAAAAAAAAAEuhaAoAAAAAAAAAAAAAAACApVA0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYCmtzA4AABAcuj621uwQAAAAAAAAAAAAAAAIiEbdaaqgoEA33HCD2rVrp9jYWI0aNUqlpaV+fc6cOaOcnBy1b99ebdu2VWZmpsrLy/36lJWVKSMjQ5GRkYqNjdUjjzyis2fPXvxsAAAAAAAAAAAAAAAAAOB7NKpoasuWLcrJydH27dvlcrnk9XqVlpamU6dO+fpMnjxZb7/9tlatWqUtW7bo6NGjGj16tK+9pqZGGRkZqq6u1rZt2/Tyyy9r2bJlmjFjRtPNCgAAAAAAAAAAAAAAAADOoVFfz7d+/Xq/7WXLlik2NlYlJSX6wQ9+oBMnTmjJkiVasWKFhg4dKklaunSpevbsqe3btyslJUVFRUU6cOCANm7cqLi4OPXr109z5szRlClTlJ+fr/Dw8KabHQAAAAAAAAAAAAAAAAB8S6PuNPVtJ06ckCTFxMRIkkpKSuT1epWamurr06NHD3Xu3FnFxcWSpOLiYvXp00dxcXG+Punp6aqqqtL+/fsvJhwAAAAAAAAAAAAAAAAA+F6NutPUN9XW1mrSpEkaPHiwevfuLUlyu90KDw9XdHS0X9+4uDi53W5fn28WTNW117U1xOPxyOPx+LarqqokSV6vV16v90KnEDB1MbaEWNF8WAcI9jVgDzPMDsES7KGG399mCdZ1aAXB/lyApkF+AQAAAAAAAAAAgtsFF03l5ORo3759ev/995syngYVFBRo1qxZ9fYXFRUpMjKy2cdvKi6Xy+wQEARYBwjWNTB/oNkRWMucAbWmjr9u3TpTx0fwPhegaZw+fdrsEAAAAAAAAAAAAPAdLqhoKjc3V2vWrNHWrVvVqVMn3/74+HhVV1ersrLS725T5eXlio+P9/XZuXOn3/HKy8t9bQ2ZOnWq8vLyfNtVVVVKTExUWlqaHA7HhUwhoLxer1wul4YPHy6bzWZ2ODAJ6wDBvgZ6528wOwRLsIcamjOgVtN3h8pTG2JaHPvy000b2+qC/bkATaPuzqgAAAAAAAAAAAAITo0qmjIMQxMnTtSbb76pzZs3q1u3bn7tycnJstls2rRpkzIzMyVJpaWlKisrk9PplCQ5nU498cQTqqioUGxsrKSv77TgcDiUlJTU4Lh2u112u73efpvN1qI+bGxp8aJ5sA4QrGvAU2NeAY8VeWpDTP0/D8Y1aDXB+lyApkFuAQAAAAAAAAAAglujiqZycnK0YsUKvfXWW2rXrp3cbrckKSoqSq1bt1ZUVJTGjx+vvLw8xcTEyOFwaOLEiXI6nUpJSZEkpaWlKSkpSePGjdP8+fPldrs1bdo05eTkNFgYBQAAAAAAAAAAAAAAAABNqVFFU4sWLZIkDRkyxG//0qVLde+990qSFixYoNDQUGVmZsrj8Sg9PV0LFy709Q0LC9OaNWuUnZ0tp9OpNm3aKCsrS7Nnz764mQAAAAAAAAAAAAAAAADAeWj01/N9n4iICBUWFqqwsPCcfbp06aJ169Y1ZmgAAAAAAAAAAAAAAAAAaBKhZgcAAAAAAAAAAAAAAAAAAIFE0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAJby2Wef6Wc/+5nat2+v1q1bq0+fPtq9e7ev3TAMzZgxQx07dlTr1q2VmpqqgwcP+h3j+PHjGjt2rBwOh6KjozV+/HidPHky0FMBAAAAAAAAAAAXiKIpAAAAAJbx73//W4MHD5bNZtM777yjAwcO6De/+Y0uu+wyX5/58+fr2Wef1eLFi7Vjxw61adNG6enpOnPmjK/P2LFjtX//frlcLq1Zs0Zbt27VhAkTzJgSAAAAAAAAAAC4AK3MDgAAAAAAAuXXv/61EhMTtXTpUt++bt26+f5tGIaefvppTZs2Tbfffrsk6ZVXXlFcXJxWr16tMWPG6KOPPtL69eu1a9cuDRgwQJL03HPP6bbbbtNTTz2lhISEwE4KAAAAAAAAAAA0GkVTAAAAACzjL3/5i9LT03XHHXdoy5YtuuKKK/Tggw/qgQcekCQdPnxYbrdbqampvsdERUVp0KBBKi4u1pgxY1RcXKzo6GhfwZQkpaamKjQ0VDt27NCPf/zjeuN6PB55PB7fdlVVlSTJ6/XK6/U213QbVDdeoMeFOci3tZBv6yHn1mLlfNvDDLNDCDh76NdzNivfVlxnAAAAAKyHoikAAAAAlvHJJ59o0aJFysvL069+9Svt2rVLDz30kMLDw5WVlSW32y1JiouL83tcXFycr83tdis2NtavvVWrVoqJifH1+baCggLNmjWr3v6ioiJFRkY2xdQazeVymTIuzEG+rYV8Ww85txYr5nv+QLMjMI9Z+T59+rQp4wIAAABAIFE0BQAAAMAyamtrNWDAAM2dO1eS1L9/f+3bt0+LFy9WVlZWs407depU5eXl+barqqqUmJiotLQ0ORyOZhu3IV6vVy6XS8OHD5fNZgvo2Ag88m0t5Nt6yLm1WDnfvfM3mB1CwNlDDc0ZUGtavuvujAoAAAAAlzKKpgAAAABYRseOHZWUlOS3r2fPnvrzn/8sSYqPj5cklZeXq2PHjr4+5eXl6tevn69PRUWF3zHOnj2r48eP+x7/bXa7XXa7vd5+m81m2oeeZo6NwCPf1kK+rYecW4sV8+2pCTE7BNOYlW+rrTEAAAAA1hRqdgAAAAAAECiDBw9WaWmp377/+Z//UZcuXSRJ3bp1U3x8vDZt2uRrr6qq0o4dO+R0OiVJTqdTlZWVKikp8fV59913VVtbq0GDBgVgFgAAAAAAAAAA4GJxpykAAAAAljF58mTdeOONmjt3ru68807t3LlTL774ol588UVJUkhIiCZNmqTHH39c11xzjbp166bp06crISFBo0aNkvT1naluvfVWPfDAA1q8eLG8Xq9yc3M1ZswYJSQkmDg7AAAAAAAAAABwvrjTFAAAAADLuOGGG/Tmm2/qj3/8o3r37q05c+bo6aef1tixY319Hn30UU2cOFETJkzQDTfcoJMnT2r9+vWKiIjw9Vm+fLl69OihYcOG6bbbbtNNN93kK7wCAAAAgECYN2+e7xc/6pw5c0Y5OTlq37692rZtq8zMTJWXl/s9rqysTBkZGYqMjFRsbKweeeQRnT17NsDRAwAAAObjTlMAAAAALOVHP/qRfvSjH52zPSQkRLNnz9bs2bPP2ScmJkYrVqxojvAAAAAA4Hvt2rVLL7zwgvr27eu3f/LkyVq7dq1WrVqlqKgo5ebmavTo0frggw8kSTU1NcrIyFB8fLy2bdumY8eO6Z577pHNZtPcuXPNmAoAAABgGu40BQAAAAAAAAAA0EKcPHlSY8eO1UsvvaTLLrvMt//EiRNasmSJfvvb32ro0KFKTk7W0qVLtW3bNm3fvl2SVFRUpAMHDujVV19Vv379NGLECM2ZM0eFhYWqrq42a0oAAACAKbjTFAAAAAAAAAAAQAuRk5OjjIwMpaam6vHHH/ftLykpkdfrVWpqqm9fjx491LlzZxUXFyslJUXFxcXq06eP4uLifH3S09OVnZ2t/fv3q3///vXG83g88ng8vu2qqipJktfrldfrbY4pnlPdePZQI6DjBotA/383Vl18wR6nVZGf4EVughv5CV7kJriZmZ/GjEnRFAAAAAAAAAAAQAuwcuVKffjhh9q1a1e9NrfbrfDwcEVHR/vtj4uLk9vt9vX5ZsFUXXtdW0MKCgo0a9asevuLiooUGRl5IdO4aHMG1JoyrtnWrVtndgjnxeVymR0CvgP5CV7kJriRn+BFboKbGfk5ffr0efelaAoAAAAAAAAAACDI/eMf/9DDDz8sl8uliIiIgI07depU5eXl+barqqqUmJiotLQ0ORyOgMUhfX3XAJfLpem7Q+WpDQno2MFgX3662SF8p7r8DB8+XDabzexw8C3kJ3iRm+BGfoIXuQluZuan7s6o54OiKQAAAAAAAAAAgCBXUlKiiooKXX/99b59NTU12rp1q55//nlt2LBB1dXVqqys9LvbVHl5ueLj4yVJ8fHx2rlzp99xy8vLfW0Nsdvtstvt9fbbbDbTPqD01IbIU2O9oqmW8oGwmWsD34/8BC9yE9zIT/AiN8HNjPw0ZrzQZowDAAAAAAAAAAAATWDYsGHau3ev9uzZ4/szYMAAjR071vdvm82mTZs2+R5TWlqqsrIyOZ1OSZLT6dTevXtVUVHh6+NyueRwOJSUlBTwOQEAAABm4k5TAAAAAAAAAAAAQa5du3bq3bu33742bdqoffv2vv3jx49XXl6eYmJi5HA4NHHiRDmdTqWkpEiS0tLSlJSUpHHjxmn+/Plyu92aNm2acnJyGrybFAAAAHApo2gKAAAAAAAAAADgErBgwQKFhoYqMzNTHo9H6enpWrhwoa89LCxMa9asUXZ2tpxOp9q0aaOsrCzNnj3bxKgBAAAAc1A0BQAAAAAAAAAA0AJt3rzZbzsiIkKFhYUqLCw852O6dOmidevWNXNkAAAAQPALNTsAAAAAAAAAAAAAAAAAAAgkiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAABgGfn5+QoJCfH706NHD1/7mTNnlJOTo/bt26tt27bKzMxUeXm53zHKysqUkZGhyMhIxcbG6pFHHtHZs2cDPRUAAAAAAAAAAHARWpkdAAAAAAAEUq9evbRx40bfdqtW/3tZNHnyZK1du1arVq1SVFSUcnNzNXr0aH3wwQeSpJqaGmVkZCg+Pl7btm3TsWPHdM8998hms2nu3LkBnwsAAAAAAAAAALgwFE0BAAAAsJRWrVopPj6+3v4TJ05oyZIlWrFihYYOHSpJWrp0qXr27Knt27crJSVFRUVFOnDggDZu3Ki4uDj169dPc+bM0ZQpU5Sfn6/w8PBATwcAAAAAAAAAAFwAiqYAAAAAWMrBgweVkJCgiIgIOZ1OFRQUqHPnziopKZHX61Vqaqqvb48ePdS5c2cVFxcrJSVFxcXF6tOnj+Li4nx90tPTlZ2drf3796t///4NjunxeOTxeHzbVVVVkiSv1yuv19tMM21Y3XiBHhfmIN/WQr6th5xbi5XzbQ8zzA4h4OyhX8/ZrHxbcZ0BAAAAsJ5GF01t3bpVTz75pEpKSnTs2DG9+eabGjVqlK/93nvv1csvv+z3mPT0dK1fv963ffz4cU2cOFFvv/22QkNDlZmZqWeeeUZt27a98JkAAAAAwPcYNGiQli1bpu7du+vYsWOaNWuWbr75Zu3bt09ut1vh4eGKjo72e0xcXJzcbrckye12+xVM1bXXtZ1LQUGBZs2aVW9/UVGRIiMjL3JWF8blcpkyLsxBvq2FfFsPObcWK+Z7/kCzIzCPWfk+ffq0KeMCAAAAQCA1umjq1KlTuu6663T//fdr9OjRDfa59dZbtXTpUt+23W73ax87dqyOHTsml8slr9er++67TxMmTNCKFSsaGw4AAAAAnLcRI0b4/t23b18NGjRIXbp00WuvvabWrVs327hTp05VXl6eb7uqqkqJiYlKS0uTw+FotnEb4vV65XK5NHz4cNlstoCOjcAj39ZCvq2HnFuLlfPdO3+D2SEEnD3U0JwBtablu+7OqAAAAABwKWt00dSIESP8PmhoiN1uV3x8fINtH330kdavX69du3ZpwIABkqTnnntOt912m5566iklJCQ0NiQAAAAAuCDR0dG69tprdejQIQ0fPlzV1dWqrKz0u9tUeXm57/omPj5eO3fu9DtGeXm5r+1c7HZ7vV8mkSSbzWbah55mjo3AI9/WQr6th5xbixXz7akJMTsE05iVb6utMQAAAADWFNocB928ebNiY2PVvXt3ZWdn64svvvC1FRcXKzo62lcwJUmpqakKDQ3Vjh07miMcAAAAAGjQyZMn9fHHH6tjx45KTk6WzWbTpk2bfO2lpaUqKyuT0+mUJDmdTu3du1cVFRW+Pi6XSw6HQ0lJSQGPHwAAAAAAAAAAXJhG32nq+9x6660aPXq0unXrpo8//li/+tWvNGLECBUXFyssLExut1uxsbH+QbRqpZiYGLnd7gaP6fF45PF4fNt1twb2er3yer1NPYUmVxdjS4gVzYd1gGBfA/Yww+wQLMEeavj9bZZgXYdWEOzPBWga5Dd4/fKXv9TIkSPVpUsXHT16VDNnzlRYWJjuvvtuRUVFafz48crLy1NMTIwcDocmTpwop9OplJQUSVJaWpqSkpI0btw4zZ8/X263W9OmTVNOTk6Dd5ICAAAAAAAAAADBqcmLpsaMGeP7d58+fdS3b19dddVV2rx5s4YNG3ZBxywoKNCsWbPq7S8qKlJkZOQFxxpoLpfL7BAQBFgHCNY1MH+g2RFYy5wBtaaOv27dOlPHR/A+F6BpnD592uwQcA7//Oc/dffdd+uLL75Qhw4ddNNNN2n79u3q0KGDJGnBggUKDQ1VZmamPB6P0tPTtXDhQt/jw8LCtGbNGmVnZ8vpdKpNmzbKysrS7NmzzZoSAAAAAAAAAAC4AE1eNPVtV155pS6//HIdOnRIw4YNU3x8vN9XWUjS2bNndfz4ccXHxzd4jKlTpyovL8+3XVVVpcTERKWlpcnhcDRr/E3B6/XK5XJp+PDhfBe8hbEOEOxroHf+BrNDsAR7qKE5A2o1fXeoPLUhZodjSfvy000dP9ifC9A06u6MiuCzcuXK72yPiIhQYWGhCgsLz9mnS5cuFJ8CAAAAAAAAANDCNXvR1D//+U998cUX6tixoyTJ6XSqsrJSJSUlSk5OliS9++67qq2t1aBBgxo8ht1ub/CrLmw2W4v6sLGlxYvmwTpAsK4BTw0FPIHkqQ3h/9wkwXL+BetzAZoGuQUAAAAAAAAAAAhujS6aOnnypA4dOuTbPnz4sPbs2aOYmBjFxMRo1qxZyszMVHx8vD7++GM9+uijuvrqq5We/vVdHXr27Klbb71VDzzwgBYvXiyv16vc3FyNGTNGCQkJTTczAAAAAAAAAAAAAAAAAGhAaGMfsHv3bvXv31/9+/eXJOXl5al///6aMWOGwsLC9Le//U3/8R//oWuvvVbjx49XcnKy/vu//9vvTlHLly9Xjx49NGzYMN1222266aab9OKLLzbdrAAAAAAAAAAAAAAAAADgHBp9p6khQ4bIMIxztm/YsOF7jxETE6MVK1Y0dmgAAAAAAAAAAAAAAAAAuGiNvtMUAAAAAAAAAAAAAAAAALRkFE0BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYCkVTAAAAAAAAAAAAAAAAACyFoikAAAAAAAAAAAAAAAAAlkLRFAAAAAAAAAAAAAAAAABLoWgKAAAAAAAAAAAAAAAAgKVQNAUAAAAAAAAAAAAAAADAUiiaAgAAAAAAAAAAAAAAAGApFE0BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAILcokWL1LdvXzkcDjkcDjmdTr3zzju+9jNnzignJ0ft27dX27ZtlZmZqfLycr9jlJWVKSMjQ5GRkYqNjdUjjzyis2fPBnoqAAAAQFCgaAoAAAAAAAAAACDIderUSfPmzVNJSYl2796toUOH6vbbb9f+/fslSZMnT9bbb7+tVatWacuWLTp69KhGjx7te3xNTY0yMjJUXV2tbdu26eWXX9ayZcs0Y8YMs6YEAAAAmKqV2QEAAAAAAAAAAADgu40cOdJv+4knntCiRYu0fft2derUSUuWLNGKFSs0dOhQSdLSpUvVs2dPbd++XSkpKSoqKtKBAwe0ceNGxcXFqV+/fpozZ46mTJmi/Px8hYeHmzEtAAAAwDQUTQEAAAAAAAAAALQgNTU1WrVqlU6dOiWn06mSkhJ5vV6lpqb6+vTo0UOdO3dWcXGxUlJSVFxcrD59+iguLs7XJz09XdnZ2dq/f7/69+/f4Fgej0cej8e3XVVVJUnyer3yer3NNMOG1Y1nDzUCOm6wCPT/d2PVxRfscVoV+Qle5Ca4kZ/gRW6Cm5n5acyYFE0BAAAAAAAAAAC0AHv37pXT6dSZM2fUtm1bvfnmm0pKStKePXsUHh6u6Ohov/5xcXFyu92SJLfb7VcwVdde13YuBQUFmjVrVr39RUVFioyMvMgZXZg5A2pNGdds69atMzuE8+JyucwOAd+B/AQvchPcyE/wIjfBzYz8nD59+rz7UjQFAAAAAAAAAADQAnTv3l179uzRiRMn9PrrrysrK0tbtmxp1jGnTp2qvLw833ZVVZUSExOVlpYmh8PRrGN/m9frlcvl0vTdofLUhgR07GCwLz/d7BC+U11+hg8fLpvNZnY4+BbyE7zITXAjP8GL3AQ3M/NTd2fU80HRFAAAAAAAAAAAQAsQHh6uq6++WpKUnJysXbt26ZlnntFdd92l6upqVVZW+t1tqry8XPHx8ZKk+Ph47dy50+945eXlvrZzsdvtstvt9fbbbDbTPqD01IbIU2O9oqmW8oGwmWsD34/8BC9yE9zIT/AiN8HNjPw0ZrzQZowDAAAAAAAAAAAAzaS2tlYej0fJycmy2WzatGmTr620tFRlZWVyOp2SJKfTqb1796qiosLXx+VyyeFwKCkpKeCxAwAAAGbjTlMAAAAAAAAAAABBburUqRoxYoQ6d+6sL7/8UitWrNDmzZu1YcMGRUVFafz48crLy1NMTIwcDocmTpwop9OplJQUSVJaWpqSkpI0btw4zZ8/X263W9OmTVNOTk6Dd5ICAAAALnUUTQEAAAAAAAAAAAS5iooK3XPPPTp27JiioqLUt29fbdiwQcOHD5ckLViwQKGhocrMzJTH41F6eroWLlzoe3xYWJjWrFmj7OxsOZ1OtWnTRllZWZo9e7ZZUwIAAABMxdfzAQAAALCkefPmKSQkRJMmTfLtO3PmjHJyctS+fXu1bdtWmZmZKi8v93tcWVmZMjIyFBkZqdjYWD3yyCM6e/ZsgKMHAAAAYDVLlizRkSNH5PF4VFFRoY0bN/oKpiQpIiJChYWFOn78uE6dOqU33nhD8fHxfsfo0qWL1q1bp9OnT+vzzz/XU089pVat+P16AAAAWBNFUwAAAAAsZ9euXXrhhRfUt29fv/2TJ0/W22+/rVWrVmnLli06evSoRo8e7WuvqalRRkaGqqurtW3bNr388statmyZZsyYEegpAAAAAAAAAACAi8CvDwA4p66PrTU7BFMcmZdhdggAAKAZnTx5UmPHjtVLL72kxx9/3Lf/xIkTWrJkiVasWKGhQ4dKkpYuXaqePXtq+/btSklJUVFRkQ4cOKCNGzcqLi5O/fr105w5czRlyhTl5+crPDzcrGkBAAAAAAAALUpL+CzSHmZo/kCpd/4GeWpCmuy4fB4JBAfuNAUAAADAUnJycpSRkaHU1FS//SUlJfJ6vX77e/Tooc6dO6u4uFiSVFxcrD59+iguLs7XJz09XVVVVdq/f39gJgAAAAAAAAAAAC4ad5oCAAAAYBkrV67Uhx9+qF27dtVrc7vdCg8PV3R0tN/+uLg4ud1uX59vFkzVtde1nYvH45HH4/FtV1VVSZK8Xq+8Xu8FzeVC1Y0X6HFhDvJtLeTbesi5tVg53/Yww+wQAs4e+vWczcq3FdcZAAAAAOuhaAoAAACAJfzjH//Qww8/LJfLpYiIiICOXVBQoFmzZtXbX1RUpMjIyIDGUsflcpkyLsxBvq2FfFsPObcWK+Z7/kCzIzCPWfk+ffq0KeMCAAAAQCBRNAUAAADAEkpKSlRRUaHrr7/et6+mpkZbt27V888/rw0bNqi6ulqVlZV+d5sqLy9XfHy8JCk+Pl47d+70O255ebmv7VymTp2qvLw833ZVVZUSExOVlpYmh8PRFNM7b16vVy6XS8OHD5fNZgvo2Ag88m0t5Nt6yLm1WDnfvfM3mB1CwNlDDc0ZUGtavuvujAoAAAAAlzKKpgAAAABYwrBhw7R3716/fffdd5969OihKVOmKDExUTabTZs2bVJmZqYkqbS0VGVlZXI6nZIkp9OpJ554QhUVFYqNjZX09W//OxwOJSUlnXNsu90uu91eb7/NZjPtQ08zx0bgkW9rId/WQ86txYr59tSEmB2CaczKt9XWGAAAAABromgKAL6l62Nrm+W49jBD8wd+/duRVv5hHwAAZmnXrp169+7tt69NmzZq3769b//48eOVl5enmJgYORwOTZw4UU6nUykpKZKktLQ0JSUlady4cZo/f77cbremTZumnJycBouiAAAAAAAAAABAcKJoCgAAAAD+vwULFig0NFSZmZnyeDxKT0/XwoULfe1hYWFas2aNsrOz5XQ61aZNG2VlZWn27NkmRg0AAAAAAAAAABqLoikAAAAAlrV582a/7YiICBUWFqqwsPCcj+nSpYvWrVvXzJEBAAAAAAAAAIDmFGp2AAAAAAAAAAAAAAAAAAAQSBRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALCUVmYHALQEXR9be9HHsIcZmj9Q6p2/QZ6akCaICgAAAAAAAAAAAAAAABeCO00BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYCkVTAAAAAAAAAAAAAAAAACyFoikAAAAAAAAAAAAAAAAAlkLRFAAAAAAAAAAAAAAAAABLaXTR1NatWzVy5EglJCQoJCREq1ev9ms3DEMzZsxQx44d1bp1a6WmpurgwYN+fY4fP66xY8fK4XAoOjpa48eP18mTJy9qIgAAAAAAAAAAAAAAAABwPhpdNHXq1Cldd911KiwsbLB9/vz5evbZZ7V48WLt2LFDbdq0UXp6us6cOePrM3bsWO3fv18ul0tr1qzR1q1bNWHChAufBQAAAAAAAAAAAAAAAACcp1aNfcCIESM0YsSIBtsMw9DTTz+tadOm6fbbb5ckvfLKK4qLi9Pq1as1ZswYffTRR1q/fr127dqlAQMGSJKee+453XbbbXrqqaeUkJBwEdMBAAAAAAAAAAAAAAAAgO/W6KKp73L48GG53W6lpqb69kVFRWnQoEEqLi7WmDFjVFxcrOjoaF/BlCSlpqYqNDRUO3bs0I9//ON6x/V4PPJ4PL7tqqoqSZLX65XX623KKTSLuhhbQqxomD3MuPhjhBp+f8N6WAOQWAfBwOzXY94XWAP5BQAAAAAAAAAACG5NWjTldrslSXFxcX774+LifG1ut1uxsbH+QbRqpZiYGF+fbysoKNCsWbPq7S8qKlJkZGRThB4QLpfL7BBwgeYPbLpjzRlQ23QHQ4vEGoDEOjDTunXrzA5BEu8LLnWnT582OwQAAAAAAAAAAAB8hyYtmmouU6dOVV5enm+7qqpKiYmJSktLk8PhMDGy8+P1euVyuTR8+HDZbDazw8EF6J2/4aKPYQ81NGdArabvDpWnNqQJokJLwxqAxDoIBvvy000dn/cF1lB3Z1QAAAAAAAAAAAAEpyYtmoqPj5cklZeXq2PHjr795eXl6tevn69PRUWF3+POnj2r48eP+x7/bXa7XXa7vd5+m83Woj5sbGnx4n95apqusMFTG9Kkx0PLwxqAxDowU7C8FvO+4NJGbgEAAAAAAAAAAIJbaFMerFu3boqPj9emTZt8+6qqqrRjxw45nU5JktPpVGVlpUpKSnx93n33XdXW1mrQoEFNGQ4AAAAAAAAAAAAAAAAA1NPoO02dPHlShw4d8m0fPnxYe/bsUUxMjDp37qxJkybp8ccf1zXXXKNu3bpp+vTpSkhI0KhRoyRJPXv21K233qoHHnhAixcvltfrVW5ursaMGaOEhIQmmxgAAAAAAAAAAAAAAAAANKTRRVO7d+/WD3/4Q992Xl6eJCkrK0vLli3To48+qlOnTmnChAmqrKzUTTfdpPXr1ysiIsL3mOXLlys3N1fDhg1TaGioMjMz9eyzzzbBdAAAAADg3BYtWqRFixbpyJEjkqRevXppxowZGjFihCTpzJkz+sUvfqGVK1fK4/EoPT1dCxcuVFxcnO8YZWVlys7O1nvvvae2bdsqKytLBQUFatWqSb/9vNn1zt9gua+KPTIvw+wQAAAAAAAAAABBotE/1R8yZIgMwzhne0hIiGbPnq3Zs2efs09MTIxWrFjR2KEBAAAA4KJ06tRJ8+bN0zXXXCPDMPTyyy/r9ttv11//+lf16tVLkydP1tq1a7Vq1SpFRUUpNzdXo0eP1gcffCBJqqmpUUZGhuLj47Vt2zYdO3ZM99xzj2w2m+bOnWvy7AAAAAAAAAAAwPlqWb8KDQAAAAAXYeTIkX7bTzzxhBYtWqTt27erU6dOWrJkiVasWKGhQ4dKkpYuXaqePXtq+/btSklJUVFRkQ4cOKCNGzcqLi5O/fr105w5czRlyhTl5+crPDzcjGkBAAAAAAAAAIBGomgKAAAAgCXV1NRo1apVOnXqlJxOp0pKSuT1epWamurr06NHD3Xu3FnFxcVKSUlRcXGx+vTp4/d1fenp6crOztb+/fvVv3//BsfyeDzyeDy+7aqqKkmS1+uV1+ttphk2rG48e+i57yB8qQr0/3UwqJuzFeduReTbesi5tVg53/Yw671vqXuvZla+rbjOAAAAAFgPRVMAAAAALGXv3r1yOp06c+aM2rZtqzfffFNJSUnas2ePwsPDFR0d7dc/Li5ObrdbkuR2u/0Kpura69rOpaCgQLNmzaq3v6ioSJGRkRc5owszZ0CtKeOaad26dWaHYBqXy2V2CAgg8m095NxarJjv+QPNjsA8ZuX79OnTpowLAAAAAIFE0RQAAAAAS+nevbv27NmjEydO6PXXX1dWVpa2bNnSrGNOnTpVeXl5vu2qqiolJiYqLS1NDoejWcf+Nq/XK5fLpem7Q+WpDQno2Gbbl59udggBV5fv4cOHy2azmR0Omhn5th5ybi1Wznfv/A1mhxBw9lBDcwbUmpbvujujIrgUFBTojTfe0N///ne1bt1aN954o37961+re/fuvj5nzpzRL37xC61cuVIej0fp6elauHCh3y9/lJWVKTs7W++9957atm2rrKwsFRQUqFUrPjICAACAtfAOGAAAAIClhIeH6+qrr5YkJScna9euXXrmmWd01113qbq6WpWVlX53myovL1d8fLwkKT4+Xjt37vQ7Xnl5ua/tXOx2u+x2e739NpvNtA89PbUh8tRYq2jKah8wf5OZaw2BR76th5xbixXzbbX3LN9kVr6ttsZaii1btignJ0c33HCDzp49q1/96ldKS0vTgQMH1KZNG0nS5MmTtXbtWq1atUpRUVHKzc3V6NGj9cEHH0j6+mvKMzIyFB8fr23btunYsWO65557ZLPZNHfuXDOnBwAAAARcqNkBAAAAAICZamtr5fF4lJycLJvNpk2bNvnaSktLVVZWJqfTKUlyOp3au3evKioqfH1cLpccDoeSkpICHjsAAAAA61i/fr3uvfde9erVS9ddd52WLVumsrIylZSUSJJOnDihJUuW6Le//a2GDh2q5ORkLV26VNu2bdP27dslff0V4QcOHNCrr76qfv36acSIEZozZ44KCwtVXV1t5vQAAACAgONOUwAAAAAsY+rUqRoxYoQ6d+6sL7/8UitWrNDmzZu1YcMGRUVFafz48crLy1NMTIwcDocmTpwop9OplJQUSVJaWpqSkpI0btw4zZ8/X263W9OmTVNOTk6Dd5ICAAAAgOZy4sQJSVJMTIwkqaSkRF6vV6mpqb4+PXr0UOfOnVVcXKyUlBQVFxerT58+fl/Xl56eruzsbO3fv1/9+/evN47H45HH4/Ft1319o9frldfrbZa5nUvdePZQI6DjBotA/383Vl18wR6nVZGf4GXl3NjDgv/5vO41p6lfe6yY76Zm5XOnJTAzP40Zk6IpAAAAAJZRUVGhe+65R8eOHVNUVJT69u2rDRs2aPjw4ZKkBQsWKDQ0VJmZmfJ4PEpPT9fChQt9jw8LC9OaNWuUnZ0tp9OpNm3aKCsrS7NnzzZrSgAAAAAsqLa2VpMmTdLgwYPVu3dvSZLb7VZ4eLjf141LUlxcnNxut6/PNwum6trr2hpSUFCgWbNm1dtfVFSkyMjIi53KBZkzoNaUcc22bt06s0M4Ly6Xy+wQ8B3IT/CyYm7mDzQ7gvPX1K89LeU5vSWw4rnTkpiRn9OnT593X4qmAAAAAFjGkiVLvrM9IiJChYWFKiwsPGefLl268EMNAAAAAKbKycnRvn379P777zf7WFOnTlVeXp5vu6qqSomJiUpLS5PD4Wj28b/J6/XK5XJp+u5QeWpDAjp2MNiXn252CN+pLj/Dhw+XzWYzOxx8C/kJXlbOTe/8DWaH8L3soYbmDKht8teeYH9ObwmsfO60BGbmp+7OqOeDoikAAAAAAAAAAIAWIjc3V2vWrNHWrVvVqVMn3/74+HhVV1ersrLS725T5eXlio+P9/XZuXOn3/HKy8t9bQ2x2+0Nfh25zWYz7QNKT22IPDXWK5pqKR8Im7k28P3IT/CyYm5a0nN5U7/2WC3XzcmK505LYkZ+GjNeaDPGAQAAAAAAAAAAgCZgGIZyc3P15ptv6t1331W3bt382pOTk2Wz2bRp0ybfvtLSUpWVlcnpdEqSnE6n9u7dq4qKCl8fl8slh8OhpKSkwEwEAAAACBLcaQoAAAAAAAAAACDI5eTkaMWKFXrrrbfUrl07ud1uSVJUVJRat26tqKgojR8/Xnl5eYqJiZHD4dDEiRPldDqVkpIiSUpLS1NSUpLGjRun+fPny+12a9q0acrJyWnwblIAAADApYyiKQAAAAAAAAAAgCC3aNEiSdKQIUP89i9dulT33nuvJGnBggUKDQ1VZmamPB6P0tPTtXDhQl/fsLAwrVmzRtnZ2XI6nWrTpo2ysrI0e/bsQE0DAAAACBoUTQEAAAAAAAAAAAQ5wzC+t09ERIQKCwtVWFh4zj5dunTRunXrmjI0AAAAoEUKNTsAAAAAAAAAAAAAAAAAAAgkiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWEorswMAAAAAAAAAAAAAAPyvro+tbdLj2cMMzR8o9c7fIE9NSJMeuykdmZdhdggAAAvhTlMAAAAAAAAAAAAAAAAALIWiKQAAAAAAAAAAAAAAAACWQtEUAAAAAAAAAAAAAAAAAEuhaAoAAAAAAAAAAAAAAACApVA0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYCkUTQEAAAAAAAAAAAAAAACwFIqmAAAAAAAAAAAAAAAAAFgKRVMAAAAALKOgoEA33HCD2rVrp9jYWI0aNUqlpaV+fc6cOaOcnBy1b99ebdu2VWZmpsrLy/36lJWVKSMjQ5GRkYqNjdUjjzyis2fPBnIqAAAAAAAAAADgIlA0BQAAAMAytmzZopycHG3fvl0ul0ter1dpaWk6deqUr8/kyZP19ttva9WqVdqyZYuOHj2q0aNH+9pramqUkZGh6upqbdu2TS+//LKWLVumGTNmmDElAAAAAAAAAABwAVqZHQAAAAAABMr69ev9tpctW6bY2FiVlJToBz/4gU6cOKElS5ZoxYoVGjp0qCRp6dKl6tmzp7Zv366UlBQVFRXpwIED2rhxo+Li4tSvXz/NmTNHU6ZMUX5+vsLDw82YGgAAAAAAAAAAaATuNAUAAADAsk6cOCFJiomJkSSVlJTI6/UqNTXV16dHjx7q3LmziouLJUnFxcXq06eP4uLifH3S09NVVVWl/fv3BzB6AAAAAAAAAABwobjTFAAAAABLqq2t1aRJkzR48GD17t1bkuR2uxUeHq7o6Gi/vnFxcXK73b4+3yyYqmuva2uIx+ORx+PxbVdVVUmSvF6vvF5vk8znfNWNZw81AjpuMAj0/3UwqJuzFeduReTbesi5tVg53/Yw671vqXuvZla+rbjOAAAAAFgPRVMAAAAALCknJ0f79u3T+++/3+xjFRQUaNasWfX2FxUVKTIystnHb8icAbWmjGumdevWmR2CaVwul9khIIDIt/WQc2uxYr7nDzQ7AvOYle/Tp0+bMi4AAAAABBJFUwAAAAAsJzc3V2vWrNHWrVvVqVMn3/74+HhVV1ersrLS725T5eXlio+P9/XZuXOn3/HKy8t9bQ2ZOnWq8vLyfNtVVVVKTExUWlqaHA5HU03rvHi9XrlcLk3fHSpPbUhAxzbbvvx0s0MIuLp8Dx8+XDabzexw0MzIt/WQc2uxcr57528wO4SAs4camjOg1rR8190ZFQAAAAAuZRRNAQAAALAMwzA0ceJEvfnmm9q8ebO6devm156cnCybzaZNmzYpMzNTklRaWqqysjI5nU5JktPp1BNPPKGKigrFxsZK+voOAA6HQ0lJSQ2Oa7fbZbfb6+232WymfejpqQ2Rp8ZaRVNW+4D5m8xcawg88m095NxarJhvq71n+Saz8m21NQYAAADAmiiaAgAAAGAZOTk5WrFihd566y21a9dObrdbkhQVFaXWrVsrKipK48ePV15enmJiYuRwODRx4kQ5nU6lpKRIktLS0pSUlKRx48Zp/vz5crvdmjZtmnJychosjAIAAAAAAAAAAMGHoikAAAAAlrFo0SJJ0pAhQ/z2L126VPfee68kacGCBQoNDVVmZqY8Ho/S09O1cOFCX9+wsDCtWbNG2dnZcjqdatOmjbKysjR79uxATQMAAAAAAAAAAFwkiqYAAAAAWIZhGN/bJyIiQoWFhSosLDxnny5dumjdunVNGRoAAAAAAAAAAAigULMDAAAAAAAAAAAAAAAAAIBAomgKAAAAAAAAAAAAAAAAgKVQNAUAAAAAAAAAAAAAAADAUpq8aCo/P18hISF+f3r06OFrP3PmjHJyctS+fXu1bdtWmZmZKi8vb+owAAAAAAAAAAAAAAAAAKBBzXKnqV69eunYsWO+P++//76vbfLkyXr77be1atUqbdmyRUePHtXo0aObIwwAAAAAAAAAAAAAAAAAqKdVsxy0VSvFx8fX23/ixAktWbJEK1as0NChQyVJS5cuVc+ePbV9+3alpKQ0RzgAAAAAAAAAAAAAAAAA4NMsRVMHDx5UQkKCIiIi5HQ6VVBQoM6dO6ukpERer1epqam+vj169FDnzp1VXFx8zqIpj8cjj8fj266qqpIkeb1eeb3e5phCk6qLsSXEiobZw4yLP0ao4fc3rIc1AIl1EAzMfj3mfYE1kF8AAAAAAAAAAIDg1uRFU4MGDdKyZcvUvXt3HTt2TLNmzdLNN9+sffv2ye12Kzw8XNHR0X6PiYuLk9vtPucxCwoKNGvWrHr7i4qKFBkZ2dRTaDYul8vsEHCB5g9sumPNGVDbdAdDi8QagMQ6MNO6devMDkES7wsudadPnzY7BAAAAAAAAAAAAHyHJi+aGjFihO/fffv21aBBg9SlSxe99tprat269QUdc+rUqcrLy/NtV1VVKTExUWlpaXI4HBcdc3Pzer1yuVwaPny4bDab2eHgAvTO33DRx7CHGpozoFbTd4fKUxvSBFGhpWENQGIdBIN9+emmjs/7AmuouzMqAAAAAAAAAAAAglOzfD3fN0VHR+vaa6/VoUOHNHz4cFVXV6uystLvblPl5eWKj48/5zHsdrvsdnu9/TabrUV92NjS4sX/8tQ0XWGDpzakSY+Hloc1AIl1YKZgeS3mfcGljdwCAAAAAJrD1q1b9eSTT6qkpETHjh3Tm2++qVGjRvnaDcPQzJkz9dJLL6myslKDBw/WokWLdM011/j6HD9+XBMnTtTbb7+t0NBQZWZm6plnnlHbtm1NmBEAAABgntDmHuDkyZP6+OOP1bFjRyUnJ8tms2nTpk2+9tLSUpWVlcnpdDZ3KAAAAAAAAAAAAC3WqVOndN1116mwsLDB9vnz5+vZZ5/V4sWLtWPHDrVp00bp6ek6c+aMr8/YsWO1f/9+uVwurVmzRlu3btWECRMCNQUAAAAgaDT5naZ++ctfauTIkerSpYuOHj2qmTNnKiwsTHfffbeioqI0fvx45eXlKSYmRg6HQxMnTpTT6VRKSkpThwIAAAAAAAAAAHDJGDFihEaMGNFgm2EYevrppzVt2jTdfvvtkqRXXnlFcXFxWr16tcaMGaOPPvpI69ev165duzRgwABJ0nPPPafbbrtNTz31lBISEgI2FwAAAMBsTV409c9//lN33323vvjiC3Xo0EE33XSTtm/frg4dOkiSFixY4Lvdq8fjUXp6uhYuXNjUYQAAADSo62NrTR3fHmZo/kCpd/6GgH5F45F5GQEbCwAAAAAABN7hw4fldruVmprq2xcVFaVBgwapuLhYY8aMUXFxsaKjo30FU5KUmpqq0NBQ7dixQz/+8Y/NCB0AAAAwRZMXTa1cufI72yMiIlRYWHjOW8cCAAAAAAAAAACgcdxutyQpLi7Ob39cXJyvze12KzY21q+9VatWiomJ8fX5No/HI4/H49uuqqqSJHm9Xnm93iaL/3zUjWcPNQI6brAI9P93Y9XFF+xxthT2sKZd53XnTbCfP1ZcP1Y+d5p6nTeH5jp3rJjvpmblc6clMDM/jRmzyYumAAAAAAAAAAAAcGkoKCjQrFmz6u0vKipSZGSkCRFJcwbUmjKu2datW2d2COfF5XKZHcIlYf7A5jlusJ8/LWWdNwcrnjvNtc6bQ1OfO1Ze603NiudOS2JGfk6fPn3efSmaAgAAAAAAAAAAaOHi4+MlSeXl5erYsaNvf3l5ufr16+frU1FR4fe4s2fP6vjx477Hf9vUqVOVl5fn266qqlJiYqLS0tLkcDiaeBbfzev1yuVyafruUHlqQwI6djDYl59udgjfqS4/w4cPl81mMzucFq93/oYmPZ491NCcAbVBf/4E+zpvDlY+d5p6nTeH5jp3rLjWm5qVz52WwMz81N0Z9XxQNAUAAAAAAAAAANDCdevWTfHx8dq0aZOvSKqqqko7duxQdna2JMnpdKqyslIlJSVKTk6WJL377ruqra3VoEGDGjyu3W6X3W6vt99ms5n2AaWnNkSemuAt+mguLeUDYTPXxqWkudZ4sJ8/Vl47Vjx3gnktfltTnztWy3VzsuK505KYkZ/GjEfRFAAAAAAAAAAAQAtw8uRJHTp0yLd9+PBh7dmzRzExMercubMmTZqkxx9/XNdcc426deum6dOnKyEhQaNGjZIk9ezZU7feeqseeOABLV68WF6vV7m5uRozZowSEhJMmhUAAABgDoqmAAAAAAAAAAAAWoDdu3frhz/8oW+77mvzsrKytGzZMj366KM6deqUJkyYoMrKSt10001av369IiIifI9Zvny5cnNzNWzYMIWGhiozM1PPPvtswOcCAAAAmI2iKQAAAAAAAAAAgBZgyJAhMgzjnO0hISGaPXu2Zs+efc4+MTExWrFiRXOEBwAAALQoFE3hvHV9bK3ZIQAAAAAAAAAAAAAAAAAXLdTsAAAAAAAAAAAAAAAAAAAgkCiaAgAAAAAAAAAAAAAAAGApFE0BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYCkVTAAAAACxj69atGjlypBISEhQSEqLVq1f7tRuGoRkzZqhjx45q3bq1UlNTdfDgQb8+x48f19ixY+VwOBQdHa3x48fr5MmTAZwFAAAAAAAAAAC4WK3MDgAAAAAAAuXUqVO67rrrdP/992v06NH12ufPn69nn31WL7/8srp166bp06crPT1dBw4cUEREhCRp7NixOnbsmFwul7xer+677z5NmDBBK1asCPR0AAAAAAAAAABBrutja80OIeDsYYbmDzQ7iu9H0RQAAAAAyxgxYoRGjBjRYJthGHr66ac1bdo03X777ZKkV155RXFxcVq9erXGjBmjjz76SOvXr9euXbs0YMAASdJzzz2n2267TU899ZQSEhICNhcAAAAAAAAAAHDhKJoCAAAAAEmHDx+W2+1Wamqqb19UVJQGDRqk4uJijRkzRsXFxYqOjvYVTElSamqqQkNDtWPHDv34xz9u8Ngej0cej8e3XVVVJUnyer3yer3NNKOG1Y1nDzUCOm4wCPT/dTCom7MV525F5Nt6yLm1WDnf9jDrvW+pe69mVr6tuM4AAAAAWA9FUwAAAAAgye12S5Li4uL89sfFxfna3G63YmNj/dpbtWqlmJgYX5+GFBQUaNasWfX2FxUVKTIy8mJDvyBzBtSaMq6Z1q1bZ3YIpnG5XGaHgAAi39ZDzq3FivluCV/p0FzMyvfp06dNGRcAAAAAAomiKQAAAABoZlOnTlVeXp5vu6qqSomJiUpLS5PD4QhoLF6vVy6XS9N3h8pTGxLQsc22Lz/d7BACri7fw4cPl81mMzscNDPybT3k3FqsnO/e+RvMDiHg7KGG5gyoNS3fdXdGBQAAAIBLGUVTAAAAACApPj5eklReXq6OHTv69peXl6tfv36+PhUVFX6PO3v2rI4fP+57fEPsdrvsdnu9/TabzbQPPT21IfLUWKtoymofMH+TmWsNgUe+rYecW4sV82219yzfZFa+rbbGAAAAAFhTqNkBAAAAAEAw6Natm+Lj47Vp0ybfvqqqKu3YsUNOp1OS5HQ6VVlZqZKSEl+fd999V7W1tRo0aFDAYwYAAAAAAAAAABeGO00BAAAAsIyTJ0/q0KFDvu3Dhw9rz549iomJUefOnTVp0iQ9/vjjuuaaa9StWzdNnz5dCQkJGjVqlCSpZ8+euvXWW/XAAw9o8eLF8nq9ys3N1ZgxY5SQkGDSrAAAAAAAAAAAQGNRNAUAAADAMnbv3q0f/vCHvu28vDxJUlZWlpYtW6ZHH31Up06d0oQJE1RZWambbrpJ69evV0REhO8xy5cvV25uroYNG6bQ0FBlZmbq2WefDfhcAAAAAAAAAADAhaNoCgAAAIBlDBkyRIZhnLM9JCREs2fP1uzZs8/ZJyYmRitWrGiO8AAAAAAAAAAAQICEmh0AAAAAAAAAAAAAAAAAAAQSRVMAAAAAAAAAAAAAAAAALIWiKQAAAAAAAAAAAAAAAACWQtEUAAAAAAAAAAAAAAAAAEuhaAoAAAAAAAAAAAAAAACApVA0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYCkUTQEAAAAAAAAAAAAAAACwFIqmAAAAAAAAAAAAAAAAAFgKRVMAAAAAAAAAAAAAAAAALIWiKQAAAAAAAAAAAAAAAACWQtEUAAAAAAAAAAAAAAAAAEuhaAoAAAAAAAAAAAAAAACApVA0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYCkUTQEAAAAAAAAAAAAAAACwFIqmAAAAAAAAAAAAAAAAAFgKRVMAAAAAAAAAAAAAAAAALKWV2QEAAACg+XV9bK3ZIZjiyLwMs0MAAAAAAAAAAABAEOJOUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFJamTl4YWGhnnzySbndbl133XV67rnnNHDgQDNDOi9dH1vbqP72MEPzB0q98zfIUxPSTFEBAAAACKSWej0DAAAAABLXNAAAAIBpd5r605/+pLy8PM2cOVMffvihrrvuOqWnp6uiosKskAAAAADgvHA9AwAAAKAl45oGAAAAMLFo6re//a0eeOAB3XfffUpKStLixYsVGRmp3//+92aFBAAAAADnhesZAAAAAC0Z1zQAAACASUVT1dXVKikpUWpq6v8GEhqq1NRUFRcXmxESAAAAAJwXrmcAAAAAtGRc0wAAAABfa2XGoP/6179UU1OjuLg4v/1xcXH6+9//Xq+/x+ORx+PxbZ84cUKSdPz4cXm93uYNtgGtzp5qXP9aQ6dP16qVN1Q1tSHNFBWCHesArAFIrAOwBgLtiy++MGXcL7/8UpJkGIYp46N5NfZ6Rgquaxqv16vTp09b8nnIrOcEM9Xl+4svvpDNZjM7HDQz8m095NxarJzvxv489lJQd+1oVr65prm0teTPaKx8PSMF/zWNlV+rmkNTv/61lJ9LBvs6bw5WPndawvu85jp3rLjWm1pLOndawlpvamZe0zTmesaUoqnGKigo0KxZs+rt79atmwnRXJifmh0AggLrAKwBSKwDsAYC6fLfmDv+l19+qaioKHODQFC4FK5pLgVmPycAAAA0RjBcO3JNA4nrmWDCNQ0uVjC8tnwf1jmCUXOcO6x1WIHZrzvncz1jStHU5ZdfrrCwMJWXl/vtLy8vV3x8fL3+U6dOVV5enm+7trZWx48fV/v27RUSEryV0HWqqqqUmJiof/zjH3I4HGaHA5OwDsAagMQ6AGvAKgzD0JdffqmEhASzQ0EzaOz1jBRc1zQ8D1kL+bYW8m095NxayLe1mJ1vrmkubS35Mxqzzw18N/IT3MhP8CI3wY38BC9yE9zMzE9jrmdMKZoKDw9XcnKyNm3apFGjRkn6+k32pk2blJubW6+/3W6X3W732xcdHR2ASJuWw+HgZAXrAKwBSGIdgDVgBfw29qWrsdczUnBe0/A8ZC3k21rIt/WQc2sh39ZiZr65prl0XQqf0fBcGNzIT3AjP8GL3AQ38hO8yE1wMys/53s9Y9rX8+Xl5SkrK0sDBgzQwIED9fTTT+vUqVO67777zAoJAAAAAM4L1zMAAAAAWjKuaQAAAAATi6buuusuff7555oxY4bcbrf69eun9evXKy4uzqyQAAAAAOC8cD0DAAAAoCXjmgYAAAAwsWhKknJzc8/59RWXErvdrpkzZ9a7fS2shXUA1gAk1gFYA8ClpKVez/A8ZC3k21rIt/WQc2sh39ZCvhEILfGahnMjuJGf4EZ+ghe5CW7kJ3iRm+DWUvITYhiGYXYQAAAAAAAAAAAAAAAAABAooWYHAAAAAAAAAAAAAAAAAACBRNEUAAAAAAAAAAAAAAAAAEuhaAoAAAAAAAAAAAAAAACApVA0BQAAAAAAAAAAAAAAAMBSKJpqIosWLVLfvn3lcDjkcDjkdDr1zjvv+NrPnDmjnJwctW/fXm3btlVmZqbKy8tNjBiBMG/ePIWEhGjSpEm+fayFS1t+fr5CQkL8/vTo0cPXTv6t47PPPtPPfvYztW/fXq1bt1afPn20e/duX7thGJoxY4Y6duyo1q1bKzU1VQcPHjQxYjS1rl271ns+CAkJUU5OjiSeDwA0r8LCQnXt2lUREREaNGiQdu7c+Z39V61apR49eigiIkJ9+vTRunXrAhQpmkJj8v3SSy/p5ptv1mWXXabLLrtMqamp37s+EFwae37XWblypUJCQjRq1KjmDRBNrrE5r6ysVE5Ojjp27Ci73a5rr72W5/UWpLH5fvrpp9W9e3e1bt1aiYmJmjx5ss6cOROgaHExtm7dqpEjRyohIUEhISFavXr19z5m8+bNuv7662W323X11Vdr2bJlzR4nYAauZ4JbY/KzbNmyej8bi4iICGC01sHrSnBrbH42b97c4M+W3W53YAK2kIKCAt1www1q166dYmNjNWrUKJWWln7v43jtaX4XkhtedwLn++pjGhKs5w1FU02kU6dOmjdvnkpKSrR7924NHTpUt99+u/bv3y9Jmjx5st5++22tWrVKW7Zs0dGjRzV69GiTo0Zz2rVrl1544QX17dvXbz9r4dLXq1cvHTt2zPfn/fff97WRf2v497//rcGDB8tms+mdd97RgQMH9Jvf/EaXXXaZr8/8+fP17LPPavHixdqxY4fatGmj9PR0frh9Cdm1a5ffc4HL5ZIk3XHHHZJ4PgDQfP70pz8pLy9PM2fO1IcffqjrrrtO6enpqqioaLD/tm3bdPfdd2v8+PH661//qlGjRmnUqFHat29fgCPHhWhsvjdv3qy7775b7733noqLi5WYmKi0tDR99tlnAY4cF6Kx+a5z5MgR/fKXv9TNN98coEjRVBqb8+rqag0fPlxHjhzR66+/rtLSUr300ku64oorAhw5LkRj871ixQo99thjmjlzpj766CMtWbJEf/rTn/SrX/0qwJHjQpw6dUrXXXedCgsLz6v/4cOHlZGRoR/+8Ifas2ePJk2apP/8z//Uhg0bmjlSILC4ngluF/J+1OFw+P2M7NNPPw1gxNbB60pwa2x+6pSWlvqdP7Gxsc0UoXVt2bJFOTk52r59u1wul7xer9LS0nTq1KlzPobXnsC4kNxIvO4EyvfVx3xbUJ83BprNZZddZvzud78zKisrDZvNZqxatcrX9tFHHxmSjOLiYhMjRHP58ssvjWuuucZwuVzGLbfcYjz88MOGYRisBQuYOXOmcd111zXYRv6tY8qUKcZNN910zvba2lojPj7eePLJJ337KisrDbvdbvzxj38MRIgwwcMPP2xcddVVRm1tLc8HAJrVwIEDjZycHN92TU2NkZCQYBQUFDTY/8477zQyMjL89g0aNMj4+c9/3qxxomk0Nt/fdvbsWaNdu3bGyy+/3FwhogldSL7Pnj1r3Hjjjcbvfvc7Iysry7j99tsDECmaSmNzvmjRIuPKK680qqurAxUimlBj852Tk2MMHTrUb19eXp4xePDgZo0TTU+S8eabb35nn0cffdTo1auX37677rrLSE9Pb8bIgMDjeia4NTY/S5cuNaKiogIUHerwuhLczic/7733niHJ+Pe//x2QmPC/KioqDEnGli1bztmH1x5znE9ueN0xV119TEOC+bzhTlPNoKamRitXrtSpU6fkdDpVUlIir9er1NRUX58ePXqoc+fOKi4uNjFSNJecnBxlZGT45VwSa8EiDh48qISEBF155ZUaO3asysrKJJF/K/nLX/6iAQMG6I477lBsbKz69++vl156ydd++PBhud1uv7UQFRWlQYMGsRYuUdXV1Xr11Vd1//33KyQkhOcDAM2murpaJSUlfs8voaGhSk1NPefzS3Fxcb33renp6TwftQAXku9vO336tLxer2JiYporTDSRC8337NmzFRsbq/HjxwciTDShC8n5X/7yFzmdTuXk5CguLk69e/fW3LlzVVNTE6iwcYEuJN833nijSkpKfF+L9Mknn2jdunW67bbbAhIzAov3bLACrmeC24W+Hz158qS6dOmixMTE77wDBQKLc6dl6Nevnzp27Kjhw4frgw8+MDscSzhx4oQkfefPSTh/zHE+uZF43THDt+tjGhLM5w1FU01o7969atu2rex2u/7rv/5Lb775ppKSkuR2uxUeHq7o6Gi//nFxcXz37CVo5cqV+vDDD1VQUFCvjbVw6Rs0aJCWLVum9evXa9GiRTp8+LBuvvlmffnll+TfQj755BMtWrRI11xzjTZs2KDs7Gw99NBDevnllyXJl++4uDi/x7EWLl2rV69WZWWl7r33Xkm8HgBoPv/6179UU1PTqNcYt9vNa1ILdSH5/rYpU6YoISGh3g8tEHwuJN/vv/++lixZ4lfAj5bjQnL+ySef6PXXX1dNTY3WrVun6dOn6ze/+Y0ef/zxQISMi3Ah+f7pT3+q2bNn66abbpLNZtNVV12lIUOG8PV8l6hzvWerqqrSV199ZVJUQNPieia4XUh+unfvrt///vd666239Oqrr6q2tlY33nij/vnPfwYiZHwHXleCW8eOHbV48WL9+c9/1p///GclJiZqyJAh+vDDD80O7ZJWW1urSZMmafDgwerdu/c5+/HaE3jnmxtedwLrXPUxDQnm86aV2QFcSrp37649e/boxIkTev3115WVlaUtW7aYHRYC6B//+IcefvhhuVwuRUREmB0OTDBixAjfv/v27atBgwapS5cueu2119S6dWsTI0Mg1dbWasCAAZo7d64kqX///tq3b58WL16srKwsk6ODGZYsWaIRI0YoISHB7FAAAPCZN2+eVq5cqc2bN3P9cgn68ssvNW7cOL300ku6/PLLzQ4HAVJbW6vY2Fi9+OKLCgsLU3Jysj777DM9+eSTmjlzptnhoYlt3rxZc+fO1cKFCzVo0CAdOnRIDz/8sObMmaPp06ebHR4AAHI6nX53nLjxxhvVs2dPvfDCC5ozZ46JkQHBrXv37urevbtv+8Ybb9THH3+sBQsW6A9/+IOJkV3acnJytG/fPr3//vtmh4JvOd/c8LoTWOeqjzlX4VSwomiqCYWHh+vqq6+WJCUnJ2vXrl165plndNddd6m6ulqVlZV+d5QoLy9XfHy8SdGiOZSUlKiiokLXX3+9b19NTY22bt2q559/Xhs2bGAtWEx0dLSuvfZaHTp0SMOHDyf/FtGxY8d6bwh69uypP//5z5Lky3d5ebk6duzo61NeXq5+/foFLE4ExqeffqqNGzfqjTfe8O2Lj4/n+QBAs7j88ssVFham8vJyv/3f9fwSHx/fqP4IHheS7zpPPfWU5s2bp40bN6pv377NGSaaSGPz/fHHH+vIkSMaOXKkb19tba0kqVWrViotLdVVV13VvEHjolzIOd6xY0fZbDaFhYX59vXs2VNut1vV1dUKDw9v1phx4S4k39OnT9e4ceP0n//5n5KkPn366NSpU5owYYL+z//5PwoN5UsGLiXnes/mcDj4RT1cMrieCW4Xc/1Rx2azqX///jp06FBzhIhG4HWl5Rk4cCDFPM0oNzdXa9as0datW9WpU6fv7MtrT2A1JjffxutO8zpXfcwLL7xQr28wnzdcOTej2tpaeTweJScny2azadOmTb620tJSlZWVnfM7HdEyDRs2THv37tWePXt8fwYMGKCxY8f6/s1asJaTJ0/q448/VseOHXkusJDBgwertLTUb9///M//qEuXLpKkbt26KT4+3m8tVFVVaceOHayFS9DSpUsVGxurjIwM3z6eDwA0l/DwcCUnJ/s9v9TW1mrTpk3nfH5xOp1+/SXJ5XLxfNQCXEi+JWn+/PmaM2eO1q9frwEDBgQiVDSBxua7R48e9a5P/+M//kM//OEPtWfPHiUmJgYyfFyACznHBw8erEOHDvkK5KSvr0U6duxIwVSQu5B8nz59ul5hVF3BnGEYzRcsTMF7NlgB1zPB7UKvP76ppqZGe/fu9ftFUpiDc6fl2bNnD+dOMzAMQ7m5uXrzzTf17rvvqlu3bt/7GM6fwLiQ3HwbrzuBVVcf05CgPm8MNInHHnvM2LJli3H48GHjb3/7m/HYY48ZISEhRlFRkWEYhvFf//VfRufOnY13333X2L17t+F0Og2n02ly1AiEW265xXj44Yd926yFS9svfvELY/Pmzcbhw4eNDz74wEhNTTUuv/xyo6KiwjAM8m8VO3fuNFq1amU88cQTxsGDB43ly5cbkZGRxquvvurrM2/ePCM6Otp46623jL/97W/G7bffbnTr1s346quvTIwcTa2mpsbo3LmzMWXKlHptPB8AaC4rV6407Ha7sWzZMuPAgQPGhAkTjOjoaMPtdhuGYRjjxo0zHnvsMV//Dz74wGjVqpXx1FNPGR999JExc+ZMw2azGXv37jVrCmiExuZ73rx5Rnh4uPH6668bx44d8/358ssvzZoCGqGx+f62rKws4/bbbw9QtGgKjc15WVmZ0a5dOyM3N9coLS011qxZY8TGxhqPP/64WVNAIzQ23zNnzjTatWtn/PGPfzQ++eQTo6ioyLjqqquMO++806wpoBG+/PJL469//avx17/+1ZBk/Pa3vzX++te/Gp9++qlhGF//vHncuHG+/p988okRGRlpPPLII8ZHH31kFBYWGmFhYcb69evNmgLQLLieCW6Nzc+sWbOMDRs2GB9//LFRUlJijBkzxoiIiDD2799v1hQuWbyuBLfG5mfBggXG6tWrjYMHDxp79+41Hn74YSM0NNTYuHGjWVO4ZGVnZxtRUVHG5s2b/X5Ocvr0aV8fXnvMcSG54XUncL6vPqYlnTcUTTWR+++/3+jSpYsRHh5udOjQwRg2bJhvQRiGYXz11VfGgw8+aFx22WVGZGSk8eMf/9g4duyYiREjUL5dNMVauLTdddddRseOHY3w8HDjiiuuMO666y7j0KFDvnbybx1vv/220bt3b8Nutxs9evQwXnzxRb/22tpaY/r06UZcXJxht9uNYcOGGaWlpSZFi+ayYcMGQ1KDueX5AEBzeu6554zOnTsb4eHhxsCBA43t27f72m655RYjKyvLr/9rr71mXHvttUZ4eLjRq1cvY+3atQGOGBejMfnu0qWLIanen5kzZwY+cFyQxp7f30TRVMvU2Jxv27bNGDRokGG3240rr7zSeOKJJ4yzZ88GOGpcqMbk2+v1Gvn5+cZVV11lREREGImJicaDDz5o/Pvf/w584Gi09957r8HX5LocZ2VlGbfccku9x/Tr188IDw83rrzySmPp0qUBjxsIBK5ngltj8jNp0iRf37i4OOO2224zPvzwQxOivvTxuhLcGpufX//61773eDExMcaQIUOMd99915zgL3EN5UWS3/nAa485LiQ3vO4EzvfVx7Sk8ybEMLhXMwAAAAAAAAAAAAAAAADrCP3+LgAAAAAAAAAAAAAAAABw6aBoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgBwTiEhIcrNzTU7DAAAAADQsmXLFBISot27dzfZMe+991517dq1yY4HAAAAAN+0a9cu3XjjjWrTpo1CQkI0atQotW3b1uywAAD/H0VTABAEtm3bpvz8fFVWVlpqbAAAAAAAAAAAgEuR1+vVHXfcoePHj2vBggX6wx/+IMMwzA4LAPANFE0BQBDYtm2bZs2aZVrRlFljAwAAAAAAAAAAXIo+/vhjffrpp/rlL3+pCRMm6Gc/+5kuu+wys8MCAHwDRVMA0ILU1tbqzJkzZocBAAAAAAAAAACA71BRUSFJio6ONjcQAMA5UTQFACbLz8/XI488Iknq1q2bQkJCFBISoiNHjigkJES5ublavny5evXqJbvdrvXr10uSPvvsM91///2Ki4uT3W5Xr1699Pvf/77e8Z977jn16tVLkZGRuuyyyzRgwACtWLHie8f+puXLl6t79+6KiIhQcnKytm7dWm8OISEh+vvf/64777xTDodD7du318MPP1yvyMvlcummm25SdHS02rZtq+7du+tXv/pVk/xfAgAAAGjZPvvsM40fP14JCQmy2+3q1q2bsrOzVV1d7evj8XiUl5enDh06qE2bNvrxj3+szz//vN6xFi5c6LuOSkhIUE5ODnfYBQAAABAQ9957r2655RZJ0h133KGQkBANGTLE1/7JJ58oPT1dbdq0UUJCgmbPnl3vq/tWrlyp5ORktWvXTg6HQ3369NEzzzwTyGkAwCWvldkBAIDVjR49Wv/zP/+jP/7xj1qwYIEuv/xySVKHDh0kSe+++65ee+015ebm6vLLL1fXrl1VXl6ulJQUX1FVhw4d9M4772j8+PGqqqrSpEmTJEkvvfSSHnroIf3kJz/xFTD97W9/044dO/TTn/70e8eWpC1btuhPf/qTHnroIdntdi1cuFC33nqrdu7cqd69e/vN5c4771TXrl1VUFCg7du369lnn9W///1vvfLKK5Kk/fv360c/+pH69u2r2bNny26369ChQ/rggw+a+78ZAAAAQJA7evSoBg4cqMrKSk2YMEE9evTQZ599ptdff12nT5/29Zs4caIuu+wyzZw5U0eOHNHTTz+t3Nxc/elPf/L1yc/P16xZs5Samqrs7GyVlpZq0aJF2rVrlz744APZbDYzpggAAADAIn7+85/riiuu0Ny5c/XQQw/phhtuUFxcnJYvX66amhrdeuutSklJ0fz587V+/XrNnDlTZ8+e1ezZsyV9/Qvod999t4YNG6Zf//rXkqSPPvpIH3zwgR5++GEzpwYAlxSKpgDAZH379tX111+vP/7xjxo1apS6du3q115aWqq9e/cqKSnJt+8///M/VVNTo71796p9+/aSpP/6r//S3Xffrfz8fP385z9X69attXbtWvXq1UurVq26oLElad++fdq9e7eSk5MlSWPGjFH37t01Y8YMvfHGG359u3XrprfeekuSlJOTI4fDoYULF+qXv/yl+vbtK5fLperqar3zzju+Ai0AAAAAkKSpU6fK7XZrx44dGjBggG//t3/jun379ioqKlJISIikr7/G/Nlnn9WJEycUFRWlzz//XAUFBUpLS9M777yj0NCvb7Teo0cP5ebm6tVXX9V9990X2MkBAAAAsBSn0ymPx6O5c+fq5ptv1k9+8hNJX3+zx5kzZ3Trrbfq2WeflSQ9+OCDGjlypH7961/roYce0uWXX661a9fK4XBow4YNCgsLM3MqAHBJ4+v5ACDI3XLLLX4FU4Zh6M9//rNGjhwpwzD0r3/9y/cnPT1dJ06c0Icffijp6+/J/uc//6ldu3Zd8PhOp9NXMCVJnTt31u23364NGzaopqbGr29OTo7f9sSJEyVJ69at88UjSW+99ZZqa2svOCYAAAAAl5ba2lqtXr1aI0eO9CuYqlNXICVJEyZM8Nu++eabVVNTo08//VSStHHjRlVXV2vSpEm+gilJeuCBB+RwOLR27dpmnAkAAAAAfL/c3Fzfv+u+VaS6ulobN26U9PXnKadOnZLL5TIrRACwBIqmACDIdevWzW/7888/V2VlpV588UV16NDB70/db0tXVFRIkqZMmaK2bdtq4MCBuuaaa5STk9Por8K75ppr6u279tprdfr0aX3++eff2feqq65SaGiojhw5Iv0/9u4+Lqo6////k8tBlJFQYSCRyPJas1XDSbM2ETTWNPlt2Zphme4a2Cq7btl6AZphblumefGpT2l9ytrcsgszBc2LbcWLKNe8+JiaZlsOlC6SmuPInN8ffZlPE3gBwgxwHvfbjZuc93nPOa/3vN4cOJ7XnCPprrvuUp8+ffTAAw8oJiZGw4cP1xtvvEEBFQAAAGBy3377rcrKyio9Arwqbdq08Vq+4oorJEn/+c9/JMlTPNW+fXuvfqGhobr66qs96wEAAADAHwIDA3X11Vd7tbVr106SPNdTHnzwQbVr106DBg1S69atdf/992v16tW+DhUAGj2KpgCgnmvSpInXckWB0T333KOCgoIqv/r06SNJ6tixo/bt26fXX39dffv21Ztvvqm+fftq+vTpPon9p5/+rhjLpk2btHbtWo0cOVI7d+7UXXfdpQEDBlS6axUAAAAAVOV8j6b46SP8AAAAAKAhi46O1o4dO/Tuu+/q9ttv1/r16zVo0CBlZGT4OzQAaFQomgKAeuDnxUUX0qpVK0VERKi8vFzJyclVfkVHR3v6N23aVHfddZeWLFmiI0eOKC0tTbNmzdKZM2cuad/79++v1Pb5558rPDxcrVq1umDfAwcOyO1266qrrvK0BQYGqn///nrqqae0Z88ezZo1Sx9++KHWr19/ye8BAAAAgMalVatWslqt2rVr12VvKyEhQZK0b98+r/azZ8/q0KFDnvUAAAAA4A9ut1tffPGFV9vnn38uSV7XU0JDQzV48GAtXLhQBw8e1G9/+1u9/PLLOnDggC/DBYBGjaIpAKgHmjZtKkkqLS29aN+goCClp6frzTffrPKCwk8fmXfs2DGvdaGhoerUqZMMw5DL5bqkfRcWFuqTTz7xLH/11Vd65513lJKSUukT3gsWLPBanj9/viRp0KBBkqTjx49X2n737t0lSU6ns8r9AwAAAGj8AgMDNXToUL333nv6+OOPK62vzl2kkpOTFRoaqnnz5nm97oUXXtCJEyeUlpZWKzEDAAAAQE09++yznu8Nw9Czzz6rkJAQ9e/fX1Ll6zuBgYHq1q2bJK6nAEBtCvZ3AAAAqUePHpKkP//5zxo+fLhCQkI0ePDg8/afPXu21q9fr6SkJI0ZM0adOnXS8ePH9cknn2jt2rWe4qSUlBTZbDb16dNHMTEx2rt3r5599lmlpaUpIiLigvuuKKbq0qWLUlNT9dBDD8lisWjhwoWSpNzc3EpxHTp0SLfffrsGDhyowsJCvfLKK/rNb36j6667TpI0Y8YMbdq0SWlpaUpISFBJSYkWLlyo1q1bq2/fvrX0bgIAAABoiB5//HHl5+fr5ptv1tixY9WxY0cdPXpUy5cv10cffXTJ22nVqpUmT56s3NxcDRw4ULfffrv27dunhQsXqlevXrrnnnvqcBQAAAAAcGFhYWFavXq1MjIylJSUpA8++EDvv/++Hn30Uc8TPh544AEdP35ct956q1q3bq0vv/xS8+fPV/fu3dWxY0c/jwAAGg+KpgCgHujVq5dmzpypxYsXa/Xq1XK73Tp06NB5+8fExGjbtm2aMWOG3nrrLS1cuFAtWrRQ586d9cQTT3j6/fa3v9Wrr76qp556SidPnlTr1q310EMPacqUKRfdd0XR1M033yy73a7c3FwdOXJEnTp10tKlSz2faPipv/3tb5o2bZoeeeQRBQcHKysrS3/5y18862+//XYdPnxYL774or777ju1bNlSN998s3Jzc9W8efPaeCsBAAAANFBXXnmltm7dqqlTp+rVV19VWVmZrrzySg0aNEjh4eHV2lZOTo5atWqlZ599VhMnTlRUVJTGjh2rxx9/XCEhIXU0AgAAAAC4uKCgIK1evVrjxo3TpEmTFBERoenTp2vatGmePvfcc4+ee+45LVy4UKWlpbLZbLrrrruUk5OjwEAeJgUAtSXAqM79zQEAqEJOTo5yc3P17bffqmXLlv4OBwAAAAAAAAAAAACAC6IMFQAAAAAAAAAAAAAAAICpUDQFAAAAAAAAAAAAAAAAwFQomgIAAAAAAAAAAAAAAABgKgGGYRj+DgIAAAAAAAAAAAAAAAAAfIU7TQEAAAAAAAAAAAAAAAAwFYqmAAAAAAAAAAAAAAAAAJhKsL8DqAm3261vvvlGERERCggI8Hc4AAAAgBfDMPT9998rLi5OgYF8TgGVcU4DAACA+oxzGlwI5zMAAACoz6pzPtMgi6a++eYbxcfH+zsMAAAA4IK++uortW7d2t9hoB7inAYAAAANAec0qArnMwAAAGgILuV8pkEWTUVEREj6cYBWq9XP0fiPy+VSfn6+UlJSFBIS4u9wUEvIa+NDThsfcto4kdfGx585LSsrU3x8vOfvVuDnOKfBhfA7CTXBvEFNMG9QE8wbc+CcBhfiz/MZjkHmQ87NhXybC/k2H3JuLg3lGk2DLJqquN2r1Wo19QUGl8ul8PBwWa1WDiqNCHltfMhp40NOGyfy2vjUh5zymAKcD+c0uJD6cPxCw8O8QU0wb1ATzBtz4ZwGVfHn+QzHIPMh5+ZCvs2FfJsPOTeX+pDvSzmf4WHkAAAAAAAAAAAAAAAAAEyFoikAAAAAAAAAAAAAAAAApkLRFAAAAAAAAAAAAAAAAABToWgKAAAAAAAAAAAAAAAAgKlQNAUAAAAAAAAAAAAAAADAVCiaAgAAAAAAAAAAAAAAAGAq1SqaysvLU69evRQREaHo6GgNHTpU+/bt8+pzyy23KCAgwOvrd7/7nVefI0eOKC0tTeHh4YqOjtakSZN07ty5yx8NAAAAAAAAAAAAAAAAAFxEcHU6b9y4UZmZmerVq5fOnTunRx99VCkpKdqzZ4+aNm3q6TdmzBjNmDHDsxweHu75vry8XGlpabLZbNq8ebOOHj2qe++9VyEhIXr88cdrYUgAAAAAAAAAAAAAAAAAcH7VKppavXq11/LSpUsVHR2toqIi9evXz9MeHh4um81W5Tby8/O1Z88erV27VjExMerevbtmzpyphx9+WDk5OQoNDa3BMAAAAAAAAAAAAAAAAADg0lTr8Xw/d+LECUlSVFSUV/urr76qli1bqkuXLpo8ebJOnz7tWVdYWKiuXbsqJibG05aamqqysjLt3r37csIBAAAAAAAAAAAAAAAAgIuq1p2mfsrtdmvChAnq06ePunTp4mn/zW9+o4SEBMXFxWnnzp16+OGHtW/fPr311luSJIfD4VUwJcmz7HA4qtyX0+mU0+n0LJeVlUmSXC6XXC5XTYfQ4FWM3czvQWNUn/LaJWeNv0Pwi105qbW6vfqUU9QOcto4kdfGx585ZR4BqE+ueuR9f4fgF4dnp/k7BAAAANSRLjlr5CwP8HcYPsffuAAAALWrxkVTmZmZ2rVrlz766COv9rFjx3q+79q1q2JjY9W/f38dPHhQbdu2rdG+8vLylJubW6k9Pz9f4eHhNdpmY1JQUODvEFAH6kNe59zg7wj8Y9WqVXWy3fqQU9Qucto4kdfGxx85/emdVlG/LFq0SIsWLdLhw4clSZ07d9a0adM0aNAgSdItt9yijRs3er3mt7/9rRYvXuxZPnLkiMaNG6f169erWbNmysjIUF5enoKDa3x6BQAAAAAAAAAAfKxG/6uflZWllStXatOmTWrduvUF+yYlJUmSDhw4oLZt28pms2nbtm1efYqLiyVJNputym1MnjxZ2dnZnuWysjLFx8crJSVFVqu1JkNoFFwulwoKCjRgwACFhIT4OxzUkvqUV+40VTvqU05RO8hp40ReGx9/5rTizqiof1q3bq3Zs2fr2muvlWEYeumllzRkyBB9+umn6ty5syRpzJgxmjFjhuc1P/2gRnl5udLS0mSz2bR582YdPXpU9957r0JCQvT444/7fDwAAAAAAAAAAKBmqlU0ZRiGxo8frxUrVmjDhg1KTEy86Gt27NghSYqNjZUk2e12zZo1SyUlJYqOjpb046f/rVarOnXqVOU2LBaLLBZLpfaQkBAuaor3obGqD3k14+2NJdXZ+14fcoraRU4bJ/La+Pgjp8yh+mvw4MFey7NmzdKiRYu0ZcsWT9FUeHj4eT/QkZ+frz179mjt2rWKiYlR9+7dNXPmTD388MPKyclRaGhonY8BAAAAAAAAAABcvsDqdM7MzNQrr7yiZcuWKSIiQg6HQw6HQz/88IMk6eDBg5o5c6aKiop0+PBhvfvuu7r33nvVr18/devWTZKUkpKiTp06aeTIkfrXv/6lNWvWaMqUKcrMzKyyMAoAAAAA6kJ5eblef/11nTp1Sna73dP+6quvqmXLlurSpYsmT57s9bjFwsJCde3aVTExMZ621NRUlZWVaffu3T6NHwAAAAAAAAAA1Fy17jS1aNEiSdItt9zi1b5kyRKNGjVKoaGhWrt2rebOnatTp04pPj5e6enpmjJliqdvUFCQVq5cqXHjxslut6tp06bKyMjwevwFAAAAANSVzz77THa7XWfOnFGzZs20YsUKz11vf/Ob3yghIUFxcXHauXOnHn74Ye3bt09vvfWWJMnhcHgVTEnyLDscjvPu0+l0yul0epYrHuHocrnkcrlqdXxo+CrmRG3NDUuQUSvbaWjM9rNV2/MG5sC8QU0wb8yB/AIAAAAwg2o/nu9C4uPjtXHjxotuJyEhQatWrarOrgEAAACgVrRv3147duzQiRMn9Pe//10ZGRnauHGjOnXqpLFjx3r6de3aVbGxserfv78OHjyotm3b1nifeXl5ys3NrdSen5+v8PDwGm8XjVtBQUGtbGfODbWymQbHrP/vUFvzBubCvEFNMG8at5/ebRUAAAAAGqtqFU0BAAAAQEMXGhqqa665RpLUo0cPbd++Xc8884z+67/+q1LfpKQkSdKBAwfUtm1b2Ww2bdu2zatPcXGxJMlms513n5MnT1Z2drZnuaysTPHx8UpJSZHVar3sMaFxcblcKigo0IABAxQSEnLZ2+uSs6YWomp4duWk+jsEn6rteQNzYN6gJpg35lBxZ1QAAAAAaMwomgIAAABgam632+vReT+1Y8cOSVJsbKwkyW63a9asWSopKVF0dLSkH++yYLVaPY/4q4rFYpHFYqnUHhISwsVGnFdtzQ9neUAtRNPwmPVni+MKaoJ5g5pg3jRu5BYAAACAGVA0BQAAAMA0Jk+erEGDBqlNmzb6/vvvtWzZMm3YsEFr1qzRwYMHtWzZMt12221q0aKFdu7cqYkTJ6pfv37q1q2bJCklJUWdOnXSyJEjNWfOHDkcDk2ZMkWZmZlVFkUBAAAAAAAAAID6iaIpAAAAAKZRUlKie++9V0ePHlXz5s3VrVs3rVmzRgMGDNBXX32ltWvXau7cuTp16pTi4+OVnp6uKVOmeF4fFBSklStXaty4cbLb7WratKkyMjI0Y8YMP44KAAAAAAAAAABUF0VTAAAAAEzjhRdeOO+6+Ph4bdy48aLbSEhI0KpVq2ozLAAAAAAAAAAA4GOB/g4AAAAAAAAAAAAAAAAAAHyJoikAAAAAAAAAAAAAAAAApkLRFAAAAAAAAAAAAAAAAABToWgKAAAAAAAAAAAAAAAAgKlQNAUAAAAAAAAAAFDPlZeXa+rUqUpMTFSTJk3Utm1bzZw5U4ZhePoYhqFp06YpNjZWTZo0UXJysvbv3++1nePHj2vEiBGyWq2KjIzU6NGjdfLkSV8PBwAAAPA7iqYAAAAAAAAAAADquSeeeEKLFi3Ss88+q7179+qJJ57QnDlzNH/+fE+fOXPmaN68eVq8eLG2bt2qpk2bKjU1VWfOnPH0GTFihHbv3q2CggKtXLlSmzZt0tixY/0xJAAAAMCvgv0dAAAAAAAAAAAAAC5s8+bNGjJkiNLS0iRJV111lV577TVt27ZN0o93mZo7d66mTJmiIUOGSJJefvllxcTE6O2339bw4cO1d+9erV69Wtu3b1fPnj0lSfPnz9dtt92mJ598UnFxcf4ZHAAAAOAHFE0Bl+CqR9732b4sQYbm3CB1yVkjZ3mAz/YLAAAAAAAAAKi/brzxRj333HP6/PPP1a5dO/3rX//SRx99pKeeekqSdOjQITkcDiUnJ3te07x5cyUlJamwsFDDhw9XYWGhIiMjPQVTkpScnKzAwEBt3bpVd9xxR6X9Op1OOZ1Oz3JZWZkkyeVyyeVy1dVwq1SxP0ugcZGejZOv3+/6oGLMZhy7GZFvcyHf5kPOzcWf+a7OPimaAgAAAAAAAAAAqOceeeQRlZWVqUOHDgoKClJ5eblmzZqlESNGSJIcDockKSYmxut1MTExnnUOh0PR0dFe64ODgxUVFeXp83N5eXnKzc2t1J6fn6/w8PDLHldNzOzp9st+/W3VqlX+DsFvCgoK/B0CfIh8mwv5Nh9ybi7+yPfp06cvuS9FUwAAAAAAAAAAAPXcG2+8oVdffVXLli1T586dtWPHDk2YMEFxcXHKyMios/1OnjxZ2dnZnuWysjLFx8crJSVFVqu1zvZbFZfLpYKCAk39OFBOt/me1LArJ9XfIfhcRc4HDBigkJAQf4eDOka+zYV8mw85Nxd/5rvizqiXgqIpAAAAAAAAAACAem7SpEl65JFHNHz4cElS165d9eWXXyovL08ZGRmy2WySpOLiYsXGxnpeV1xcrO7du0uSbDabSkpKvLZ77tw5HT9+3PP6n7NYLLJYLJXaQ0JC/HbB0+kOkLPcfEVTZr7A7M/5Bt8j3+ZCvs2HnJuLP/Jdnf0F1mEcAAAAAAAAAAAAqAWnT59WYKD3ZZ2goCC53T8+qi4xMVE2m03r1q3zrC8rK9PWrVtlt9slSXa7XaWlpSoqKvL0+fDDD+V2u5WUlOSDUQAAAAD1B3eaAgAAAAAAAAAAqOcGDx6sWbNmqU2bNurcubM+/fRTPfXUU7r//vslSQEBAZowYYIee+wxXXvttUpMTNTUqVMVFxenoUOHSpI6duyogQMHasyYMVq8eLFcLpeysrI0fPhwxcXF+XF0AAAAgO9RNAUAAAAAAAAAAFDPzZ8/X1OnTtWDDz6okpISxcXF6be//a2mTZvm6fOnP/1Jp06d0tixY1VaWqq+fftq9erVCgsL8/R59dVXlZWVpf79+yswMFDp6emaN2+eP4YEAAAA+BVFUwAAAAAAAAAAAPVcRESE5s6dq7lz5563T0BAgGbMmKEZM2act09UVJSWLVtWBxECAAAADUvgxbsAAAAAAAAAAAAAAAAAQONB0RQAAAAAAAAAAAAAAAAAU6FoCgAAAAAAAAAAAAAAAICpUDQFAAAAAAAAAAAAAAAAwFQomgIAAAAAAAAAAAAAAABgKhRNAQAAAAAAAAAAAAAAADAViqYAAAAAAAAAAAAAAAAAmApFUwAAAAAAAAAAAAAAAABMhaIpAAAAAAAAAAAAAAAAAKZC0RQAAAAAAAAAAAAAAAAAU6FoCgAAAIBpLFq0SN26dZPVapXVapXdbtcHH3zgWX/mzBllZmaqRYsWatasmdLT01VcXOy1jSNHjigtLU3h4eGKjo7WpEmTdO7cOV8PBQAAAAAAAAAAXAaKpgAAAACYRuvWrTV79mwVFRXp448/1q233qohQ4Zo9+7dkqSJEyfqvffe0/Lly7Vx40Z98803GjZsmOf15eXlSktL09mzZ7V582a99NJLWrp0qaZNm+avIQEAAAAAAAAAgBoI9ncAAAAAAOArgwcP9lqeNWuWFi1apC1btqh169Z64YUXtGzZMt16662SpCVLlqhjx47asmWLevfurfz8fO3Zs0dr165VTEyMunfvrpkzZ+rhhx9WTk6OQkND/TEsAAAAAAAAAABQTRRNAQAAADCl8vJyLV++XKdOnZLdbldRUZFcLpeSk5M9fTp06KA2bdqosLBQvXv3VmFhobp27aqYmBhPn9TUVI0bN067d+/W9ddfX+W+nE6nnE6nZ7msrEyS5HK55HK56miEaKgq5kRtzQ1LkFEr22lozPazVdvzBubAvEFNMG/MgfwCAAAAMAOKpgAAAACYymeffSa73a4zZ86oWbNmWrFihTp16qQdO3YoNDRUkZGRXv1jYmLkcDgkSQ6Hw6tgqmJ9xbrzycvLU25ubqX2/Px8hYeHX+aI0FgVFBTUynbm3FArm2lwVq1a5e8Q/KK25g3MhXmDmmDeNG6nT5/2dwgAAAAAUOcomgIAAABgKu3bt9eOHTt04sQJ/f3vf1dGRoY2btxYp/ucPHmysrOzPctlZWWKj49XSkqKrFZrne4bDY/L5VJBQYEGDBigkJCQy95el5w1tRBVw7MrJ9XfIfhUbc8bmAPzBjXBvDGHijujAgAAAEBjRtEUAAAAAFMJDQ3VNddcI0nq0aOHtm/frmeeeUZ33XWXzp49q9LSUq+7TRUXF8tms0mSbDabtm3b5rW94uJiz7rzsVgsslgsldpDQkK42Ijzqq354SwPqIVoGh6z/mxxXEFNMG9QE8ybxo3cAgAAADCDQH8HAAAAAAD+5Ha75XQ61aNHD4WEhGjdunWedfv27dORI0dkt9slSXa7XZ999plKSko8fQoKCmS1WtWpUyefxw4AAAAAAAAAAGqGO00BAAAAMI3Jkydr0KBBatOmjb7//nstW7ZMGzZs0Jo1a9S8eXONHj1a2dnZioqKktVq1fjx42W329W7d29JUkpKijp16qSRI0dqzpw5cjgcmjJlijIzM6u8kxQAAAAAAAAAAKifqnWnqby8PPXq1UsRERGKjo7W0KFDtW/fPq8+Z86cUWZmplq0aKFmzZopPT3d87iKCkeOHFFaWprCw8MVHR2tSZMm6dy5c5c/GgAAAAC4gJKSEt17771q3769+vfvr+3bt2vNmjUaMGCAJOnpp5/Wr371K6Wnp6tfv36y2Wx66623PK8PCgrSypUrFRQUJLvdrnvuuUf33nuvZsyY4a8hAQAAAAAAAACAGqjWnaY2btyozMxM9erVS+fOndOjjz6qlJQU7dmzR02bNpUkTZw4Ue+//76WL1+u5s2bKysrS8OGDdM///lPSVJ5ebnS0tJks9m0efNmHT16VPfee69CQkL0+OOP1/4IAQAAAOD/eeGFFy64PiwsTAsWLNCCBQvO2ychIUGrVq2q7dAAAAAAAAAAAIAPVatoavXq1V7LS5cuVXR0tIqKitSvXz+dOHFCL7zwgpYtW6Zbb71VkrRkyRJ17NhRW7ZsUe/evZWfn689e/Zo7dq1iomJUffu3TVz5kw9/PDDysnJUWhoaO2NDgAAAAAAAAAAAAAAAAB+plqP5/u5EydOSJKioqIkSUVFRXK5XEpOTvb06dChg9q0aaPCwkJJUmFhobp27aqYmBhPn9TUVJWVlWn37t2XEw4AAAAAAAAAAAAAAAAAXFS17jT1U263WxMmTFCfPn3UpUsXSZLD4VBoaKgiIyO9+sbExMjhcHj6/LRgqmJ9xbqqOJ1OOZ1Oz3JZWZkkyeVyyeVy1XQIDV7F2M38HviKJcjw3b4CDa9/4Xu1/TPFz2rjQ04bJ/La+Pgzp8wjAAAAAAAAAACA+q3GRVOZmZnatWuXPvroo9qMp0p5eXnKzc2t1J6fn6/w8PA63399V1BQ4O8QGr05N/h+nzN7un2/U0iSVq1aVSfb5We18SGnjRN5bXz8kdPTp0/7fJ8AAAAAAAAAAAC4dDUqmsrKytLKlSu1adMmtW7d2tNus9l09uxZlZaWet1tqri4WDabzdNn27ZtXtsrLi72rKvK5MmTlZ2d7VkuKytTfHy8UlJSZLVaazKERsHlcqmgoEADBgxQSEiIv8Np1LrkrPHZviyBhmb2dGvqx4FyugN8tl/8n105qbW6PX5WGx9y2jiR18bHnzmtuDMqAAAAAAAAAAAA6qdqFU0ZhqHx48drxYoV2rBhgxITE73W9+jRQyEhIVq3bp3S09MlSfv27dORI0dkt9slSXa7XbNmzVJJSYmio6Ml/fjpf6vVqk6dOlW5X4vFIovFUqk9JCSEi5riffAFZ7nvi5ec7gC/7Beqs58nflYbH3LaOJHXxscfOWUOAQAAAAAAAAAA1G/VKprKzMzUsmXL9M477ygiIkIOh0OS1Lx5czVp0kTNmzfX6NGjlZ2draioKFmtVo0fP152u129e/eWJKWkpKhTp04aOXKk5syZI4fDoSlTpigzM7PKwigAAAAAAAAAAAAAAAAAqE3VKppatGiRJOmWW27xal+yZIlGjRolSXr66acVGBio9PR0OZ1OpaamauHChZ6+QUFBWrlypcaNGye73a6mTZsqIyNDM2bMuLyRAAAAAAAAAAAAAAAAAMAlqPbj+S4mLCxMCxYs0IIFC87bJyEhQatWrarOrgEAAAAAAAAAAAAAAACgVgT6OwAAAAAAAAAAAAAAAAAA8CWKpgAAAAAAAAAAAAAAAACYSrUezwcAZnDVI+/X6vYsQYbm3CB1yVkjZ3lArW67Nh2enebvEAAAAAAAAAAAAAAA8AnuNAUAAAAAAAAAAAAAAADAVCiaAgAAAAAAAAAAAAAAAGAqFE0BAAAAAAAAAAAAAAAAMBWKpgAAAAAAAAAAAAAAAACYCkVTAAAAAAAAAAAAAAAAAEyFoikAAAAAAAAAAAAAAAAApkLRFAAAAAAAAAAAAAAAAABToWgKAAAAAAAAAAAAAAAAgKlQNAUAAAAAAAAAAAAAAADAVCiaAgAAAAAAAAAAAAAAAGAqFE0BAAAAAAAAAAAAAAAAMBWKpgAAAAAAAAAAAAAAAACYCkVTAAAAAEwjLy9PvXr1UkREhKKjozV06FDt27fPq88tt9yigIAAr6/f/e53Xn2OHDmitLQ0hYeHKzo6WpMmTdK5c+d8ORQAAAAAAAAAAHAZgv0dAAAAAAD4ysaNG5WZmalevXrp3LlzevTRR5WSkqI9e/aoadOmnn5jxozRjBkzPMvh4eGe78vLy5WWliabzabNmzfr6NGjuvfeexUSEqLHH3/cp+MBAAAAAAAAAAA1w52mAAAAAJjG6tWrNWrUKHXu3FnXXXedli5dqiNHjqioqMirX3h4uGw2m+fLarV61uXn52vPnj165ZVX1L17dw0aNEgzZ87UggULdPbsWV8PCQAAAICJfP3117rnnnvUokULNWnSRF27dtXHH3/sWW8YhqZNm6bY2Fg1adJEycnJ2r9/v9c2jh8/rhEjRshqtSoyMlKjR4/WyZMnfT0UAAAAwO+40xQAAAAA0zpx4oQkKSoqyqv91Vdf1SuvvCKbzabBgwdr6tSpnrtNFRYWqmvXroqJifH0T01N1bhx47R7925df/31lfbjdDrldDo9y2VlZZIkl8sll8tV6+NCw1YxJ2prbliCjFrZTkNjtp+t2p43MAfmDWqCeWMO5Ld++s9//qM+ffrol7/8pT744AO1atVK+/fv1xVXXOHpM2fOHM2bN08vvfSSEhMTNXXqVKWmpmrPnj0KCwuTJI0YMUJHjx5VQUGBXC6X7rvvPo0dO1bLli3z19AAAAAAv6BoCgAAAIApud1uTZgwQX369FGXLl087b/5zW+UkJCguLg47dy5Uw8//LD27dunt956S5LkcDi8CqYkeZYdDkeV+8rLy1Nubm6l9vz8fK9H/wE/VVBQUCvbmXNDrWymwVm1apW/Q/CL2po3MBfmDWqCedO4nT592t8hoApPPPGE4uPjtWTJEk9bYmKi53vDMDR37lxNmTJFQ4YMkSS9/PLLiomJ0dtvv63hw4dr7969Wr16tbZv366ePXtKkubPn6/bbrtNTz75pOLi4nw7KAAAAMCPKJoCAAAAYEqZmZnatWuXPvroI6/2sWPHer7v2rWrYmNj1b9/fx08eFBt27at0b4mT56s7Oxsz3JZWZni4+OVkpLi9eg/QPrxzg4FBQUaMGCAQkJCLnt7XXLW1EJUDc+unFR/h+BTtT1vYA7MG9QE88YcKu6Mivrl3XffVWpqqn79619r48aNuvLKK/Xggw9qzJgxkqRDhw7J4XAoOTnZ85rmzZsrKSlJhYWFGj58uAoLCxUZGekpmJKk5ORkBQYGauvWrbrjjjsq7bc+3Tm3Yn+WQO6mahbc4dBcyLe5kG/zIefm4s98V2efFE0BAAAAMJ2srCytXLlSmzZtUuvWrS/YNykpSZJ04MABtW3bVjabTdu2bfPqU1xcLEmy2WxVbsNischisVRqDwkJ4WKjD131yPv+DuGSWIIMzblBun7Wh3KWB9TCFmtjGw2PWX+2OK6gJpg3qAnmTeNGbuunL774QosWLVJ2drYeffRRbd++XQ899JBCQ0OVkZHhufNtVXfGrVjncDgUHR3ttT44OFhRUVEN6s65M3u6/bJffzPr3VQl7nBoNuTbXMi3+ZBzc/FHvqtz51yKpgAAAACYhmEYGj9+vFasWKENGzZ4PcrifHbs2CFJio2NlSTZ7XbNmjVLJSUlnosNBQUFslqt6tSpU53FDgAAAMDc3G63evbsqccff1ySdP3112vXrl1avHixMjIy6my/9enOuRV3u5v6caCcbvN9OMBsd1OVuMOh2ZBvcyHf5kPOzcWf+a7OnXMpmgIAAABgGpmZmVq2bJneeecdRUREeD5J3bx5czVp0kQHDx7UsmXLdNttt6lFixbauXOnJk6cqH79+qlbt26SpJSUFHXq1EkjR47UnDlz5HA4NGXKFGVmZlZ5NykAAAAAqA2xsbGVPqjRsWNHvfnmm5L+7863xcXFng99VCx3797d06ekpMRrG+fOndPx48cb1J1zne6AWrora8Ni5gvM3OHQXMi3uZBv8yHn5uKPfFdnf4F1GAcAAAAA1CuLFi3SiRMndMsttyg2Ntbz9be//U2SFBoaqrVr1yolJUUdOnTQH/7wB6Wnp+u9997zbCMoKEgrV65UUFCQ7Ha77rnnHt17772aMWOGv4YFAAAAwAT69Omjffv2ebV9/vnnSkhIkCQlJibKZrNp3bp1nvVlZWXaunWr7Ha7pB/vnFtaWqqioiJPnw8//FBut9vzaHIAAADALLjTFAAAAADTMAzjguvj4+O1cePGi24nISFBq1atqq2wAAAAAOCiJk6cqBtvvFGPP/647rzzTm3btk3PPfecnnvuOUlSQECAJkyYoMcee0zXXnutEhMTNXXqVMXFxWno0KGSfrwz1cCBAzVmzBgtXrxYLpdLWVlZGj58uOLi4vw4OgAAAMD3KJoCAAAAAAAAAACo53r16qUVK1Zo8uTJmjFjhhITEzV37lyNGDHC0+dPf/qTTp06pbFjx6q0tFR9+/bV6tWrFRYW5unz6quvKisrS/3791dgYKDS09M1b948fwwJAAAA8CuKpgAAAAAAAAAAABqAX/3qV/rVr3513vUBAQGaMWPGBR8fHhUVpWXLltVFeAAAAECDEujvAAAAAAAAAAAAAAAAAADAlyiaAgAAAAAAAAAAAAAAAGAqFE0BAAAAAAAAAAAAAAAAMBWKpgAAAAAAAAAAAAAAAACYCkVTAAAAAAAAAAAAAAAAAEwl2N8BAAAAAAAA1LarHnnf3yH4lCXI0Jwb/B0FAAAAAAAA0HBwpykAAAAAAAAAAAAAAAAApkLRFAAAAAAAAAAAAAAAAABToWgKAAAAAAAAAAAAAAAAgKlQNAUAAAAAAAAAAAAAAADAVCiaAgAAAAAAAAAAAAAAAGAqFE0BAAAAAAAAAAAAAAAAMJVqF01t2rRJgwcPVlxcnAICAvT22297rR81apQCAgK8vgYOHOjV5/jx4xoxYoSsVqsiIyM1evRonTx58rIGAgAAAAAAAAAAAAAAAACXotpFU6dOndJ1112nBQsWnLfPwIEDdfToUc/Xa6+95rV+xIgR2r17twoKCrRy5Upt2rRJY8eOrX70AAAAAAAAAAAAAAAAAFBNwdV9waBBgzRo0KAL9rFYLLLZbFWu27t3r1avXq3t27erZ8+ekqT58+frtttu05NPPqm4uLjqhgQAAAAAAAAAAAAAAAAAl6zaRVOXYsOGDYqOjtYVV1yhW2+9VY899phatGghSSosLFRkZKSnYEqSkpOTFRgYqK1bt+qOO+6otD2n0ymn0+lZLisrkyS5XC65XK66GEKDUDF2M78HvmIJMny3r0DD6180fA0lpxxLLh3H38aJvDY+/swp8wgAAAAAAAAAAKB+q/WiqYEDB2rYsGFKTEzUwYMH9eijj2rQoEEqLCxUUFCQHA6HoqOjvYMIDlZUVJQcDkeV28zLy1Nubm6l9vz8fIWHh9f2EBqcgoICf4fQ6M25wff7nNnT7fudok7V95yuWrXK3yE0OBx/Gyfy2vj4I6enT5/2+T4BAAAAAAAAAABw6Wq9aGr48OGe77t27apu3bqpbdu22rBhg/r371+jbU6ePFnZ2dme5bKyMsXHxyslJUVWq/WyY26oXC6XCgoKNGDAAIWEhPg7nEatS84an+3LEmhoZk+3pn4cKKc7wGf7Rd1pKDndlZPq7xAaDI6/jRN5bXz8mdOKO6MCAAAAAAAAAACgfqqTx/P91NVXX62WLVvqwIED6t+/v2w2m0pKSrz6nDt3TsePH5fNZqtyGxaLRRaLpVJ7SEgIFzXF++ALznLfF7o43QF+2S/qTn3PKceR6uP42ziR18bHHzllDgEAAAAAAAAAANRvgXW9g3//+986duyYYmNjJUl2u12lpaUqKiry9Pnwww/ldruVlJRU1+EAAAAAAAAAAAAAAAAAMLlq32nq5MmTOnDggGf50KFD2rFjh6KiohQVFaXc3Fylp6fLZrPp4MGD+tOf/qRrrrlGqak/PvapY8eOGjhwoMaMGaPFixfL5XIpKytLw4cPV1xcXO2NDAAAAAAAAAAAAAAAAACqUO07TX388ce6/vrrdf3110uSsrOzdf3112vatGkKCgrSzp07dfvtt6tdu3YaPXq0evTooX/84x9ej9d79dVX1aFDB/Xv31+33Xab+vbtq+eee672RgUAAAAAAAAAAAAAAAAA51HtoqlbbrlFhmFU+lq6dKmaNGmiNWvWqKSkRGfPntXhw4f13HPPKSYmxmsbUVFRWrZsmb7//nudOHFCL774opo1a1ZrgwIAAACAquTl5alXr16KiIhQdHS0hg4dqn379nn1OXPmjDIzM9WiRQs1a9ZM6enpKi4u9upz5MgRpaWlKTw8XNHR0Zo0aZLOnTvny6EAAAAAAAAAAIDLUO2iKQAAAABoqDZu3KjMzExt2bJFBQUFcrlcSklJ0alTpzx9Jk6cqPfee0/Lly/Xxo0b9c0332jYsGGe9eXl5UpLS9PZs2e1efNmvfTSS1q6dKmmTZvmjyEBAAAAAAAAAIAaCPZ3AAAAAADgK6tXr/ZaXrp0qaKjo1VUVKR+/frpxIkTeuGFF7Rs2TLdeuutkqQlS5aoY8eO2rJli3r37q38/Hzt2bNHa9euVUxMjLp3766ZM2fq4YcfVk5OjkJDQ/0xNAAAAAAAAAAAUA3caQoAAACAaZ04cULSj48Ql6SioiK5XC4lJyd7+nTo0EFt2rRRYWGhJKmwsFBdu3b1egx5amqqysrKtHv3bh9GDwAAAAAAAAAAaoo7TeGSXfXI+/4OAQAAAKg1brdbEyZMUJ8+fdSlSxdJksPhUGhoqCIjI736xsTEyOFwePr8tGCqYn3Fuqo4nU45nU7PcllZmSTJ5XLJ5XLVynhwcZYgw98hXBJLoOH1L3ApKuYLxxRUR8V8Yd6gOpg35kB+AQAAAJgBRVMAAAAATCkzM1O7du3SRx99VOf7ysvLU25ubqX2/Px8hYeH1/n+8aM5N/g7guqZ2dPt7xDQABUUFPg7BDRAzBvUBPOmcTt9+rS/QwAAAACAOkfRFAAAAADTycrK0sqVK7Vp0ya1bt3a026z2XT27FmVlpZ63W2quLhYNpvN02fbtm1e2ysuLvasq8rkyZOVnZ3tWS4rK1N8fLxSUlJktVpra1i4iC45a/wdwiWxBBqa2dOtqR8HyukO8Hc4aCAq5s2AAQMUEhLi73DQQLhcLhUUFDBvUC3MG3OouDMqAAAAADRmFE0BAAAAMA3DMDR+/HitWLFCGzZsUGJiotf6Hj16KCQkROvWrVN6erokad++fTpy5IjsdrskyW63a9asWSopKVF0dLSkH++0YLVa1alTpyr3a7FYZLFYKrWHhIRwsdGHnOUNqwDJ6Q5ocDHD/ziuoCaYN6gJ5k3jRm4BAAAAmAFFUwAAAABMIzMzU8uWLdM777yjiIgIORwOSVLz5s3VpEkTNW/eXKNHj1Z2draioqJktVo1fvx42e129e7dW5KUkpKiTp06aeTIkZozZ44cDoemTJmizMzMKgujAAAAAAAAAABA/UPRFAAAAADTWLRokSTplltu8WpfsmSJRo0aJUl6+umnFRgYqPT0dDmdTqWmpmrhwoWevkFBQVq5cqXGjRsnu92upk2bKiMjQzNmzPDVMAAAAAAAAAAAwGWiaAoAAACAaRiGcdE+YWFhWrBggRYsWHDePgkJCVq1alVthgYAAAAAAAAAAHwo0N8BAAAAAAAAAAAAAAAAAIAvUTQFAAAAAAAAAAAAAAAAwFQomgIAAAAAAAAAAAAAAABgKhRNAQAAAAAAAAAAAAAAADAViqYAAAAAAAAAAAAAAAAAmApFUwAAAAAAAAAAAAAAAABMhaIpAAAAAAAAAAAAAAAAAKZC0RQAAAAAAAAAAAAAAAAAU6FoCgAAAAAAAAAAAAAAAICpUDQFAAAAAAAAAAAAAAAAwFQomgIAAAAAAAAAAAAAAABgKhRNAQAAAAAAAAAAAAAAADAViqYAAAAAAAAAAAAAAAAAmApFUwAAAAAAAAAAAAAAAABMhaIpAAAAAAAAAACABmb27NkKCAjQhAkTPG1nzpxRZmamWrRooWbNmik9PV3FxcVerzty5IjS0tIUHh6u6OhoTZo0SefOnfNx9AAAAID/UTQFAAAAAAAAAADQgGzfvl3/9V//pW7dunm1T5w4Ue+9956WL1+ujRs36ptvvtGwYcM868vLy5WWlqazZ89q8+bNeumll7R06VJNmzbN10MAAAAA/I6iKQAAAAAAAAAAgAbi5MmTGjFihJ5//nldccUVnvYTJ07ohRde0FNPPaVbb71VPXr00JIlS7R582Zt2bJFkpSfn689e/bolVdeUffu3TVo0CDNnDlTCxYs0NmzZ/01JAAAAMAvgv0dAAAAAAAAAAAAAC5NZmam0tLSlJycrMcee8zTXlRUJJfLpeTkZE9bhw4d1KZNGxUWFqp3794qLCxU165dFRMT4+mTmpqqcePGaffu3br++usr7c/pdMrpdHqWy8rKJEkul0sul6suhnheFfuzBBo+3W994ev3uz6oGLMZx25G5NtcyLf5kHNz8We+q7NPiqYAAAAAAAAAAAAagNdff12ffPKJtm/fXmmdw+FQaGioIiMjvdpjYmLkcDg8fX5aMFWxvmJdVfLy8pSbm1upPT8/X+Hh4TUZxmWb2dPtl/3626pVq/wdgt8UFBT4OwT4EPk2F/JtPuTcXPyR79OnT19yX4qmAAAAAAAAAAAA6rmvvvpKv//971VQUKCwsDCf7Xfy5MnKzs72LJeVlSk+Pl4pKSmyWq0+i0P68a4BBQUFmvpxoJzuAJ/uuz7YlZPq7xB8riLnAwYMUEhIiL/DQR0j3+ZCvs2HnJuLP/NdcWfUS0HRFAAAAAAAAAAAQD1XVFSkkpIS/eIXv/C0lZeXa9OmTXr22We1Zs0anT17VqWlpV53myouLpbNZpMk2Ww2bdu2zWu7xcXFnnVVsVgsslgsldpDQkL8dsHT6Q6Qs9x8RVNmvsDsz/kG3yPf5kK+zYecm4s/8l2d/QXWYRwAAAAAAAAAAACoBf3799dnn32mHTt2eL569uypESNGeL4PCQnRunXrPK/Zt2+fjhw5IrvdLkmy2+367LPPVFJS4ulTUFAgq9WqTp06+XxMAAAAgD9xpykAAAAAAAAAAIB6LiIiQl26dPFqa9q0qVq0aOFpHz16tLKzsxUVFSWr1arx48fLbrerd+/ekqSUlBR16tRJI0eO1Jw5c+RwODRlyhRlZmZWeTcpAAAAoDGjaAoAAAAAAAAAAKARePrppxUYGKj09HQ5nU6lpqZq4cKFnvVBQUFauXKlxo0bJ7vdrqZNmyojI0MzZszwY9QAAACAf/B4PgAAAACmsWnTJg0ePFhxcXEKCAjQ22+/7bV+1KhRCggI8PoaOHCgV5/jx49rxIgRslqtioyM1OjRo3Xy5EkfjgIAAAAAfrRhwwbNnTvXsxwWFqYFCxbo+PHjOnXqlN566y3ZbDav1yQkJGjVqlU6ffq0vv32Wz355JMKDuYz9gAAADAfiqYAAAAAmMapU6d03XXXacGCBeftM3DgQB09etTz9dprr3mtHzFihHbv3q2CggKtXLlSmzZt0tixY+s6dAAAAAAAAAAAUIv46AAAAAAA0xg0aJAGDRp0wT4Wi6XSJ7Er7N27V6tXr9b27dvVs2dPSdL8+fN122236cknn1RcXFytxwwAAAAAAAAAAGofd5oCAAAAgJ/YsGGDoqOj1b59e40bN07Hjh3zrCssLFRkZKSnYEqSkpOTFRgYqK1bt/ojXAAAAAAAAAAAUAPcaQoAAAAA/p+BAwdq2LBhSkxM1MGDB/Xoo49q0KBBKiwsVFBQkBwOh6Kjo71eExwcrKioKDkcjvNu1+l0yul0epbLysokSS6XSy6Xq24Gg0osQYa/Q7gklkDD61/gUlTMF44pqI6K+cK8QXUwb8yB/AIAAAAwg2oXTW3atEl/+ctfVFRUpKNHj2rFihUaOnSoZ71hGJo+fbqef/55lZaWqk+fPlq0aJGuvfZaT5/jx49r/Pjxeu+99xQYGKj09HQ988wzatasWa0MCgAAAABqYvjw4Z7vu3btqm7duqlt27basGGD+vfvX+Pt5uXlKTc3t1J7fn6+wsPDa7xdVM+cG/wdQfXM7On2dwhogAoKCvwdAhog5g1qgnnTuJ0+fdrfIQAAAABAnat20dSpU6d03XXX6f7779ewYcMqrZ8zZ47mzZunl156SYmJiZo6dapSU1O1Z88ehYWFSZJGjBiho0ePqqCgQC6XS/fdd5/Gjh2rZcuWXf6IAAAAAKCWXH311WrZsqUOHDig/v37y2azqaSkxKvPuXPndPz4cdlstvNuZ/LkycrOzvYsl5WVKT4+XikpKbJarXUWP7x1yVnj7xAuiSXQ0Myebk39OFBOd4C/w0EDUTFvBgwYoJCQEH+HgwbC5XKpoKCAeYNqYd6YQ8WdUQEAAACgMat20dSgQYM0aNCgKtcZhqG5c+dqypQpGjJkiCTp5ZdfVkxMjN5++20NHz5ce/fu1erVq7V9+3b17NlTkjR//nzddtttevLJJxUXF3cZwwEAAACA2vPvf/9bx44dU2xsrCTJbrertLRURUVF6tGjhyTpww8/lNvtVlJS0nm3Y7FYZLFYKrWHhIRwsdGHnOUNqwDJ6Q5ocDHD/ziuoCaYN6gJ5k3jRm4BAAAAmEFgbW7s0KFDcjgcSk5O9rQ1b95cSUlJKiwslCQVFhYqMjLSUzAlScnJyQoMDNTWrVtrMxwAAAAA8HLy5Ent2LFDO3bskPTjOcyOHTt05MgRnTx5UpMmTdKWLVt0+PBhrVu3TkOGDNE111yj1NRUSVLHjh01cOBAjRkzRtu2bdM///lPZWVlafjw4XwABAAAAAAAAACABqTad5q6EIfDIUmKiYnxao+JifGsczgcio6O9g4iOFhRUVGePj/ndDrldDo9yxW3Bna5XHK5XLUWf0NTMXZfvQeWIMMn+zE7S6Dh9S8avoaSUzMfT6vL18df+AZ5bXz8mVPmUf318ccf65e//KVnueKReRkZGVq0aJF27typl156SaWlpYqLi1NKSopmzpzpdZeoV199VVlZWerfv78CAwOVnp6uefPm+XwsAAAAAAAAAACg5mq1aKqu5OXlKTc3t1J7fn6+wsPD/RBR/VJQUOCT/cy5wSe7wf8zs6fb3yGgltX3nK5atcrfITQ4vjr+wrfIa+Pjj5yePn3a5/vEpbnllltkGOcvZF6zZs1FtxEVFaVly5bVZlgAAAAAAAAAAMDHarVoymazSZKKi4sVGxvraS8uLlb37t09fUpKSrxed+7cOR0/ftzz+p+bPHmy5xPg0o93moqPj1dKSoqsVmttDqFBcblcKigo0IABA3zyjPkuORe/gITLZwk0NLOnW1M/DpTTHeDvcFALGkpOd+Wk+juEBsPXx1/4BnltfPyZ04o7owIAAAAAAAAAAKB+qtWiqcTERNlsNq1bt85TJFVWVqatW7dq3LhxkiS73a7S0lIVFRWpR48ekqQPP/xQbrdbSUlJVW7XYrF4PQ6jQkhICBc15bv3wVlef4s9GiOnO4D3vJGp7znleFp9/B5qnMhr4+OPnDKHAAAAAAAAAAAA6rdqF02dPHlSBw4c8CwfOnRIO3bsUFRUlNq0aaMJEyboscce07XXXqvExERNnTpVcXFxGjp0qCSpY8eOGjhwoMaMGaPFixfL5XIpKytLw4cPV1xcXK0NDAAAAAAAAAAAAAAAAACqUu2iqY8//li//OUvPcsVj83LyMjQ0qVL9ac//UmnTp3S2LFjVVpaqr59+2r16tUKCwvzvObVV19VVlaW+vfvr8DAQKWnp2vevHm1MBwAAAAAAAAAAAAAAAAAuLBqF03dcsstMgzjvOsDAgI0Y8YMzZgx47x9oqKitGzZsuruGgAAAAAAAAAAAAAAAAAuW6C/AwAAAAAAAAAAAAAAAAAAX6JoCgAAAAAAAAAAAAAAAICpUDQFAAAAAAAAAAAAAAAAwFQomgIAAAAAAAAAAAAAAABgKhRNAQAAAAAAAAAAAAAAADCVYH8HAACoH6565H1/h+AXh2en+TsEAAAAAAAAAAAAAICPcacpAAAAAAAAAAAAAAAAAKZC0RQAAAAAAAAAAAAAAAAAU6FoCgAAAAAAAAAAAAAAAICpUDQFAAAAAAAAAAAAAAAAwFSC/R0AAAAAAAAAakeXnDVylgf4Owy/ODw7zd8hAAAAAAAAoAHhTlMAAAAAAAAAAAAAAAAATIWiKQAAAAAAAAAAAAAAAACmQtEUAAAAAAAAAAAAAAAAAFOhaAoAAAAAAAAAAAAAAACAqVA0BQAAAAAAAAAAAAAAAMBUKJoCAAAAAAAAAAAAAAAAYCoUTQEAAAAAAAAAAAAAAAAwFYqmAAAAAAAAAAAAAAAAAJgKRVMAAAAAAAAAAAAAAAAATIWiKQAAAACmsWnTJg0ePFhxcXEKCAjQ22+/7bXeMAxNmzZNsbGxatKkiZKTk7V//36vPsePH9eIESNktVoVGRmp0aNH6+TJkz4cBQAAAAAAAAAAuFwUTQEAAAAwjVOnTum6667TggULqlw/Z84czZs3T4sXL9bWrVvVtGlTpaam6syZM54+I0aM0O7du1VQUKCVK1dq06ZNGjt2rK+GAAAAAAAAAAAAakGwvwMAAAAAAF8ZNGiQBg0aVOU6wzA0d+5cTZkyRUOGDJEkvfzyy4qJidHbb7+t4cOHa+/evVq9erW2b9+unj17SpLmz5+v2267TU8++aTi4uJ8NhYAAAAAAAAAAFBzFE0BAAAAgKRDhw7J4XAoOTnZ09a8eXMlJSWpsLBQw4cPV2FhoSIjIz0FU5KUnJyswMBAbd26VXfccUeV23Y6nXI6nZ7lsrIySZLL5ZLL5aqjEeHnLEGGv0O4JJZAw+tf4FIwb8TxtAYq3jPeO1QH88YcyC8AAAAAM6BoCgAAAAAkORwOSVJMTIxXe0xMjGedw+FQdHS01/rg4GBFRUV5+lQlLy9Pubm5ldrz8/MVHh5+uaHjEs25wd8RVM/Mnm5/h4AGyMzzZtWqVf4OocEqKCjwdwhogJg3jdvp06f9HQIAAAAA1DmKpgAAAACgjk2ePFnZ2dme5bKyMsXHxyslJUVWq9WPkZlLl5w1/g7hklgCDc3s6dbUjwPldAf4Oxw0EMwbaVdOqr9DaHBcLpcKCgo0YMAAhYSE+DscNBDMG3OouDMqAAAAADRmFE0BAAAAgCSbzSZJKi4uVmxsrKe9uLhY3bt39/QpKSnxet25c+d0/Phxz+urYrFYZLFYKrWHhIRwsdGHnOUNq5DE6Q5ocDHD/8w8bzie1hy/j1ATzJvGjdwCAAAAMINAfwcAAAAAAPVBYmKibDab1q1b52krKyvT1q1bZbfbJUl2u12lpaUqKiry9Pnwww/ldruVlJTk85gBAAAAAAAAAEDNcKcpAAAAAKZx8uRJHThwwLN86NAh7dixQ1FRUWrTpo0mTJigxx57TNdee60SExM1depUxcXFaejQoZKkjh07auDAgRozZowWL14sl8ulrKwsDR8+XHFxcX4aFQAAAAAAAAAAqC6KpgAAAACYxscff6xf/vKXnuXs7GxJUkZGhpYuXao//elPOnXqlMaOHavS0lL17dtXq1evVlhYmOc1r776qrKystS/f38FBgYqPT1d8+bN8/lYAAAAAAAAAABAzVE0BQAAAMA0brnlFhmGcd71AQEBmjFjhmbMmHHePlFRUVq2bFldhAcAAAAAAAAAAHwk0N8BAAAAAAAAAAAAAAAAAIAvUTQFAAAAAAAAAABQz+Xl5alXr16KiIhQdHS0hg4dqn379nn1OXPmjDIzM9WiRQs1a9ZM6enpKi4u9upz5MgRpaWlKTw8XNHR0Zo0aZLOnTvny6EAAAAA9QJFUwAAAAAAAAAAAPXcxo0blZmZqS1btqigoEAul0spKSk6deqUp8/EiRP13nvvafny5dq4caO++eYbDRs2zLO+vLxcaWlpOnv2rDZv3qyXXnpJS5cu1bRp0/wxJAAAAMCvgv0dAAAAAAAAAAAAAC5s9erVXstLly5VdHS0ioqK1K9fP504cUIvvPCCli1bpltvvVWStGTJEnXs2FFbtmxR7969lZ+frz179mjt2rWKiYlR9+7dNXPmTD388MPKyclRaGioP4YGAAAA+AVFUwAAAAAAAAAAAA3MiRMnJElRUVGSpKKiIrlcLiUnJ3v6dOjQQW3atFFhYaF69+6twsJCde3aVTExMZ4+qampGjdunHbv3q3rr7++0n6cTqecTqdnuaysTJLkcrnkcrnqZGznU7E/S6Dh0/3WF75+v+uDijGbcexmRL7NhXybDzk3F3/muzr7pGgKAAAAAAAAAACgAXG73ZowYYL69OmjLl26SJIcDodCQ0MVGRnp1TcmJkYOh8PT56cFUxXrK9ZVJS8vT7m5uZXa8/PzFR4efrlDqZGZPd1+2a+/rVq1yt8h+E1BQYG/Q4APkW9zId/mQ87NxR/5Pn369CX3pWgKAAAAAAAAAACgAcnMzNSuXbv00Ucf1fm+Jk+erOzsbM9yWVmZ4uPjlZKSIqvVWuf7/ymXy6WCggJN/ThQTneAT/ddH+zKSfV3CD5XkfMBAwYoJCTE3+GgjpFvcyHf5kPOzcWf+a64M+qloGgKAAAAAAAAAACggcjKytLKlSu1adMmtW7d2tNus9l09uxZlZaWet1tqri4WDabzdNn27ZtXtsrLi72rKuKxWKRxWKp1B4SEuK3C55Od4Cc5eYrmjLzBWZ/zjf4Hvk2F/JtPuTcXPyR7+rsL7AO4wAAAAAAAAAAAEAtMAxDWVlZWrFihT788EMlJiZ6re/Ro4dCQkK0bt06T9u+fft05MgR2e12SZLdbtdnn32mkpIST5+CggJZrVZ16tTJNwMBAAAA6olaL5rKyclRQECA11eHDh0868+cOaPMzEy1aNFCzZo1U3p6uudTDAAAAAAAAAAAAKgsMzNTr7zyipYtW6aIiAg5HA45HA798MMPkqTmzZtr9OjRys7O1vr161VUVKT77rtPdrtdvXv3liSlpKSoU6dOGjlypP71r39pzZo1mjJlijIzM6u8mxQAAADQmNXJnaY6d+6so0ePer5++kztiRMn6r333tPy5cu1ceNGffPNNxo2bFhdhAEAAAAAAAAAANAoLFq0SCdOnNAtt9yi2NhYz9ff/vY3T5+nn35av/rVr5Senq5+/frJZrPprbfe8qwPCgrSypUrFRQUJLvdrnvuuUf33nuvZsyY4Y8hAQAAAH4VXCcbDQ6u8tnXJ06c0AsvvKBly5bp1ltvlSQtWbJEHTt21JYtWzyfdAAAAAAAAAAAAMD/MQzjon3CwsK0YMECLViw4Lx9EhIStGrVqtoMDQAAAGiQ6qRoav/+/YqLi1NYWJjsdrvy8vLUpk0bFRUVyeVyKTk52dO3Q4cOatOmjQoLC89bNOV0OuV0Oj3LZWVlkiSXyyWXy1UXQ2gQKsbuq/fAEnTxEzJcPkug4fUvGj5yWr/V5Bjq6+MvfIO8Nj7+zCnzCAAAAAAAAAAAoH6r9aKppKQkLV26VO3bt9fRo0eVm5urm266Sbt27ZLD4VBoaKgiIyO9XhMTEyOHw3Hebebl5Sk3N7dSe35+vsLDw2t7CA1OQUGBT/Yz5waf7Ab/z8yebn+HgFpGTuuny/lUna+Ov/At8tr4+COnp0+f9vk+AQAAAAAAAAAAcOlqvWhq0KBBnu+7deumpKQkJSQk6I033lCTJk1qtM3JkycrOzvbs1xWVqb4+HilpKTIarVedswNlcvlUkFBgQYMGKCQkJA631+XnDV1vg/8eDeimT3dmvpxoJzuAH+Hg1pATuu3XTmp1X6Nr4+/8A3y2vj4M6cVd0YFAAAAAAAAAABA/VQnj+f7qcjISLVr104HDhzQgAEDdPbsWZWWlnrdbaq4uFg2m+2827BYLLJYLJXaQ0JCuKgp370PznKKPXzJ6Q7gPW9kyGn9dDnHT34PNU7ktfHxR06ZQwAAAAAAAAAAAPVbYF3v4OTJkzp48KBiY2PVo0cPhYSEaN26dZ71+/bt05EjR2S32+s6FAAAAAAAAAAAAAAAAACo/TtN/fGPf9TgwYOVkJCgb775RtOnT1dQUJDuvvtuNW/eXKNHj1Z2draioqJktVo1fvx42e129e7du7ZDAQAAAAAAAAAAAAAAAIBKar1o6t///rfuvvtuHTt2TK1atVLfvn21ZcsWtWrVSpL09NNPKzAwUOnp6XI6nUpNTdXChQtrOwwAAAAAAAAAAAAAAAAAqFKtF029/vrrF1wfFhamBQsWaMGCBbW9awAAAAAAAAAAAAAAAKDeuOqR9/0dgs9ZggzNucHfUVxcrRdNAQDQkNTkj5SKX/JdctbIWR5QB1HVvcOz0/wdAgAAAAAAAAAAAAD4TaC/AwAAAAAAAAAAAAAAAAAAX6JoCgAAAAAAAAAAAAAAAICpUDQFAAAAAAAAAAAAAAAAwFQomgIAAACAn8jJyVFAQIDXV4cOHTzrz5w5o8zMTLVo0ULNmjVTenq6iouL/RgxAAAAAAAAAACoLoqmAAAAAOBnOnfurKNHj3q+PvroI8+6iRMn6r333tPy5cu1ceNGffPNNxo2bJgfowUAAAAAAAAAANUV7O8AAAAAAKC+CQ4Ols1mq9R+4sQJvfDCC1q2bJluvfVWSdKSJUvUsWNHbdmyRb179/Z1qAAAAAAAAAAAoAYomgIAAACAn9m/f7/i4uIUFhYmu92uvLw8tWnTRkVFRXK5XEpOTvb07dChg9q0aaPCwsLzFk05nU45nU7PcllZmSTJ5XLJ5XLV7WDgYQky/B3CJbEEGl7/ApeCeSOOpzVQ8Z7x3qE6mDfmQH4BAAAAmAFFUwAAAADwE0lJSVq6dKnat2+vo0ePKjc3VzfddJN27dolh8Oh0NBQRUZGer0mJiZGDofjvNvMy8tTbm5upfb8/HyFh4fX9hBwHnNu8HcE1TOzp9vfIaABMvO8WbVqlb9DaLAKCgr8HQIaIOZN43b69Gl/hwAAAAAAdY6iKQAAAAD4iUGDBnm+79atm5KSkpSQkKA33nhDTZo0qdE2J0+erOzsbM9yWVmZ4uPjlZKSIqvVetkx49J0yVnj7xAuiSXQ0Myebk39OFBOd4C/w0EDwbyRduWk+juEBsflcqmgoEADBgxQSEiIv8NBA8G8MYeKO6MCAAAAQGNG0VQNXPXI+/4OQdKPj5aYc8OP//HvLDfnf4gCAAAAdS0yMlLt2rXTgQMHNGDAAJ09e1alpaVed5sqLi6WzWY77zYsFossFkul9pCQEC42+lBDO29yugMaXMzwPzPPG46nNcfvI9QE86ZxI7cAAAAAzCDQ3wEAAAAAQH128uRJHTx4ULGxserRo4dCQkK0bt06z/p9+/bpyJEjstvtfowSAAAAAAAAAABUB3eaAgAAAICf+OMf/6jBgwcrISFB33zzjaZPn66goCDdfffdat68uUaPHq3s7GxFRUXJarVq/Pjxstvt6t27t79DBwAAAAAAAAAAl4iiKQAAAAD4iX//+9+6++67dezYMbVq1Up9+/bVli1b1KpVK0nS008/rcDAQKWnp8vpdCo1NVULFy70c9QAAAAAAAAAAKA6KJoCAAAAgJ94/fXXL7g+LCxMCxYs0IIFC3wUUe276pH3/R0CAAAAAAAAAAB+RdEUAAAmZOaL5Ydnp/k7BAAAAAAAAAAAAAB+FujvAAAAAAAAAAAAAAAAAADAlyiaAgAAAAAAAAAAAAAAAGAqFE0BAAAAAAAAAAAAAAAAMBWKpgAAAAAAAAAAAAAAAACYCkVTAAAAAAAAAAAAAAAAAEyFoikAAAAAAAAAAAAAAAAApkLRFAAAAAAAAAAAAAAAAABToWgKAAAAAAAAAAAAAAAAgKlQNAUAAAAAAAAAAAAAAADAVCiaAgAAAAAAAAAAAAAAAGAqFE0BAAAAAAAAAAAAAAAAMBWKpgAAAAAAAAAAAAAAAACYCkVTAAAAAAAAAAAAAAAAAEyFoikAAAAAAAAAAAAAAAAApkLRFAAAAAAAAAAAAAAAAABToWgKAAAAAAAAAAAAAAAAgKlQNAUAAAAAAAAAAAAAAADAVIL9HQAAAIAvXfXI+1W2W4IMzblB6pKzRs7yAB9HVfcOz07zdwgAAAAAAAAAAABAvUHRFAAAAAAAANBAne9DAZeiIX9wgA8FAAAAAACAy8Xj+QAAAAAAAAAAAAAAAACYCneaAgAAMIHLuQNBQ1Vx5wQAAGAOZvx7BwAAAAAAADXHnaYAAAAAAAAAAAAAAAAAmApFUwAAAAAAAAAAAAAAAABMxa9FUwsWLNBVV12lsLAwJSUladu2bf4MBwAAAAAuGeczAAAAABoyzmkAAABgdn4rmvrb3/6m7OxsTZ8+XZ988omuu+46paamqqSkxF8hAQAAAMAl4XwGAAAAQEPGOQ0AAAAgBftrx0899ZTGjBmj++67T5K0ePFivf/++3rxxRf1yCOP+CssAAAAALgozmcAAAB856pH3vd3CH5xeHaav0NAI8Y5DQAAAOCnoqmzZ8+qqKhIkydP9rQFBgYqOTlZhYWFlfo7nU45nU7P8okTJyRJx48fl8vlqvuAfyb43Cmf77MqwW5Dp0+7FewKVLk7wN/hoJaQ18aHnDY+5LRxIq+NT0VOjx07ppCQEJ/u+/vvv5ckGYbh0/3CN6p7PiNxToPq4XcSaoJ5g5poyPPm2LFj/g7BtFwul06fPu3Tv7PN+reLP+c55zSNW0O+RlNxDGqIv7tqgxl///nj9w78h3ybC/k2HzPn3IznNA3lGo1fiqa+++47lZeXKyYmxqs9JiZG//u//1upf15ennJzcyu1JyYm1lmMDcVv/B0A6gR5bXzIaeNDThsn8tr4+Dun33//vZo3b+7nKFDbqns+I3FOg+rz9/ELDRPzBjXRUOdNy7/6OwKg7tWHec45TePENZqGqz4cFwAAAC6Vv//P4VLOZ/z2eL7qmDx5srKzsz3Lbrdbx48fV4sWLRQQYL5PElQoKytTfHy8vvrqK1mtVn+Hg1pCXhsfctr4kNPGibw2Pv7MqWEY+v777xUXF+fT/aL+4pwG1cHvJNQE8wY1wbxBTTBvzIFzGvxUfTqf4RhkPuTcXMi3uZBv8yHn5tJQrtH4pWiqZcuWCgoKUnFxsVd7cXGxbDZbpf4Wi0UWi8WrLTIysi5DbFCsVisHlUaIvDY+5LTxIaeNE3ltfPyVUz6N3XhV93xG4pwGNcPvJNQE8wY1wbxBTTBvGj/OaRqvxnCNhmOQ+ZBzcyHf5kK+zYecm0t9v0YTWMdxVCk0NFQ9evTQunXrPG1ut1vr1q2T3W73R0gAAAAAcEk4nwEAAADQkHFOAwAAAPzIb4/ny87OVkZGhnr27KkbbrhBc+fO1alTp3Tffff5KyQAAAAAuCSczwAAAABoyDinAQAAAPxYNHXXXXfp22+/1bRp0+RwONS9e3etXr1aMTEx/gqpwbFYLJo+fXql2+KiYSOvjQ85bXzIaeNEXhsfcoq6xPkM6hLHL9QE8wY1wbxBTTBvgMahoZ7TcAwyH3JuLuTbXMi3+ZBzc2ko+Q4wDMPwdxAAAAAAAAAAAAAAAAAA4CuB/g4AAAAAAAAAAAAAAAAAAHyJoikAAAAAAAAAAAAAAAAApkLRFAAAAAAAAAAAAAAAAABToWgKAAAAAAAAAAAAAAAAgKlQNFUPbdq0SYMHD1ZcXJwCAgL09ttve603DEPTpk1TbGysmjRpouTkZO3fv9+rz/HjxzVixAhZrVZFRkZq9OjROnnypA9HgZ+6UE5dLpcefvhhde3aVU2bNlVcXJzuvfdeffPNN17bIKf1y8V+Tn/qd7/7nQICAjR37lyvdnJa/1xKXvfu3avbb79dzZs3V9OmTdWrVy8dOXLEs/7MmTPKzMxUixYt1KxZM6Wnp6u4uNiHo8BPXSynJ0+eVFZWllq3bq0mTZqoU6dOWrx4sVcfclq/5OXlqVevXoqIiFB0dLSGDh2qffv2efW5lJwdOXJEaWlpCg8PV3R0tCZNmqRz5875cigATIbjF2pi0aJF6tatm6xWq6xWq+x2uz744APPeuYMLmb27NkKCAjQhAkTPG3MG1QlJydHAQEBXl8dOnTwrGfeAPClBQsW6KqrrlJYWJiSkpK0bdu2C/Zfvny5OnTooLCwMHXt2lWrVq3yUaSoLdXJ+fPPP6+bbrpJV1xxha644golJydfdI6gfqnuz3iF119/XQEBARo6dGjdBohaVd18l5aWKjMzU7GxsbJYLGrXrh3H9QamujmfO3eu2rdvryZNmig+Pl4TJ07UmTNnfBQtLkd1rpdX2LBhg37xi1/IYrHommuu0dKlS+s8zouhaKoeOnXqlK677jotWLCgyvVz5szRvHnztHjxYm3dulVNmzZVamqq18FjxIgR2r17twoKCrRy5Upt2rRJY8eO9dUQ8DMXyunp06f1ySefaOrUqfrkk0/01ltvad++fbr99tu9+pHT+uViP6cVVqxYoS1btiguLq7SOnJa/1wsrwcPHlTfvn3VoUMHbdiwQTt37tTUqVMVFhbm6TNx4kS99957Wr58uTZu3KhvvvlGw4YN89UQ8DMXy2l2drZWr16tV155RXv37tWECROUlZWld99919OHnNYvGzduVGZmprZs2aKCggK5XC6lpKTo1KlTnj4Xy1l5ebnS0tJ09uxZbd68WS+99JKWLl2qadOm+WNIAEyC4xdqonXr1po9e7aKior08ccf69Zbb9WQIUO0e/duScwZXNj27dv1X//1X+rWrZtXO/MG59O5c2cdPXrU8/XRRx951jFvAPjK3/72N2VnZ2v69On65JNPdN111yk1NVUlJSVV9t+8ebPuvvtujR49Wp9++qmGDh2qoUOHateuXT6OHDVV3Zxv2LBBd999t9avX6/CwkLFx8crJSVFX3/9tY8jR01UN98VDh8+rD/+8Y+66aabfBQpakN183327FkNGDBAhw8f1t///nft27dPzz//vK688kofR46aqm7Oly1bpkceeUTTp0/X3r179cILL+hvf/ubHn30UR9Hjpq41OvlFQ4dOqS0tDT98pe/1I4dOzRhwgQ98MADWrNmTR1HehEG6jVJxooVKzzLbrfbsNlsxl/+8hdPW2lpqWGxWIzXXnvNMAzD2LNnjyHJ2L59u6fPBx98YAQEBBhff/21z2JH1X6e06ps27bNkGR8+eWXhmGQ0/rufDn997//bVx55ZXGrl27jISEBOPpp5/2rCOn9V9Veb3rrruMe+6557yvKS0tNUJCQozly5d72vbu3WtIMgoLC+sqVFyiqnLauXNnY8aMGV5tv/jFL4w///nPhmGQ04agpKTEkGRs3LjRMIxLy9mqVauMwMBAw+FwePosWrTIsFqthtPp9O0AAJgWxy/U1BVXXGH893//N3MGF/T9998b1157rVFQUGDcfPPNxu9//3vDMDjW4PymT59uXHfddVWuY94A8KUbbrjByMzM9CyXl5cbcXFxRl5eXpX977zzTiMtLc2rLSkpyfjtb39bp3Gi9lQ35z937tw5IyIiwnjppZfqKkTUoprk+9y5c8aNN95o/Pd//7eRkZFhDBkyxAeRojZUN9+LFi0yrr76auPs2bO+ChG1rLo5z8zMNG699VavtuzsbKNPnz51Gidq36XUQPzpT38yOnfu7NV21113GampqXUY2cVxp6kG5tChQ3I4HEpOTva0NW/eXElJSSosLJQkFRYWKjIyUj179vT0SU5OVmBgoLZu3erzmFF9J06cUEBAgCIjIyWR04bI7XZr5MiRmjRpkjp37lxpPTlteNxut95//321a9dOqampio6OVlJSktetJouKiuRyubyO0R06dFCbNm08x2jULzfeeKPeffddff311zIMQ+vXr9fnn3+ulJQUSeS0IThx4oQkKSoqStKl5aywsFBdu3ZVTEyMp09qaqrKyso8d+4AgLrG8QvVVV5ertdff12nTp2S3W5nzuCCMjMzlZaW5jU/JI41uLD9+/crLi5OV199tUaMGOF5FD3zBoCvnD17VkVFRV7Hm8DAQCUnJ5/3/2EKCwsr/b5LTU3l/20aiJrk/OdOnz4tl8vlObdC/VXTfM+YMUPR0dEaPXq0L8JELalJvt99913Z7XZlZmYqJiZGXbp00eOPP67y8nJfhY3LUJOc33jjjSoqKvI8wu+LL77QqlWrdNttt/kkZvhWff27Ldive0e1ORwOSfL6D4iK5Yp1DodD0dHRXuuDg4MVFRXl6YP668yZM3r44Yd19913y2q1SiKnDdETTzyh4OBgPfTQQ1WuJ6cNT0lJiU6ePKnZs2frscce0xNPPKHVq1dr2LBhWr9+vW6++WY5HA6FhoZ6Ch4r/PQYjfpl/vz5Gjt2rFq3bq3g4GAFBgbq+eefV79+/SSJnNZzbrdbEyZMUJ8+fdSlSxdJl5Yzh8NR5d9SFesAoK5x/EJ1fPbZZ7Lb7Tpz5oyaNWumFStWqFOnTtqxYwdzBlV6/fXX9cknn2j79u2V1nGswfkkJSVp6dKlat++vY4eParc3FzddNNN2rVrF/MGgM989913Ki8vr/J48r//+79VvuZ8xx+OPQ1DTXL+cw8//LDi4uIqXYRF/VOTfH/00Ud64YUXtGPHDh9EiNpUk3x/8cUX+vDDDzVixAitWrVKBw4c0IMPPiiXy6Xp06f7Imxchprk/De/+Y2+++479e3bV4Zh6Ny5c/rd737H4/kaqfP93VZWVqYffvhBTZo08UtcFE0B9YjL5dKdd94pwzC0aNEif4eDGioqKtIzzzyjTz75RAEBAf4OB7XE7XZLkoYMGaKJEydKkrp3767Nmzdr8eLFuvnmm/0ZHmpo/vz52rJli959910lJCRo06ZNyszM5D9aGojMzEzt2rVLH330kb9DAYBq4fiF6mjfvr127NihEydO6O9//7syMjK0ceNGf4eFeuqrr77S73//exUUFCgsLMzf4aABGTRokOf7bt26KSkpSQkJCXrjjTf89h/XAABczOzZs/X6669rw4YN/O3TCH3//fcaOXKknn/+ebVs2dLf4cAH3G63oqOj9dxzzykoKEg9evTQ119/rb/85S8UTTVSGzZs0OOPP66FCxcqKSlJBw4c0O9//3vNnDlTU6dO9Xd4MAkez9fA2Gw2SVJxcbFXe3FxsWedzWZTSUmJ1/pz587p+PHjnj6ofyoKpr788ksVFBR47jIlkdOG5h//+IdKSkrUpk0bBQcHKzg4WF9++aX+8Ic/6KqrrpJEThuili1bKjg4WJ06dfJq79ixo+eRBTabTWfPnlVpaalXn58eo1F//PDDD3r00Uf11FNPafDgwerWrZuysrJ011136cknn5RETuuzrKwsrVy5UuvXr1fr1q097ZeSM5vNVuXfUhXrAKAucfxCdYWGhuqaa65Rjx49lJeXp+uuu07PPPMMcwZVKioqUklJiX7xi194zkc3btyoefPmKTg4WDExMcwbXJLIyEi1a9dOBw4c4HgDwGdatmypoKCgC17/+LnzHX849jQMNcl5hSeffFKzZ89Wfn6+unXrVpdhopZUN98HDx7U4cOHNXjwYM/fti+//LLeffddBQcH6+DBg74KHTVQk5/v2NhYtWvXTkFBQZ62jh07yuFw6OzZs3UaLy5fTXI+depUjRw5Ug888IC6du2qO+64Q48//rjy8vI8NzNA43G+v9usVqtfP6xD0VQDk5iYKJvNpnXr1nnaysrKtHXrVtntdkmS3W5XaWmpioqKPH0+/PBDud1uJSUl+TxmXFxFwdT+/fu1du1atWjRwms9OW1YRo4cqZ07d2rHjh2er7i4OE2aNElr1qyRRE4botDQUPXq1Uv79u3zav/888+VkJAgSerRo4dCQkK8jtH79u3TkSNHPMdo1B8ul0sul0uBgd5/DgUFBXn+GCen9Y9hGMrKytKKFSv04YcfKjEx0Wv9peTMbrfrs88+8yperShY/nlhJADUFo5fqC1ut1tOp5M5gyr1799fn332mdf5aM+ePTVixAjP98wbXIqTJ0/q4MGDio2N5XgDwGdCQ0PVo0cPr+ON2+3WunXrzvv/MHa73au/9OPxh/+3aRhqknNJmjNnjmbOnKnVq1erZ8+evggVtaC6+e7QoUOlv21vv/12/fKXv9SOHTsUHx/vy/BRTTX5+e7Tp48OHDjgVSzz+eefKzY2VqGhoXUeMy5PTXJ++vTpKq/RSD/+Xxoal3r7d5uBeuf77783Pv30U+PTTz81JBlPPfWU8emnnxpffvmlYRiGMXv2bCMyMtJ45513jJ07dxpDhgwxEhMTjR9++MGzjYEDBxrXX3+9sXXrVuOjjz4yrr32WuPuu+/215BM70I5PXv2rHH77bcbrVu3Nnbs2GEcPXrU8+V0Oj3bIKf1y8V+Tn8uISHBePrpp73ayGn9c7G8vvXWW0ZISIjx3HPPGfv37zfmz59vBAUFGf/4xz882/jd735ntGnTxvjwww+Njz/+2LDb7YbdbvfXkEzvYjm9+eabjc6dOxvr1683vvjiC2PJkiVGWFiYsXDhQs82yGn9Mm7cOKN58+bGhg0bvH5nnj592tPnYjk7d+6c0aVLFyMlJcXYsWOHsXr1aqNVq1bG5MmT/TEkACbB8Qs18cgjjxgbN240Dh06ZOzcudN45JFHjICAACM/P98wDOYMLs3NN99s/P73v/csM29QlT/84Q/Ghg0bjEOHDhn//Oc/jeTkZKNly5ZGSUmJYRjMGwC+8/rrrxsWi8VYunSpsWfPHmPs2LFGZGSk4XA4DMMwjJEjRxqPPPKIp/8///lPIzg42HjyySeNvXv3GtOnTzdCQkKMzz77zF9DQDVVN+ezZ882QkNDjb///e9e51bff/+9v4aAaqhuvn8uIyPDGDJkiI+ixeWqbr6PHDliREREGFlZWca+ffuMlStXGtHR0cZjjz3mryGgmqqb8+nTpxsRERHGa6+9ZnzxxRdGfn6+0bZtW+POO+/01xBQDRe7BvfII48YI0eO9PT/4osvjPDwcGPSpEnG3r17jQULFhhBQUHG6tWr/TUEwzAMg6Kpemj9+vWGpEpfGRkZhmEYhtvtNqZOnWrExMQYFovF6N+/v7Fv3z6vbRw7dsy4++67jWbNmhlWq9W47777+IPRjy6U00OHDlW5TpKxfv16zzbIaf1ysZ/Tn6uqaIqc1j+XktcXXnjBuOaaa4ywsDDjuuuuM95++22vbfzwww/Ggw8+aFxxxRVGeHi4cccddxhHjx718UhQ4WI5PXr0qDFq1CgjLi7OCAsLM9q3b2/89a9/Ndxut2cb5LR+Od/vzCVLlnj6XErODh8+bAwaNMho0qSJ0bJlS+MPf/iD4XK5fDwaAGbC8Qs1cf/99xsJCQlGaGio0apVK6N///6eginDYM7g0vy8aIp5g6rcddddRmxsrBEaGmpceeWVxl133WUcOHDAs555A8CX5s+fb7Rp08YIDQ01brjhBmPLli2edTfffHOl/4N94403jHbt2hmhoaFG586djffff9/HEeNyVSfnCQkJVZ5bTZ8+3feBo0aq+zP+UxRNNTzVzffmzZuNpKQkw2KxGFdffbUxa9Ys49y5cz6OGpejOjl3uVxGTk6O0bZtWyMsLMyIj483HnzwQeM///mP7wNHtV3sGlxGRoZx8803V3pN9+7djdDQUOPqq6/2+r9RfwkwDO5rBgAAAAAAAAAAAAAAAMA8Ai/eBQAAAAAAAAAAAAAAAAAaD4qmAAAAAAAAAAAAAAAAAJgKRVMAAAAAAAAAAAAAAAAATIWiKQAAAAAAAAAAAAAAAACmQtEUAAAAAAAAAAAAAAAAAFOhaAoAAAAAAAAAAAAAAACAqVA0BQAAAAAAAAAAAAAAAMBUKJoCAAAAAAAAAAAAAAAAYCoUTQEAAAAAAAAAAAAAAAAwFYqmAAAAAAAAUOcCAgKUlZVVa9vbsGGDAgICtGHDhlrb5k/l5OQoICBA3333XZ1sHwAAAAAAAP5F0RQAmNTjjz+ut99+299hAAAAAGhkNm/erJycHJWWlvo7FAAAAAAAAOC8KJoCAJOiaAoAAABAXdi8ebNyc3MpmgIAAAAAAEC9RtEUADQQp06d8ncIAAAAAAAAAAAAAAA0ChRNAUA9lJOTo4CAAO3Zs0e/+c1vdMUVV6hv376SpFdeeUU9evRQkyZNFBUVpeHDh+urr77yev3+/fuVnp4um82msLAwtW7dWsOHD9eJEyckSQEBATp16pReeuklBQQEKCAgQKNGjfK8/uuvv9b999+vmJgYWSwWde7cWS+++GKlOM+cOaOcnBy1a9dOYWFhio2N1bBhw3Tw4EFPn2PHjmnkyJGyWq2KjIxURkaG/vWvfykgIEBLly6t/TcPAAAAgN/k5ORo0qRJkqTExETP+cbhw4c9fd5++2116dLFc66xevVqr218+eWXevDBB9W+fXs1adJELVq00K9//WuvbZzPP/7xD/36179WmzZtZLFYFB8fr4kTJ+qHH36o1Pd///d/deedd6pVq1Zq0qSJ2rdvrz//+c+V+pWWlmrUqFGKjIxU8+bNdd999+n06dPVe2MAAAAANAoXun7yww8/qEOHDurQoYPXOcjx48cVGxurG2+8UeXl5ZKknTt3atSoUbr66qsVFhYmm82m+++/X8eOHfPaX8X1ogMHDlz0vOSHH37QQw89pJYtWyoiIkK33367vv76awUEBCgnJ6du3xgAaKCC/R0AAOD8fv3rX+vaa6/V448/LsMwNGvWLE2dOlV33nmnHnjgAX377beaP3+++vXrp08//VSRkZE6e/asUlNT5XQ6NX78eNlsNn399ddauXKlSktL1bx5c/3P//yPHnjgAd1www0aO3asJKlt27aSpOLiYvXu3VsBAQHKyspSq1at9MEHH2j06NEqKyvThAkTJEnl5eX61a9+pXXr1mn48OH6/e9/r++//14FBQXatWuX2rZtK7fbrcGDB2vbtm0aN26cOnTooHfeeUcZGRn+eksBAAAA1KFhw4bp888/12uvvaann35aLVu2lCS1atVKkvTRRx/prbfe0oMPPqiIiAjNmzdP6enpOnLkiFq0aCFJ2r59uzZv3qzhw4erdevWOnz4sBYtWqRbbrlFe/bsUXh4+Hn3v3z5cp0+fVrjxo1TixYttG3bNs2fP1///ve/tXz5ck+/nTt36qabblJISIjGjh2rq666SgcPHtR7772nWbNmeW3zzjvvVGJiovLy8vTJJ5/ov//7vxUdHa0nnniitt8+AAAAAPXYpVw/eemll9SnTx/9+c9/1lNPPSVJyszM1IkTJ7R06VIFBQVJkgoKCvTFF1/ovvvuk81m0+7du/Xcc89p9+7d2rJliwICArz2fSnnJaNGjdIbb7yhkSNHqnfv3tq4caPS0tJ89wYBQENkAADqnenTpxuSjLvvvtvTdvjwYSMoKMiYNWuWV9/PPvvMCA4O9rR/+umnhiRj+fLlF9xH06ZNjYyMjErto0ePNmJjY43vvvvOq3348OFG8+bNjdOnTxuGYRgvvviiIcl46qmnKm3D7XYbhmEYb775piHJmDt3rmddeXm5ceuttxqSjCVLllwwRgAAAAANz1/+8hdDknHo0CGvdklGaGioceDAAU/bv/71L0OSMX/+fE9bxTnHTxUWFhqSjJdfftnTtn79ekOSsX79+gu+Ni8vzwgICDC+/PJLT1u/fv2MiIgIrzbD+L9zGcP4v/Oy+++/36vPHXfcYbRo0eI8owcAAADQWF3q9ZPJkycbgYGBxqZNm4zly5dXuk5iGFWfu7z22muGJGPTpk2etks9LykqKjIkGRMmTPDqN2rUKEOSMX369BqNGQAaOx7PBwD12O9+9zvP92+99ZbcbrfuvPNOfffdd54vm82ma6+9VuvXr5ckNW/eXJK0Zs2aaj8ywjAMvfnmmxo8eLAMw/DaT2pqqk6cOKFPPvlEkvTmm2+qZcuWGj9+fKXtVHwCYvXq1QoJCdGYMWM86wIDA5WZmVm9NwIAAABAo5CcnOy5y60kdevWTVarVV988YWnrUmTJp7vXS6Xjh07pmuuuUaRkZGe85Hz+elrT506pe+++0433nijDMPQp59+Kkn69ttvtWnTJt1///1q06aN1+t//mluyfu8TJJuuukmHTt2TGVlZZcwYgAAAACNQXWun+Tk5Khz587KyMjQgw8+qJtvvlkPPfSQ1/Z+eu5y5swZfffdd+rdu7ckVXnec7HzkorHnj/44INe/aq6hgMA+D88ng8A6rHExETP9/v375dhGLr22mur7BsSEuJ5TXZ2tp566im9+uqruummm3T77bfrnnvu8RRUnc+3336r0tJSPffcc3ruueeq7FNSUiJJOnjwoNq3b6/g4PP/Kvnyyy8VGxtb6fEZ11xzzQXjAAAAANA4/bxISZKuuOIK/ec///Es//DDD8rLy9OSJUv09ddfyzAMz7oTJ05ccPtHjhzRtGnT9O6773pt86evrSjQ6tKlS41ivuKKKyRJ//nPf2S1Wi9pGwAAAAAatupcPwkNDdWLL76oXr16KSwsTEuWLKn0AY3jx48rNzdXr7/+uud1Fao677nYecmXX36pwMBAr+tKEtdjAOBiKJoCgHrsp580cLvdCggI0AcffOB55vVPNWvWzPP9X//6V40aNUrvvPOO8vPz9dBDDykvL09btmxR69atz7s/t9stSbrnnnuUkZFRZZ9u3brVdDgAAAAATK6qcxlJXoVR48eP15IlSzRhwgTZ7XY1b95cAQEBGj58uOecpSrl5eUaMGCAjh8/rocfflgdOnRQ06ZN9fXXX2vUqFEXfO3lxgwAAACgcavu9ZM1a9ZI+vEuUvv3769UzHTnnXdq8+bNmjRpkrp3765mzZrJ7XZr4MCBVZ67cF4CAHWDoikAaCDatm0rwzCUmJiodu3aXbR/165d1bVrV02ZMkWbN29Wnz59tHjxYj322GOSqn7sRKtWrRQREaHy8nIlJydfNJ6tW7fK5XJ57nL1cwkJCVq/fr1Onz7tdbepAwcOXDR+AAAAAA1TVeca1fH3v/9dGRkZ+utf/+ppO3PmjEpLSy/4us8++0yff/65XnrpJd17772e9oKCAq9+V199tSRp165dlxUnAAAAAPOozvWTnTt3asaMGbrvvvu0Y8cOPfDAA/rss888TwP5z3/+o3Xr1ik3N1fTpk3zvG7//v01ji8hIUFut1uHDh3yemIJ12MA4MIC/R0AAODSDBs2TEFBQcrNza30yQHDMHTs2DFJUllZmc6dO+e1vmvXrgoMDJTT6fS0NW3atNJFh6CgIKWnp+vNN9+s8gLCt99+6/k+PT1d3333nZ599tlK/SriS01Nlcvl0vPPP+9Z53a7tWDBgkscNQAAAICGpmnTppJ00SKn8wkKCqp0zjN//nyVl5df9HWS9yetDcPQM88849WvVatW6tevn1588UUdOXLEax2f0gYAAABQlUu9fuJyuTRq1CjFxcXpmWee0dKlS1VcXKyJEyd6bUuqfP4xd+7cGseXmpoqSVq4cKFX+/z582u8TQAwA+40BQANRNu2bfXYY49p8uTJOnz4sIYOHaqIiAgdOnRIK1as0NixY/XHP/5RH374obKysvTrX/9a7dq107lz5/Q///M/nj/oK/To0UNr167VU089pbi4OCUmJiopKUmzZ8/W+vXrlZSUpDFjxqhTp046fvy4PvnkE61du1bHjx+XJN177716+eWXlZ2drW3btummm27SqVOntHbtWj344IMaMmSIhg4dqhtuuEF/+MMfdODAAXXo0EHvvvuuZxuX+wl0AAAAAPVPjx49JEl//vOfNXz4cIWEhGjw4MGX/Ppf/epX+p//+R81b95cnTp1UmFhodauXasWLVpc8HUdOnRQ27Zt9cc//lFff/21rFar3nzzTf3nP/+p1HfevHnq27evfvGLX2js2LFKTEzU4cOH9f7772vHjh3VGi8AAAAAc7iU6yePPfaYduzYoXXr1ikiIkLdunXTtGnTNGXKFP1//9//p9tuu01Wq1X9+vXTnDlz5HK5dOWVVyo/P1+HDh2qcWw9evRQenq65s6dq2PHjql3797auHGjPv/8c0lcj/n/2bv38Cjqs//jn5xDgE0MkoRIiHgCwlGDhFWsCCEBKYrkqWIRo6XSYoIFFBHLGSWKtnhogOpDQR+NBzygYoQEFCgSTlF+cioFRVEhoZWGcJDNkszvD69sXQmSXZKd3cz7dV1cujPfmbm/93d2MrNz7ywAnA1FUwAQQB566CFdccUVmjdvnmbOnClJSkpKUkZGhm666SZJUvfu3ZWZman33ntP3377raKiotS9e3d98MEH6t27t2tdf/7znzV69GhNmTJF33//vbKzs5WWlqb4+Hht3rxZs2bN0ltvvaX58+erVatW6ty5sx5//HHX8iEhISosLNSjjz6qgoICvfnmm2rVqpX69Omjrl27utq8//77+sMf/qAXXnhBwcHBuuWWWzR9+nRde+21ioyM9GH2AAAAAPjC1VdfrdmzZ2vhwoVasWKF6yci6uvpp59WSEiIXn75ZZ06dUrXXnutVq1a5frm9NmEhYXpvffe03333ae8vDxFRkbqlltuUW5urrp37+7Wtnv37tq4caOmTp2qBQsW6NSpU0pOTtatt97qVZ8BAAAANH3nun/yySefaM6cOcrNzdUNN9zgWu6hhx7SO++8o3vuuUc7d+5UTEyMCgoKNHbsWOXn58swDGVkZOiDDz5QYmKi1/G9+OKLSkhI0CuvvKK3335b6enpeu2119ShQwfuxwDAWQQZPHccAOBjy5Yt0y233KL169fr2muvNTscAAAAAAAAAACAJmfbtm268sor9dJLL2nEiBFmhwMAfifY7AAAAE3b999/7/a6urpazz77rGw2m6666iqTogIAAAAAAAAAAGg6fno/RpKeeuopBQcH6xe/+IUJEQGA/+Pn+QAAjWrs2LH6/vvvZbfb5XA49NZbb2nDhg2aM2eOmjVrZnZ4AAAAAAAAAAAAAW/u3LkqLS3VDTfcoNDQUH3wwQf64IMPNHr0aCUlJZkdHgD4JX6eDwDQqAoKCvSnP/1J+/bt06lTp3TZZZdpzJgxys3NNTs0AAAAAAAAAACAJqG4uFgzZ87Url27dPz4cbVr104jR47UH//4R4WG8iwVAKgLRVMAAAAAAAAAAAAAAAAALCXY7AAAAAAAAAAAAAAAAAAAwJcomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALCUULMD8EZNTY0OHjyoli1bKigoyOxwAAAAADeGYejYsWNKTExUcDDfU8CZuKYBAACAP+OaBj+H6xkAAAD4M0+uZwKyaOrgwYNKSkoyOwwAAADgZ3399ddq27at2WHAD3FNAwAAgEDANY1/ufjii/XVV1+dMf3ee+9Vfn6+Tp06pfvvv1+vvvqqHA6HMjMzNX/+fMXHx7vaHjhwQGPGjNFHH32kFi1aKDs7W3l5eQoNrf/tIq5nAAAAEAjqcz0TkEVTLVu2lPRDB202m0+37XQ6VVRUpIyMDIWFhfl024GMvHmHvHmOnHmHvHmHvHmOnHmHvHnHzLxVVlYqKSnJdd4K/JSZ1zSBgmOfeci9eci9eci9eci9eci9eQIh91zT+KctW7aourra9XrHjh0aMGCAfvWrX0mSxo8fr/fff19Lly5VdHS0cnNzNWzYMH388ceSpOrqag0ePFgJCQnasGGDDh06pDvvvFNhYWGaM2dOvePgHg18iTG3FsbbWhhv62HMrSVQ7tEEZNFU7eNebTabKSfkUVFRstlsvJE9QN68Q948R868Q968Q948R868Q9684w9542cKcDZmXtMECn94D1sVuTcPuTcPuTcPuTcPuTdPIOWeaxr/0rp1a7fXjz32mC699FJdf/31Onr0qBYtWqSCggL169dPkrR48WJ16tRJGzduVO/evVVUVKRdu3Zp1apVio+PV48ePTR79mxNmjRJM2bMUHh4eL3i4B4NfIkxtxbG21oYb+thzK3FH8a7Ptcz/Bg5AAAAAAAAAABAAKmqqtJLL72k3/zmNwoKClJpaamcTqfS09NdbTp27Kh27dqppKREklRSUqKuXbu6/VxfZmamKisrtXPnTp/3AQAAADBbQD5pCgAAAAAAAAAAwKqWLVumiooK3XXXXZKksrIyhYeHKyYmxq1dfHy8ysrKXG1+XDBVO7923tk4HA45HA7X68rKSkk/PD3A6XSeb1c8Urs9X28X5mHMrYXxthbG23oYc2sxc7w92SZFUwAAAAAAAAAAAAFk0aJFGjRokBITExt9W3l5eZo5c+YZ04uKihQVFdXo269LcXGxKduFeRhza2G8rYXxth7G3FrMGO+TJ0/Wuy1FUwAAAAAAAAAAAAHiq6++0qpVq/TWW2+5piUkJKiqqkoVFRVuT5sqLy9XQkKCq83mzZvd1lVeXu6adzaTJ0/WhAkTXK8rKyuVlJSkjIwM2Wy2huhSvTmdThUXF2vAgAEKCwvz6bZhDsbcWhhva2G8rYcxtxYzx7v2yaj1QdEUAAAAAAAAAABAgFi8eLHi4uI0ePBg17TU1FSFhYVp9erVysrKkiTt2bNHBw4ckN1ulyTZ7XY9+uijOnz4sOLi4iT98M1/m82mlJSUs24vIiJCERERZ0wPCwsz7YanmduGORhza2G8rYXxth7G3FrMGG9PtkfRFAAAAAAAAAAAQACoqanR4sWLlZ2drdDQ/97iiY6O1qhRozRhwgTFxsbKZrNp7Nixstvt6t27tyQpIyNDKSkpGjlypObOnauysjJNmTJFOTk5dRZFAQAAAE0dRVMAAAAAAAAAAAABYNWqVTpw4IB+85vfnDFv3rx5Cg4OVlZWlhwOhzIzMzV//nzX/JCQEC1fvlxjxoyR3W5X8+bNlZ2drVmzZvmyCwAAAIDfoGgKAAAAAAAAAAAgAGRkZMgwjDrnRUZGKj8/X/n5+WddPjk5WYWFhY0VHgAAABBQgs0OAAAAAAAAAAAAAAAAAAB8iSdNAQBcusxYKUd1kNlh+NSXjw02OwQAAAAA8NrFD71vdgjnJSLE0Nxenl+Pci0HANZmxc8xJf7+AQAANDSeNAUAAADAMvLy8nT11VerZcuWiouL09ChQ7Vnzx63Nn379lVQUJDbv9///vdubQ4cOKDBgwcrKipKcXFxmjhxok6fPu3LrgAAAAAAAAAAgPPgUdHUjBkzzrh50LFjR9f8U6dOKScnR61atVKLFi2UlZWl8vJyt3VwcwEAAACAWdauXaucnBxt3LhRxcXFcjqdysjI0IkTJ9za3XPPPTp06JDr39y5c13zqqurNXjwYFVVVWnDhg164YUXtGTJEk2bNs3X3QEAAAAAAAAAAF7y+Of5OnfurFWrVv13BaH/XcX48eP1/vvva+nSpYqOjlZubq6GDRumjz/+WNJ/by4kJCRow4YNOnTokO68806FhYVpzpw5DdAdAAAAADi7FStWuL1esmSJ4uLiVFpaql/84heu6VFRUUpISKhzHUVFRdq1a5dWrVql+Ph49ejRQ7Nnz9akSZM0Y8YMhYeHN2ofAAAAAAAAAADA+fO4aCo0NLTOmwdHjx7VokWLVFBQoH79+kmSFi9erE6dOmnjxo3q3bs3NxcAAAAA+JWjR49KkmJjY92mv/zyy3rppZeUkJCgIUOGaOrUqYqKipIklZSUqGvXroqPj3e1z8zM1JgxY7Rz505deeWVZ2zH4XDI4XC4XldWVkqSnE6nnE5ng/erKajNC/nxPXJvHnJvnkDOfUSIYXYI5yUi2HD7b30F4lj5m0De7wNdIOTen2MDAAAAgIbicdHU3r17lZiYqMjISNntduXl5aldu3YqLS2V0+lUenq6q23Hjh3Vrl07lZSUqHfv3l7dXAAAAACAxlBTU6Nx48bp2muvVZcuXVzTf/3rXys5OVmJiYn67LPPNGnSJO3Zs0dvvfWWJKmsrMztmkaS63VZWVmd28rLy9PMmTPPmF5UVOQqxkLdiouLzQ7Bssi9eci9eQIx93N7mR1Bw5jds8aj9oWFhY0UifUE4n7fVPhz7k+ePGl2CAAAAADQ6DwqmkpLS9OSJUvUoUMHHTp0SDNnztR1112nHTt2qKysTOHh4YqJiXFbJj4+3nXjwJubC5J/fSs7EL4F5I/Im3fIm+fImXdq8+XpN3ubgvPZV9jfPEfOvEPevGNm3hirwJCTk6MdO3Zo/fr1btNHjx7t+v+uXbuqTZs26t+/vz7//HNdeumlXm1r8uTJmjBhgut1ZWWlkpKSlJGRIZvN5l0Hmjin06ni4mINGDBAYWFhZodjKeTePOTePIGc+y4zVpodwnmJCDY0u2eNpm4NlqMmqN7L7ZiR2YhRWUMg7/eBLhByX/sZPAAAAAA0ZR4VTQ0aNMj1/926dVNaWpqSk5P1+uuvq1mzZg0eXC1//Fa2P38LyJ+RN++QN8+RM+94+s3epqAhvp3M/uY5cuYd8uYdM/LGt7L9X25urpYvX65169apbdu2P9s2LS1NkrRv3z5deumlSkhI0ObNm93alJeXS1KdP2UuSREREYqIiDhjelhYmN/eKPMX5Mg85N485N48gZh7R3X9C438maMmyKO+BNo4+bNA3O+bCn/Ovb/GBQAAAAANyeOf5/uxmJgYXXHFFdq3b58GDBigqqoqVVRUuD1tqry83HXjwJubC5J/fSu79ltAnn77rSk4n2/wBcK3p/wRefMcOfMOxzbvsL95jpx5h7x5x8y88a1s/2UYhsaOHau3335ba9asUfv27c+5zLZt2yRJbdq0kSTZ7XY9+uijOnz4sOLi4iT9UJxns9mUkpLSaLEDAAAAAAAAAICGc15FU8ePH9fnn3+ukSNHKjU1VWFhYVq9erWysrIkSXv27NGBAwdkt9sleX9zwR+/le3pt9+agobItT9/e8qfkTfPkTPvcGzzfh3sb54hZ94hb94xI2+Mk//KyclRQUGB3nnnHbVs2dL1M+HR0dFq1qyZPv/8cxUUFOjGG29Uq1at9Nlnn2n8+PH6xS9+oW7dukmSMjIylJKSopEjR2ru3LkqKyvTlClTlJOTU+d1CwAAAAAAAAAA8D8eFU098MADGjJkiJKTk3Xw4EFNnz5dISEhuv322xUdHa1Ro0ZpwoQJio2Nlc1m09ixY2W329W7d29J3FwAAAAAYK4FCxZIkvr27es2ffHixbrrrrsUHh6uVatW6amnntKJEyeUlJSkrKwsTZkyxdU2JCREy5cv15gxY2S329W8eXNlZ2dr1qxZvuwKAAAAAAAAAAA4Dx4VTX3zzTe6/fbb9d1336l169bq06ePNm7cqNatW0uS5s2bp+DgYGVlZcnhcCgzM1Pz5893Lc/NBQAAAABmMgzjZ+cnJSVp7dq151xPcnKyCgsLGyosAAAAAAAAAADgYx4VTb366qs/Oz8yMlL5+fnKz88/axtuLgAAAAAAAAAAAAAAAAAwU7DZAQAAAAAAAAAAAAAAAACAL1E0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYCkUTQEAAAAAAAAAAAAAAACwFIqmAAAAAAAAAAAAAAAAAFgKRVMAAAAAAAAAAAAAAAAALIWiKQAAAAAAAAAAAAAAAACWQtEUAAAAAAAAAAAAAAAAAEuhaAoAAAAAAAAAAAAAAACApVA0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYCkUTQEAAAAAAAAAAAAAAACwFIqmAAAAAAAAAAAAAsC3336rO+64Q61atVKzZs3UtWtXbd261TXfMAxNmzZNbdq0UbNmzZSenq69e/e6rePIkSMaMWKEbDabYmJiNGrUKB0/ftzXXQEAAABMR9EUAAAAAAAAAACAn/vPf/6ja6+9VmFhYfrggw+0a9cu/elPf9IFF1zgajN37lw988wzWrhwoTZt2qTmzZsrMzNTp06dcrUZMWKEdu7cqeLiYi1fvlzr1q3T6NGjzegSAAAAYKpQswMAAAAAAAAAAADAz3v88ceVlJSkxYsXu6a1b9/e9f+GYeipp57SlClTdPPNN0uSXnzxRcXHx2vZsmUaPny4du/erRUrVmjLli3q2bOnJOnZZ5/VjTfeqCeffFKJiYm+7RQAAABgIp40BQAAAAAAAAAA4Ofeffdd9ezZU7/61a8UFxenK6+8Us8//7xr/v79+1VWVqb09HTXtOjoaKWlpamkpESSVFJSopiYGFfBlCSlp6crODhYmzZt8l1nAAAAAD/Ak6YAAAAAAAAAAAD83BdffKEFCxZowoQJevjhh7Vlyxbdd999Cg8PV3Z2tsrKyiRJ8fHxbsvFx8e75pWVlSkuLs5tfmhoqGJjY11tfsrhcMjhcLheV1ZWSpKcTqecTmeD9a8+arcXEWz4dLv+wtf59ge1fbZi362I8bYWxtt6GHNrMXO8PdkmRVMAAAAAAAAAAAB+rqamRj179tScOXMkSVdeeaV27NihhQsXKjs7u9G2m5eXp5kzZ54xvaioSFFRUY223Z8zu2eNKds1W2FhodkhmKa4uNjsEOBDjLe1MN7Ww5hbixnjffLkyXq3pWgKAAAAAAAAAADAz7Vp00YpKSlu0zp16qQ333xTkpSQkCBJKi8vV5s2bVxtysvL1aNHD1ebw4cPu63j9OnTOnLkiGv5n5o8ebImTJjgel1ZWamkpCRlZGTIZrOdd7884XQ6VVxcrKlbg+WoCfLptv3BjhmZZofgc7VjPmDAAIWFhZkdDhoZ420tjLf1MObWYuZ41z4ZtT4omgIAAAAAAAAAAPBz1157rfbs2eM27Z///KeSk5MlSe3bt1dCQoJWr17tKpKqrKzUpk2bNGbMGEmS3W5XRUWFSktLlZqaKkn68MMPVVNTo7S0tDq3GxERoYiIiDOmh4WFmXbD01ETJEe19YqmrHyD2cz9Db7HeFsL4209jLm1mDHenmyPoikAAAAAAAAAAAA/N378eF1zzTWaM2eObr31Vm3evFnPPfecnnvuOUlSUFCQxo0bp0ceeUSXX3652rdvr6lTpyoxMVFDhw6V9MOTqQYOHKh77rlHCxculNPpVG5uroYPH67ExEQTewcAAAD4HkVTAAAAAAAAAAAAfu7qq6/W22+/rcmTJ2vWrFlq3769nnrqKY0YMcLV5sEHH9SJEyc0evRoVVRUqE+fPlqxYoUiIyNdbV5++WXl5uaqf//+Cg4OVlZWlp555hkzugQAAACYiqIpAAAAAAAAAACAAPDLX/5Sv/zlL886PygoSLNmzdKsWbPO2iY2NlYFBQWNER4AAAAQUILNDgAAAAAAAAAAAAAAAAAAfImiKQAAAAAAAAAAAAAAAACWQtEUAAAAAAAAAAAAAAAAAEuhaAoAAAAAAAAAAAAAAACApVA0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYCkUTQEAAAAAAAAAAAAAAACwlFCzAwAAAAAAAAAAT1z80Ptmh2CKLx8bbHYIAAAAAAA0GTxpCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAJaRl5enq6++Wi1btlRcXJyGDh2qPXv2uLU5deqUcnJy1KpVK7Vo0UJZWVkqLy93a3PgwAENHjxYUVFRiouL08SJE3X69GlfdgUAAAAAAAAAAJyH8yqaeuyxxxQUFKRx48a5pnGDAQAAAIC/Wrt2rXJycrRx40YVFxfL6XQqIyNDJ06ccLUZP3683nvvPS1dulRr167VwYMHNWzYMNf86upqDR48WFVVVdqwYYNeeOEFLVmyRNOmTTOjSwAAAAAAAAAAwAuh3i64ZcsW/fWvf1W3bt3cpo8fP17vv/++li5dqujoaOXm5mrYsGH6+OOPJf33BkNCQoI2bNigQ4cO6c4771RYWJjmzJlzfr0BAAAAgJ+xYsUKt9dLlixRXFycSktL9Ytf/EJHjx7VokWLVFBQoH79+kmSFi9erE6dOmnjxo3q3bu3ioqKtGvXLq1atUrx8fHq0aOHZs+erUmTJmnGjBkKDw83o2sAAAAAAAAAAMADXj1p6vjx4xoxYoSef/55XXDBBa7ptTcY/vznP6tfv35KTU3V4sWLtWHDBm3cuFGSXDcYXnrpJfXo0UODBg3S7NmzlZ+fr6qqqobpFQAAAADUw9GjRyVJsbGxkqTS0lI5nU6lp6e72nTs2FHt2rVTSUmJJKmkpERdu3ZVfHy8q01mZqYqKyu1c+dOH0YPAAAAAAAAAAC85dWTpnJycjR48GClp6frkUcecU0/1w2G3r17n/UGw5gxY7Rz505deeWV59EdAAAAAKifmpoajRs3Ttdee626dOkiSSorK1N4eLhiYmLc2sbHx6usrMzV5sfXM7Xza+fVxeFwyOFwuF5XVlZKkpxOp5xOZ4P0p6mpzQv58T1ybx5yb55Azn1EiGF2COclIthw+y9+XkPuo4G83we6QMi9P8cGAAAAAA3F46KpV199VZ988om2bNlyxjwr3GCo3Z4VP8g5n1wHwgcB/oi8eY6ceYdj2/kty/5Wf+TMO+TNO2bmjbEKDDk5OdqxY4fWr1/f6NvKy8vTzJkzz5heVFSkqKioRt9+ICsuLjY7BMsi9+Yh9+YJxNzP7WV2BA1jds8as0MICIWFhQ2+zkDc75sKf879yZMnzQ4BAAAAABqdR0VTX3/9tf7whz+ouLhYkZGRjRXTGfzxBoMVP8hpiA9l/PmDAH9G3jxHzrzDsc077G+eI2feIW/eMSNv3GDwf7m5uVq+fLnWrVuntm3buqYnJCSoqqpKFRUVbl8GKS8vV0JCgqvN5s2b3dZXXl7umleXyZMna8KECa7XlZWVSkpKUkZGhmw2W0N1q0lxOp0qLi7WgAEDFBYWZnY4lkLuzUPuzRPIue8yY6XZIZyXiGBDs3vWaOrWYDlqgswOx+/tmJHZYOsK5P0+0AVC7mu/uAwAAAAATZlHRVOlpaU6fPiwrrrqKte06upqrVu3Tn/5y1+0cuXKJn+DofaC1oof5JzPhzKB8EGAPyJvniNn3uHY5h32N8+RM++QN++YmTduMPgvwzA0duxYvf3221qzZo3at2/vNj81NVVhYWFavXq1srKyJEl79uzRgQMHZLfbJUl2u12PPvqoDh8+rLi4OEk/FOfZbDalpKTUud2IiAhFREScMT0sLIz39TmQI/OQe/OQe/MEYu4d1U3jGs5RE9Rk+tKYGmP/DMT9vqnw59z7a1wAAAAA0JA8Kprq37+/tm/f7jbt7rvvVseOHTVp0iQlJSVZ5gaDFT/IaYhc+/MHAf6MvHmOnHmHY5v362B/8ww58w55844ZeWOc/FdOTo4KCgr0zjvvqGXLlq6fCI+OjlazZs0UHR2tUaNGacKECYqNjZXNZtPYsWNlt9vVu3dvSVJGRoZSUlI0cuRIzZ07V2VlZZoyZYpycnLqvG4BAAAAAAAAAAD+x6OiqZYtW6pLly5u05o3b65WrVq5pnODAQAAAIC/WrBggSSpb9++btMXL16su+66S5I0b948BQcHKysrSw6HQ5mZmZo/f76rbUhIiJYvX64xY8bIbrerefPmys7O1qxZs3zVDQAAAAAAAAAAcJ48KpqqD24wAAAAAPBXhmGcs01kZKTy8/OVn59/1jbJyckqLCxsyNAAAAAAAAAAAIAPnXfR1Jo1a9xec4MBAAAAAAAAAAAAAAAAgD8LNjsAAAAAAAAAAAAAAAAAAPAliqYAAAAAAAAAAAD83IwZMxQUFOT2r2PHjq75p06dUk5Ojlq1aqUWLVooKytL5eXlbus4cOCABg8erKioKMXFxWnixIk6ffq0r7sCAAAA+IXz/nk+AAAAAAAAAAAANL7OnTtr1apVrtehof+9zTN+/Hi9//77Wrp0qaKjo5Wbm6thw4bp448/liRVV1dr8ODBSkhIh2bjdAAA+hJJREFU0IYNG3To0CHdeeedCgsL05w5c3zeFwAAAMBsFE0BAAAAAAAAAAAEgNDQUCUkJJwx/ejRo1q0aJEKCgrUr18/SdLixYvVqVMnbdy4Ub1791ZRUZF27dqlVatWKT4+Xj169NDs2bM1adIkzZgxQ+Hh4b7uDgAAAGAqiqYAAAAAAAAAAAACwN69e5WYmKjIyEjZ7Xbl5eWpXbt2Ki0tldPpVHp6uqttx44d1a5dO5WUlKh3794qKSlR165dFR8f72qTmZmpMWPGaOfOnbryyivr3KbD4ZDD4XC9rqyslCQ5nU45nc5G6mndarcXEWz4dLv+wtf59ge1fbZi362I8bYWxtt6GHNrMXO8PdkmRVMAAAAAAAAAAAB+Li0tTUuWLFGHDh106NAhzZw5U9ddd5127NihsrIyhYeHKyYmxm2Z+Ph4lZWVSZLKysrcCqZq59fOO5u8vDzNnDnzjOlFRUWKioo6z155Z3bPGlO2a7bCwkKzQzBNcXGx2SHAhxhva2G8rYcxtxYzxvvkyZP1bkvRFAAAAAAAAAAAgJ8bNGiQ6/+7deumtLQ0JScn6/XXX1ezZs0abbuTJ0/WhAkTXK8rKyuVlJSkjIwM2Wy2RttuXZxOp4qLizV1a7AcNUE+3bY/2DEj0+wQfK52zAcMGKCwsDCzw0EjY7ythfG2HsbcWswc79ono9YHRVMAAAAAAAAAAAABJiYmRldccYX27dunAQMGqKqqShUVFW5PmyovL1dCQoIkKSEhQZs3b3ZbR3l5uWve2URERCgiIuKM6WFhYabd8HTUBMlRbb2iKSvfYDZzf4PvMd7WwnhbD2NuLWaMtyfbC27EOAAAAAAAAAAAANAIjh8/rs8//1xt2rRRamqqwsLCtHr1atf8PXv26MCBA7Lb7ZIku92u7du36/Dhw642xcXFstlsSklJ8Xn8AAAAgNl40hQAAAAAAAAAAICfe+CBBzRkyBAlJyfr4MGDmj59ukJCQnT77bcrOjpao0aN0oQJExQbGyubzaaxY8fKbrerd+/ekqSMjAylpKRo5MiRmjt3rsrKyjRlyhTl5OTU+SQpAAAAoKmjaAoAAAAAAAAAAMDPffPNN7r99tv13XffqXXr1urTp482btyo1q1bS5LmzZun4OBgZWVlyeFwKDMzU/Pnz3ctHxISouXLl2vMmDGy2+1q3ry5srOzNWvWLLO6BAAAAJiKoikAAAAAAAAAAAA/9+qrr/7s/MjISOXn5ys/P/+sbZKTk1VYWNjQoQEAAAABKdjsAAAAAAAAAAAAAAAAAADAl3jSFAAAAAAAAALexQ+97/WyESGG5vaSusxYKUd1UANGBQAAAAAAAH/Fk6YAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAWMa6des0ZMgQJSYmKigoSMuWLXObf9dddykoKMjt38CBA93aHDlyRCNGjJDNZlNMTIxGjRql48eP+7AXAAAAACA99thjCgoK0rhx41zTTp06pZycHLVq1UotWrRQVlaWysvL3ZY7cOCABg8erKioKMXFxWnixIk6ffq0j6MHAAAAzOdR0dSCBQvUrVs32Ww22Ww22e12ffDBB675nIwDAAAA8GcnTpxQ9+7dlZ+ff9Y2AwcO1KFDh1z/XnnlFbf5I0aM0M6dO1VcXKzly5dr3bp1Gj16dGOHDgAAAAAuW7Zs0V//+ld169bNbfr48eP13nvvaenSpVq7dq0OHjyoYcOGueZXV1dr8ODBqqqq0oYNG/TCCy9oyZIlmjZtmq+7AAAAAJgu1JPGbdu21WOPPabLL79chmHohRde0M0336xPP/1UnTt31vjx4/X+++9r6dKlio6OVm5uroYNG6aPP/5Y0n9PxhMSErRhwwYdOnRId955p8LCwjRnzpxG6SAAAAAA1Bo0aJAGDRr0s20iIiKUkJBQ57zdu3drxYoV2rJli3r27ClJevbZZ3XjjTfqySefVGJiYoPHDAAAAAA/dvz4cY0YMULPP/+8HnnkEdf0o0ePatGiRSooKFC/fv0kSYsXL1anTp20ceNG9e7dW0VFRdq1a5dWrVql+Ph49ejRQ7Nnz9akSZM0Y8YMhYeHm9UtAAAAwOc8KpoaMmSI2+tHH31UCxYs0MaNG9W2bVtOxgEAAAAEvDVr1iguLk4XXHCB+vXrp0ceeUStWrWSJJWUlCgmJsZVMCVJ6enpCg4O1qZNm3TLLbfUuU6HwyGHw+F6XVlZKUlyOp1yOp2N2JvAVZsX8uN75N485P78RIQY3i8bbLj9F75D7j3TkMcHjjnmCYTc+3NskHJycjR48GClp6e7FU2VlpbK6XQqPT3dNa1jx45q166dSkpK1Lt3b5WUlKhr166Kj493tcnMzNSYMWO0c+dOXXnllWdsz5+uZ2q3Z9W/G1Z8bwbCMRMNh/G2FsbbehhzazFzvD3ZpkdFUz9WXV2tpUuX6sSJE7Lb7Y12Mi5xQu4vzifXHAC9Q948R868w7Ht/JZlf6s/cuYd8uadQDkhh38ZOHCghg0bpvbt2+vzzz/Xww8/rEGDBqmkpEQhISEqKytTXFyc2zKhoaGKjY1VWVnZWdebl5enmTNnnjG9qKhIUVFRDd6PpqS4uNjsECyL3JuH3Htnbq/zX8fsnjXnvxJ4hdzXT2FhYYOvk2OOefw59ydPnjQ7BJzFq6++qk8++URbtmw5Y15ZWZnCw8MVExPjNj0+Pt51vVJWVuZ2j6Z2fu28uvjj9YxV/240xt+BQOHPx0w0PMbbWhhv62HMrcWM8fbkesbjoqnt27fLbrfr1KlTatGihd5++22lpKRo27ZtjXIyLnFC7i8a4mScA6B3yJvnyJl3OLZ5h/3Nc+TMO+TNO/5+Qg7/Mnz4cNf/d+3aVd26ddOll16qNWvWqH///l6vd/LkyZowYYLrdWVlpZKSkpSRkSGbzXZeMTdVTqdTxcXFGjBggMLCwswOx1LIvXnI/fnpMmOl18tGBBua3bNGU7cGy1ET1IBR4VzIvWd2zMhssHVxzDFPIOS+9ovL8C9ff/21/vCHP6i4uFiRkZE+264/Xc/Uvn+s+nejIf8OBIpAOGai4TDe1sJ4Ww9jbi1mjrcn1zMeF0116NBB27Zt09GjR/XGG28oOztba9eu9XQ1HuGE3D+cz8k4B0DvkDfPkTPvcGzzDvub58iZd8ibdwLlhBz+7ZJLLtGFF16offv2qX///kpISNDhw4fd2pw+fVpHjhxRQkLCWdcTERGhiIiIM6aHhYXxvj4HcmQecm8ecu8dR/X5X8s4aoIaZD3wHLmvn8Y4NnDMMY8/595f47K60tJSHT58WFdddZVrWnV1tdatW6e//OUvWrlypaqqqlRRUeH2Bffy8nLX9UpCQoI2b97stt7y8nLXvLr44/WMVf9uWPm96c/HTDQ8xttaGG/rYcytxYzx9mR7HhdNhYeH67LLLpMkpaamasuWLXr66ad12223NcrJuMQJub9oiFxzAPQOefMcOfMOxzbv18H+5hly5h3y5h1/PyGHf/vmm2/03XffqU2bNpIku92uiooKlZaWKjU1VZL04YcfqqamRmlpaWaGCgAAAKCJ69+/v7Zv3+427e6771bHjh01adIkJSUlKSwsTKtXr1ZWVpYkac+ePTpw4IDsdrukH65pHn30UR0+fNj10+PFxcWy2WxKSUnxbYcAAAAAk3lcNPVTNTU1cjgcSk1N5WQcAAAAgF87fvy49u3b53q9f/9+bdu2TbGxsYqNjdXMmTOVlZWlhIQEff7553rwwQd12WWXKTPzhycTdurUSQMHDtQ999yjhQsXyul0Kjc3V8OHD1diYqJZ3QIAAABgAS1btlSXLl3cpjVv3lytWrVyTR81apQmTJig2NhY2Ww2jR07Vna7Xb1795YkZWRkKCUlRSNHjtTcuXNVVlamKVOmKCcnp84vrwMAAABNmUdFU5MnT9agQYPUrl07HTt2TAUFBVqzZo1Wrlyp6OhoTsYBAAAA+LWtW7fqhhtucL2u/Rnw7OxsLViwQJ999pleeOEFVVRUKDExURkZGZo9e7bb9crLL7+s3Nxc9e/fX8HBwcrKytIzzzzj874AAAAAwE/NmzfPdZ3icDiUmZmp+fPnu+aHhIRo+fLlGjNmjOx2u5o3b67s7GzNmjXLxKgBAAAAc3hUNHX48GHdeeedOnTokKKjo9WtWzetXLlSAwYMkMTJOAAAAAD/1rdvXxmGcdb5K1euPOc6YmNjVVBQ0JBhAQAAAIBX1qxZ4/Y6MjJS+fn5ys/PP+syycnJKiwsbOTIAAAAAP/nUdHUokWLfnY+J+MAAAAAAAAAAAAAAAAA/F2w2QEAAAAAAAAAAAAAAAAAgC9RNAUAAAAAAAAAAAAAAADAUiiaAgAAAAAAAAAAAAAAAGApFE0BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYCkVTAAAAAAAAAAAAAAAAACyFoikAAAAAAAAAAAAAAAAAlkLRFAAAAAAAAAAAAAAAAABLoWgKAAAAAAAAAAAAAAAAgKVQNAUAAAAAAAAAAAAAAADAUiiaAgAAAAAAAAAAAAAAAGApFE0BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYSqjZAQAAAAAAAAAAAAAAAABN0cUPvW92CD4XEWJobi+zozg3njQFAAAAAAAAAAAAAAAAwFJ40hQAAAAAAEATYcVvLgIAAAAAAADe4ElTAAAAAAAAAAAAAAAAACyFoikAAAAAAAAAAAAAAAAAlkLRFAAAAAAAAAAAAAAAAABLoWgKAAAAAAAAAAAAAAAAgKVQNAUAAAAAAAAAAAAAAADAUiiaAgAAAAAAAAAAAAAAAGApFE0BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYCkVTAAAAAAAAAAAAAAAAACyFoikAAAAAAAAAAAA/t2DBAnXr1k02m002m012u10ffPCBa/6pU6eUk5OjVq1aqUWLFsrKylJ5ebnbOg4cOKDBgwcrKipKcXFxmjhxok6fPu3rrgAAAAB+gaIpAAAAAAAAAAAAP9e2bVs99thjKi0t1datW9WvXz/dfPPN2rlzpyRp/Pjxeu+997R06VKtXbtWBw8e1LBhw1zLV1dXa/DgwaqqqtKGDRv0wgsvaMmSJZo2bZpZXQIAAABMFWp2AAAAAAAAAAAAAPh5Q4YMcXv96KOPasGCBdq4caPatm2rRYsWqaCgQP369ZMkLV68WJ06ddLGjRvVu3dvFRUVadeuXVq1apXi4+PVo0cPzZ49W5MmTdKMGTMUHh5uRrcAAAAA01A0BQAAAAAAAAAAEECqq6u1dOlSnThxQna7XaWlpXI6nUpPT3e16dixo9q1a6eSkhL17t1bJSUl6tq1q+Lj411tMjMzNWbMGO3cuVNXXnllndtyOBxyOByu15WVlZIkp9Mpp9PZSD2sW+32IoINn27XX/g63/6gts9W7LsVMd7Wwnhbj5XHPCLEeucutedrZoy3J9ukaAoAAAAAAAAAACAAbN++XXa7XadOnVKLFi309ttvKyUlRdu2bVN4eLhiYmLc2sfHx6usrEySVFZW5lYwVTu/dt7Z5OXlaebMmWdMLyoqUlRU1Hn2yDuze9aYsl2zFRYWmh2CaYqLi80OAT7EeFsL4209Vhzzub3MjsA8Zoz3yZMn692WoikAAAAAAAAAAIAA0KFDB23btk1Hjx7VG2+8oezsbK1du7ZRtzl58mRNmDDB9bqyslJJSUnKyMiQzWZr1G3/lNPpVHFxsaZuDZajJsin2/YHO2Zkmh2Cz9WO+YABAxQWFmZ2OGhkjLe1MN7WY+Ux7zJjpdkh+FxEsKHZPWtMGe/aJ6PWB0VTAAAAAAAAAAAAASA8PFyXXXaZJCk1NVVbtmzR008/rdtuu01VVVWqqKhwe9pUeXm5EhISJEkJCQnavHmz2/rKy8td884mIiJCERERZ0wPCwsz7YanoyZIjmrrFU1Z7Qbzj5m5v8H3GG9rYbytx4pjbsXzllpmjLcn2wtuxDgAAAAAAAAAAADQSGpqauRwOJSamqqwsDCtXr3aNW/Pnj06cOCA7Ha7JMlut2v79u06fPiwq01xcbFsNptSUlJ8HjsAAABgNp40BQAAAAAAAAAA4OcmT56sQYMGqV27djp27JgKCgq0Zs0arVy5UtHR0Ro1apQmTJig2NhY2Ww2jR07Vna7Xb1795YkZWRkKCUlRSNHjtTcuXNVVlamKVOmKCcnp84nSQEAAABNHUVTAAAAAAAAAAAAfu7w4cO68847dejQIUVHR6tbt25auXKlBgwYIEmaN2+egoODlZWVJYfDoczMTM2fP9+1fEhIiJYvX64xY8bIbrerefPmys7O1qxZs8zqEgAAAGAqiqYAAAAAAAAAAAD83KJFi352fmRkpPLz85Wfn3/WNsnJySosLGzo0AAAAICAFGx2AAAAAAAAAAAAAAAAAADgSxRNAQAAALCMdevWaciQIUpMTFRQUJCWLVvmNt8wDE2bNk1t2rRRs2bNlJ6err1797q1OXLkiEaMGCGbzaaYmBiNGjVKx48f92EvAAAAAAAAAADA+fKoaCovL09XX321WrZsqbi4OA0dOlR79uxxa3Pq1Cnl5OSoVatWatGihbKyslReXu7W5sCBAxo8eLCioqIUFxeniRMn6vTp0+ffGwAAAAD4GSdOnFD37t3P+nMVc+fO1TPPPKOFCxdq06ZNat68uTIzM3Xq1ClXmxEjRmjnzp0qLi7W8uXLtW7dOo0ePdpXXQAAAAAAAAAAAA3Ao6KptWvXKicnRxs3blRxcbGcTqcyMjJ04sQJV5vx48frvffe09KlS7V27VodPHhQw4YNc82vrq7W4MGDVVVVpQ0bNuiFF17QkiVLNG3atIbrFQAAAADUYdCgQXrkkUd0yy23nDHPMAw99dRTmjJlim6++WZ169ZNL774og4ePOh6ItXu3bu1YsUK/e///q/S0tLUp08fPfvss3r11Vd18OBBH/cGAAAAAAAAAAB4y6OiqRUrVuiuu+5S586d1b17dy1ZskQHDhxQaWmpJOno0aNatGiR/vznP6tfv35KTU3V4sWLtWHDBm3cuFGSVFRUpF27dumll15Sjx49NGjQIM2ePVv5+fmqqqpq+B4CAAAAQD3s379fZWVlSk9Pd02Ljo5WWlqaSkpKJEklJSWKiYlRz549XW3S09MVHBysTZs2+TxmAAAAAAAAAADgndDzWfjo0aOSpNjYWElSaWmpnE6n202Gjh07ql27diopKVHv3r1VUlKirl27Kj4+3tUmMzNTY8aM0c6dO3XllVeesR2HwyGHw+F6XVlZKUlyOp1yOp3n0wWP1W4vItjw6Xb9wfnkunZZX49XoCNvniNn3uHYdn7Lsr/VHznzDnnzjpl5Y6wCU1lZmSS5XavUvq6dV1ZWpri4OLf5oaGhio2NdbWpiz9d0wQKjn3mIffmaYjcR4RY75y+IdReC1nxmshs5N4zDXls5nhvnkDIvT/HBgAAAAANxeuiqZqaGo0bN07XXnutunTpIumHGwjh4eGKiYlxa/vTmwx13YSonVeXvLw8zZw584zpRUVFioqK8rYL52V2zxpTtmumwsLC815HcXFxA0RiPeTNc+TMOxzbvMP+5jly5h3y5h0z8nby5EmfbxP+zR+vaQIFxz7zkHvznE/u5/ZqwEAsyIrXRP6C3NdPQ1zD/hTHe/P4c+65pgEAAABgBV4XTeXk5GjHjh1av359Q8ZTp8mTJ2vChAmu15WVlUpKSlJGRoZsNlujb//HnE6niouLNXVrsBw1QT7dttl2zMj0etnavA0YMEBhYWENGFXTRt48R868w7HNO+xvniNn3iFv3jEzb7VPEUJgSUhIkCSVl5erTZs2runl5eXq0aOHq83hw4fdljt9+rSOHDniWr4u/nRNEyg49pmH3JunIXLfZcbKBo7KGiKCDc3uWWPJayKzkXvPnM817E9xvDdPIOSeaxoAAAAAVuBV0VRubq6WL1+udevWqW3btq7pCQkJqqqqUkVFhdvTpsrLy103EBISErR582a39ZWXl7vm1SUiIkIRERFnTA8LCzPtotJREyRHtbU+yGmIXJs5ZoGMvHmOnHmHY5v362B/8ww58w55844ZeWOcAlP79u2VkJCg1atXu4qkKisrtWnTJo0ZM0aSZLfbVVFRodLSUqWmpkqSPvzwQ9XU1CgtLe2s6/bHa5pAQY7MQ+7Ncz65t9r5fEOz4jWRvyD39dMYx2WO9+bx59z7a1wAAAAA0JCCPWlsGIZyc3P19ttv68MPP1T79u3d5qempiosLEyrV692TduzZ48OHDggu90u6YebDNu3b3f7dnZxcbFsNptSUlLOpy8AAAAA8LOOHz+ubdu2adu2bZKk/fv3a9u2bTpw4ICCgoI0btw4PfLII3r33Xe1fft23XnnnUpMTNTQoUMlSZ06ddLAgQN1zz33aPPmzfr444+Vm5ur4cOHKzEx0byOAQAAAAAAAAAAj3j0pKmcnBwVFBTonXfeUcuWLVVWViZJio6OVrNmzRQdHa1Ro0ZpwoQJio2Nlc1m09ixY2W329W7d29JUkZGhlJSUjRy5EjNnTtXZWVlmjJlinJycur85jUAAAAANJStW7fqhhtucL2u/cm87OxsLVmyRA8++KBOnDih0aNHq6KiQn369NGKFSsUGRnpWubll19Wbm6u+vfvr+DgYGVlZemZZ57xeV8AAAAAAAAAAID3PCqaWrBggSSpb9++btMXL16su+66S5I0b948140Dh8OhzMxMzZ8/39U2JCREy5cv15gxY2S329W8eXNlZ2dr1qxZ59cTAAAAADiHvn37yjCMs84PCgrSrFmzfvb6JDY2VgUFBY0RHgAAAAAAAAAA8BGPiqZ+7uZCrcjISOXn5ys/P/+sbZKTk1VYWOjJpgEAAAAAAAAAAAAAAACgQQSbHQAAAAAAAAAAAAAAAAAA+BJFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFJCzQ4AAAAAAACgoV380Ptmh+CxiBBDc3tJXWaslKM6yOxwAAAAAAAAgCaNJ00BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYCkVTAAAAAAAAAAAAAAAAACwl1OwAAAAAAAAAAADndvFD7zfYuiJCDM3tJXWZsVKO6qAGW29j+PKxwWaHAAAAAABognjSFAAAAAAAAAAAAAAAAABLoWgKAAAAAAAAAAAAAAAAgKVQNAUAAAAAAAAAAODn8vLydPXVV6tly5aKi4vT0KFDtWfPHrc2p06dUk5Ojlq1aqUWLVooKytL5eXlbm0OHDigwYMHKyoqSnFxcZo4caJOnz7ty64AAAAAfoGiKQAAAAAAAAAAAD+3du1a5eTkaOPGjSouLpbT6VRGRoZOnDjhajN+/Hi99957Wrp0qdauXauDBw9q2LBhrvnV1dUaPHiwqqqqtGHDBr3wwgtasmSJpk2bZkaXAAAAAFOFmh0AAAAAAAAAAAAAft6KFSvcXi9ZskRxcXEqLS3VL37xCx09elSLFi1SQUGB+vXrJ0lavHixOnXqpI0bN6p3794qKirSrl27tGrVKsXHx6tHjx6aPXu2Jk2apBkzZig8PNyMrgEAAACm4ElTAAAAAAAAAAAAAebo0aOSpNjYWElSaWmpnE6n0tPTXW06duyodu3aqaSkRJJUUlKirl27Kj4+3tUmMzNTlZWV2rlzpw+jBwAAAMzHk6YAAAAAAAAAAAACSE1NjcaNG6drr71WXbp0kSSVlZUpPDxcMTExbm3j4+NVVlbmavPjgqna+bXz6uJwOORwOFyvKysrJUlOp1NOp7NB+lNftduLCDZ8ul1/4et8+4PaPlux71bEeFsL4209Vh7ziBDrnbvUnq+ZMd6ebJOiKQAAAAAAAAAAgACSk5OjHTt2aP369Y2+rby8PM2cOfOM6UVFRYqKimr07ddlds8aU7ZrtsLCQrNDME1xcbHZIcCHGG9rYbytx4pjPreX2RGYx4zxPnnyZL3bUjQFAAAAAAAAAAAQIHJzc7V8+XKtW7dObdu2dU1PSEhQVVWVKioq3J42VV5eroSEBFebzZs3u62vvLzcNa8ukydP1oQJE1yvKysrlZSUpIyMDNlstobqVr04nU4VFxdr6tZgOWqCfLptf7BjRqbZIfhc7ZgPGDBAYWFhZoeDRsZ4WwvjbT1WHvMuM1aaHYLPRQQbmt2zxpTxrn0yan1QNAUAAAAAAAAAAODnDMPQ2LFj9fbbb2vNmjVq37692/zU1FSFhYVp9erVysrKkiTt2bNHBw4ckN1ulyTZ7XY9+uijOnz4sOLi4iT98O1/m82mlJSUOrcbERGhiIiIM6aHhYWZdsPTURMkR7X1iqasdoP5x8zc3+B7jLe1MN7WY8Uxt+J5Sy0zxtuT7VE0BQAAAAAAAAAA4OdycnJUUFCgd955Ry1btlRZWZkkKTo6Ws2aNVN0dLRGjRqlCRMmKDY2VjabTWPHjpXdblfv3r0lSRkZGUpJSdHIkSM1d+5clZWVacqUKcrJyamzMAoAAABoyiiaAgAAAAAAAAAA8HMLFiyQJPXt29dt+uLFi3XXXXdJkubNm6fg4GBlZWXJ4XAoMzNT8+fPd7UNCQnR8uXLNWbMGNntdjVv3lzZ2dmaNWuWr7oBAAAA+A2KpgAAAAAAAAAAAPycYRjnbBMZGan8/Hzl5+eftU1ycrIKCwsbMjQAAAAgIAWbHQAAAAAAAAAAAAAAAAAA+BJFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFI8Lppat26dhgwZosTERAUFBWnZsmVu8w3D0LRp09SmTRs1a9ZM6enp2rt3r1ubI0eOaMSIEbLZbIqJidGoUaN0/Pjx8+oIAAAAADSEGTNmKCgoyO1fx44dXfNPnTqlnJwctWrVSi1atFBWVpbKy8tNjBgAAAAAAAAAAHjK46KpEydOqHv37srPz69z/ty5c/XMM89o4cKF2rRpk5o3b67MzEydOnXK1WbEiBHauXOniouLtXz5cq1bt06jR4/2vhcAAAAA0IA6d+6sQ4cOuf6tX7/eNW/8+PF67733tHTpUq1du1YHDx7UsGHDTIwWAAAAAAAAAAB4KtTTBQYNGqRBgwbVOc8wDD311FOaMmWKbr75ZknSiy++qPj4eC1btkzDhw/X7t27tWLFCm3ZskU9e/aUJD377LO68cYb9eSTTyoxMfE8ugMAAAAA5y80NFQJCQlnTD969KgWLVqkgoIC9evXT5K0ePFiderUSRs3blTv3r19HSoAAAAAAAAAAPCCx0VTP2f//v0qKytTenq6a1p0dLTS0tJUUlKi4cOHq6SkRDExMa6CKUlKT09XcHCwNm3apFtuuaUhQwIAAAAAj+3du1eJiYmKjIyU3W5XXl6e2rVrp9LSUjmdTrdrno4dO6pdu3YqKSk5a9GUw+GQw+Fwva6srJQkOZ1OOZ3Oxu1MgKrNC/nxvaaS+4gQw+wQPBYRbLj9F75D7s1D7s0TSLkP9L9JPxUIf2v9OTYAAAAAaCgNWjRVVlYmSYqPj3ebHh8f75pXVlamuLg49yBCQxUbG+tq81P+dIOhdnuB8GFCQzufXAfCBwH+iLx5jpx5h2Pb+S3L/lZ/5Mw75M07ZuaNsQpsaWlpWrJkiTp06KBDhw5p5syZuu6667Rjxw6VlZUpPDxcMTExbsv8+JqnLnl5eZo5c+YZ04uKihQVFdXQXWhSiouLzQ7BsgI993N7mR2B92b3rDE7BMsi9+Yh9+YJhNwXFhaaHUKj8Oe/tSdPnjQ7BAAAAABodA1aNNVY/PEGQyB8mNDQGuLDCX/+IMCfkTfPkTPvcGzzDvub58iZd8ibd8zIGzcYAtuPf468W7duSktLU3Jysl5//XU1a9bMq3VOnjxZEyZMcL2urKxUUlKSMjIyZLPZzjvmpsjpdKq4uFgDBgxQWFiY2eFYSlPJfZcZK80OwWMRwYZm96zR1K3BctQEmR2OpZB785B78wRS7nfMyDQ7hAYVCH9ra7+4DAAAAABNWYMWTSUkJEiSysvL1aZNG9f08vJy9ejRw9Xm8OHDbsudPn1aR44ccS3/U/50g6H2gjYQPkxoaOfz4UQgfBDgj8ib58iZdzi2eYf9zXPkzDvkzTtm5o0bDE1LTEyMrrjiCu3bt08DBgxQVVWVKioq3J42VV5eftbrGUmKiIhQRETEGdPDwsJ4X58DOTJPoOfeUR2457WOmqCAjj+QkXvzkHvzBELuA/nv0c/x57+1/hoXAAAAADSkBi2aat++vRISErR69WpXkVRlZaU2bdqkMWPGSJLsdrsqKipUWlqq1NRUSdKHH36ompoapaWl1blef7zBEAgfJjS0hsi1P38Q4M/Im+fImXc4tnm/DvY3z5Az75A375iRN8apaTl+/Lg+//xzjRw5UqmpqQoLC9Pq1auVlZUlSdqzZ48OHDggu91ucqQAAAAAAAAAAKC+PC6aOn78uPbt2+d6vX//fm3btk2xsbFq166dxo0bp0ceeUSXX3652rdvr6lTpyoxMVFDhw6VJHXq1EkDBw7UPffco4ULF8rpdCo3N1fDhw9XYmJig3UMAAAAALzxwAMPaMiQIUpOTtbBgwc1ffp0hYSE6Pbbb1d0dLRGjRqlCRMmKDY2VjabTWPHjpXdblfv3r3NDh0AAAAAAAAAANSTx0VTW7du1Q033OB6XfuzednZ2VqyZIkefPBBnThxQqNHj1ZFRYX69OmjFStWKDIy0rXMyy+/rNzcXPXv31/BwcHKysrSM8880wDdAQAAAIDz88033+j222/Xd999p9atW6tPnz7auHGjWrduLUmaN2+e6zrG4XAoMzNT8+fPNzlqAAAAAAAAAADgCY+Lpvr27SvDMM46PygoSLNmzdKsWbPO2iY2NlYFBQWebhoAAAAAGt2rr776s/MjIyOVn5+v/Px8H0UEAAAAAAAAAAAaWrDZAQAAAAAAAAAAAAAAAACAL1E0BQAAAAAAAAAAEADWrVunIUOGKDExUUFBQVq2bJnbfMMwNG3aNLVp00bNmjVTenq69u7d69bmyJEjGjFihGw2m2JiYjRq1CgdP37ch70AAAAA/ANFUwAAAAAAAAAAAAHgxIkT6t69+1l/Lnzu3Ll65plntHDhQm3atEnNmzdXZmamTp065WozYsQI7dy5U8XFxVq+fLnWrVun0aNH+6oLAAAAgN8INTsAAAAAAAAAAAAAnNugQYM0aNCgOucZhqGnnnpKU6ZM0c033yxJevHFFxUfH69ly5Zp+PDh2r17t1asWKEtW7aoZ8+ekqRnn31WN954o5588kklJib6rC8AAACA2SiaAgAAAACgCbv4ofc9ah8RYmhuL6nLjJVyVAc1UlQAAABoaPv371dZWZnS09Nd06Kjo5WWlqaSkhINHz5cJSUliomJcRVMSVJ6erqCg4O1adMm3XLLLWaEDgAAAJiCoikAAAAAAAAAAIAAV1ZWJkmKj493mx4fH++aV1ZWpri4OLf5oaGhio2NdbX5KYfDIYfD4XpdWVkpSXI6nXI6nQ0Wf33Ubi8i2PDpdv2Fr/PtD2r7bMW+WxHjbS2Mt/VYecwjQqx37lJ7vmbGeHuyTYqmAAAAAAAAAAAAUKe8vDzNnDnzjOlFRUWKiooyISJpds8aU7ZrtsLCQrNDME1xcbHZIcCHGG9rYbytx4pjPreX2RGYx4zxPnnyZL3bUjQFAAAAAAAAAAAQ4BISEiRJ5eXlatOmjWt6eXm5evTo4Wpz+PBht+VOnz6tI0eOuJb/qcmTJ2vChAmu15WVlUpKSlJGRoZsNlsD9+LnOZ1OFRcXa+rWYDlqrPdT0jtmZJodgs/VjvmAAQMUFhZmdjhoZIy3tTDe1mPlMe8yY6XZIfhcRLCh2T1rTBnv2iej1gdFUwAAAAAAAAAAAAGuffv2SkhI0OrVq11FUpWVldq0aZPGjBkjSbLb7aqoqFBpaalSU1MlSR9++KFqamqUlpZW53ojIiIUERFxxvSwsDDTbng6aoLkqLZe0ZTVbjD/mJn7G3yP8bYWxtt6rDjmVjxvqWXGeHuyPYqmAAAAAAAAAAAAAsDx48e1b98+1+v9+/dr27Ztio2NVbt27TRu3Dg98sgjuvzyy9W+fXtNnTpViYmJGjp0qCSpU6dOGjhwoO655x4tXLhQTqdTubm5Gj58uBITE03qFQAAAGAOiqYAAAAAAAAAAAACwNatW3XDDTe4Xtf+bF52draWLFmiBx98UCdOnNDo0aNVUVGhPn36aMWKFYqMjHQt8/LLLys3N1f9+/dXcHCwsrKy9Mwzz/i8LwAAAIDZKJoCAAAAAAAAAAAIAH379pVhGGedHxQUpFmzZmnWrFlnbRMbG6uCgoLGCA8AAAAIKMFmBwAAAAAAAAAAAAAAAAAAvkTRFAAAAAAAAAAAAAAAAABLoWgKAAAAAAAAAAAAAAAAgKVQNAUAAAAAAAAAAAAAAADAUiiaAgAAAAAAAAAAAAAAAGApFE0BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYCkVTAAAAAAAAAAAAAAAAACyFoikAAAAAAAAAAAAAAAAAlkLRFAAAAAAAAAAAAAAAAABLCTU7AAAAAAAAfOHih943OwQAAAAAAAAAgJ/gSVMAAAAAAAAAAAAAAAAALIWiKQAAAAAAAAAAAAAAAACWQtEUAAAAAAAAAAAAAAAAAEsJNTsAAAAAAAAAAADO5uKH3jc7hAYVEWJobi+py4yVclQHnbXdl48N9mFUAAAAAGA9PGkKAAAAAAAAAAAAAAAAgKVQNAUAAAAAAAAAAAAAAADAUiiaAgAAAAAAAAAAAAAAAGApFE0BAAAAAAAAAAAAAAAAsBSKpgAAAAAAAAAAAAAAAABYCkVTAAAAAAAAAAAAAAAAACyFoikAAAAAAAAAAAAAAAAAlkLRFAAAAAAAAAAAAAAAAABLoWgKAAAAAAAAAAAAAAAAgKWEmh0AAAAAGt/FD71vdgg+FxFiaG4vs6MAAAAAAAAAAACAP+JJUwAAAAAAAAAAAAAAAAAshaIpAAAAAAAAAAAAAAAAAJZi6s/z5efn64knnlBZWZm6d++uZ599Vr168RsqAAAAAPxfIF/PBMJPdtb+xGaXGSvlqA4yOxwAAACgyQnkaxoAAACgIZj2pKnXXntNEyZM0PTp0/XJJ5+oe/fuyszM1OHDh80KCQAAAADqhesZAAAAAIGMaxoAAADAxKKpP//5z7rnnnt09913KyUlRQsXLlRUVJT+9re/mRUSAAAAANQL1zMAAAAAAhnXNAAAAIBJP89XVVWl0tJSTZ482TUtODhY6enpKikpOaO9w+GQw+FwvT569Kgk6ciRI3I6nY0f8I84nU6dPHlSoc5gVddY6ycivvvuO6+Xrc3bd999p7CwsAaMqmkjb54jZ97h2OYd9jfPkTPvNETeQk+faOCo/F9ojaGTJ2tM2d+OHTsmSTIMw6fbhW94ej0j+dc1jRQYx4Ta97AVz0/MRu7NQ+7NQ+7NQ+7NQ+7NU9/cn89nFueLa5qmjXs0gcvM44JZ+DzRWhhva2G8rcfKYx4In8c2tEC5R2NK0dS///1vVVdXKz4+3m16fHy8/vGPf5zRPi8vTzNnzjxjevv27RstRpzpwj+ZHQEANDyObUDT9muTt3/s2DFFR0ebHAUamqfXMxLXNN4y+z1sZeTePOTePOTePOTePOTePPXJvT98ZsE1TdPEPZrA5Q/HBQAAgPoy+5qzPtczphRNeWry5MmaMGGC63VNTY2OHDmiVq1aKSjIt98kqKysVFJSkr7++mvZbDafbjuQkTfvkDfPkTPvkDfvkDfPkTPvkDfvmJk3wzB07NgxJSYm+nS78F/+dE0TKDj2mYfcm4fcm4fcm4fcm4fcmycQcs81DX7Mn65nAuH9g4bFmFsL420tjLf1MObWEij3aEwpmrrwwgsVEhKi8vJyt+nl5eVKSEg4o31ERIQiIiLcpsXExDRmiOdks9l4I3uBvHmHvHmOnHmHvHmHvHmOnHmHvHnHrLzxbeymy9PrGck/r2kCBcc+85B785B785B785B785B78/h77rmmabq4R4NAxJhbC+NtLYy39TDm1uLv92iCGzmOOoWHhys1NVWrV692TaupqdHq1atlt9vNCAkAAAAA6oXrGQAAAACBjGsaAAAA4Aem/TzfhAkTlJ2drZ49e6pXr1566qmndOLECd19991mhQQAAAAA9cL1DAAAAIBAxjUNAAAAYGLR1G233aZ//etfmjZtmsrKytSjRw+tWLFC8fHxZoVULxEREZo+ffoZj6LFzyNv3iFvniNn3iFv3iFvniNn3iFv3iFvaEyBej0TSHgPm4fcm4fcm4fcm4fcm4fcm4fcwx8E6jUN7x/rYcythfG2FsbbehhzawmU8Q4yDMMwOwgAAAAAAAAAAAAAAAAA8JVgswMAAAAAAAAAAAAAAAAAAF+iaAoAAAAAAAAAAAAAAACApVA0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYCkUTUnKz8/XxRdfrMjISKWlpWnz5s0/237p0qXq2LGjIiMj1bVrVxUWFrrNNwxD06ZNU5s2bdSsWTOlp6dr7969jdkFn/MkZ88//7yuu+46XXDBBbrggguUnp5+Rvu77rpLQUFBbv8GDhzY2N3wOU/ytmTJkjNyEhkZ6dbGCvua5Fne+vbte0begoKCNHjwYFebpr6/rVu3TkOGDFFiYqKCgoK0bNmycy6zZs0aXXXVVYqIiNBll12mJUuWnNHG02NloPE0b2+99ZYGDBig1q1by2azyW63a+XKlW5tZsyYcca+1rFjx0bshe95mrc1a9bU+R4tKytza9eU9zdPc1bXMSsoKEidO3d2tbHCvpaXl6err75aLVu2VFxcnIYOHao9e/accznO2wD/V11dralTp6p9+/Zq1qyZLr30Us2ePVuGYbja8F5tGOf6G1SfPB85ckQjRoyQzWZTTEyMRo0apePHj/uwF4Hp53LvdDo1adIkde3aVc2bN1diYqLuvPNOHTx40G0d5N47npx7/f73v1dQUJCeeuopt+nk3nP1yfvu3bt10003KTo6Ws2bN9fVV1+tAwcOuOafOnVKOTk5atWqlVq0aKGsrCyVl5f7sBeB6Vy5P378uHJzc9W2bVs1a9ZMKSkpWrhwoVsbcu+d+lyz1Ce3Bw4c0ODBgxUVFaW4uDhNnDhRp0+f9mVXANM19D0b+L+GvucE/+btZ7+vvvqqgoKCNHTo0MYNEA3K0/GuqKhQTk6O2rRpo4iICF1xxRUc1wOMp2P+1FNPqUOHDmrWrJmSkpI0fvx4nTp1ykfR4nw01j1pX7N80dRrr72mCRMmaPr06frkk0/UvXt3ZWZm6vDhw3W237Bhg26//XaNGjVKn376qYYOHaqhQ4dqx44drjZz587VM888o4ULF2rTpk1q3ry5MjMzm8yb29OcrVmzRrfffrs++ugjlZSUKCkpSRkZGfr222/d2g0cOFCHDh1y/XvllVd80R2f8TRvkmSz2dxy8tVXX7nNb+r7muR53t566y23nO3YsUMhISH61a9+5dauKe9vJ06cUPfu3ZWfn1+v9vv379fgwYN1ww03aNu2bRo3bpx++9vfuhUAebP/BhpP87Zu3ToNGDBAhYWFKi0t1Q033KAhQ4bo008/dWvXuXNnt31t/fr1jRG+aTzNW609e/a45SUuLs41r6nvb57m7Omnn3bL1ddff63Y2NgzjmtNfV9bu3atcnJytHHjRhUXF8vpdCojI0MnTpw46zKctwGB4fHHH9eCBQv0l7/8Rbt379bjjz+uuXPn6tlnn3W14b3aMM71N6g+eR4xYoR27typ4uJiLV++XOvWrdPo0aN91YWA9XO5P3nypD755BNNnTpVn3zyid566y3t2bNHN910k1s7cu+d+p57vf3229q4caMSExPPmEfuPXeuvH/++efq06ePOnbsqDVr1uizzz7T1KlT3b4sNn78eL333ntaunSp1q5dq4MHD2rYsGG+6kLAOlfuJ0yYoBUrVuill17S7t27NW7cOOXm5urdd991tSH33qnPNcu5cltdXa3BgwerqqpKGzZs0AsvvKAlS5Zo2rRpZnQJMEVj3LOBf2use07wT95+9vvll1/qgQce0HXXXeejSNEQPB3vqqoqDRgwQF9++aXeeOMN7dmzR88//7wuuugiH0cOb3k65gUFBXrooYc0ffp07d69W4sWLdJrr72mhx9+2MeRwxuNcU/aFIbF9erVy8jJyXG9rq6uNhITE428vLw62996663G4MGD3aalpaUZv/vd7wzDMIyamhojISHBeOKJJ1zzKyoqjIiICOOVV15phB74nqc5+6nTp08bLVu2NF544QXXtOzsbOPmm29u6FD9iqd5W7x4sREdHX3W9VlhXzOM89/f5s2bZ7Rs2dI4fvy4a5oV9rdakoy33377Z9s8+OCDRufOnd2m3XbbbUZmZqbr9fmOQ6CpT97qkpKSYsycOdP1evr06Ub37t0bLjA/V5+8ffTRR4Yk4z//+c9Z21hpf/NmX3v77beNoKAg48svv3RNs9q+ZhiGcfjwYUOSsXbt2rO24bwNCAyDBw82fvOb37hNGzZsmDFixAjDMHivNpaf/g2qT5537dplSDK2bNniavPBBx8YQUFBxrfffuuz2ANdff7+b9682ZBkfPXVV4ZhkPuGcrbcf/PNN8ZFF11k7Nixw0hOTjbmzZvnmkfuz19deb/tttuMO+6446zLVFRUGGFhYcbSpUtd03bv3m1IMkpKShor1Canrtx37tzZmDVrltu0q666yvjjH/9oGAa5b0g/vWapT24LCwuN4OBgo6yszNVmwYIFhs1mMxwOh287AJikoe/ZwP81xj0n+C9vxvv06dPGNddcY/zv//6vpe7vNAWejveCBQuMSy65xKiqqvJViGhgno55Tk6O0a9fP7dpEyZMMK699tpGjRMNr6HuSZvB0k+aqqqqUmlpqdLT013TgoODlZ6erpKSkjqXKSkpcWsvSZmZma72+/fvV1lZmVub6OhopaWlnXWdgcSbnP3UyZMn5XQ6FRsb6zZ9zZo1iouLU4cOHTRmzBh99913DRq7mbzN2/Hjx5WcnKykpCTdfPPN2rlzp2teU9/XpIbZ3xYtWqThw4erefPmbtOb8v7mqXMd1xpiHKygpqZGx44dO+PYtnfvXiUmJuqSSy7RiBEj3H5uwsp69OihNm3aaMCAAfr4449d09nfzm3RokVKT09XcnKy23Sr7WtHjx6VpDPecz9m9fM2IFBcc801Wr16tf75z39Kkv7f//t/Wr9+vQYNGiSJ96qv1CfPJSUliomJUc+ePV1t0tPTFRwcrE2bNvk85qbs6NGjCgoKUkxMjCRy35hqamo0cuRITZw40e3nj2uR+4ZXU1Oj999/X1dccYUyMzMVFxentLQ0t8f4l5aWyul0uh2TOnbsqHbt2nHsP0/XXHON3n33XX377bcyDEMfffSR/vnPfyojI0MSuW9IP71mqU9uS0pK1LVrV8XHx7vaZGZmqrKy0u1zQaCpaox7NvBvjXnPCf7H2/GeNWuW4uLiNGrUKF+EiQbizXi/++67stvtysnJUXx8vLp06aI5c+aourraV2HjPHgz5tdcc41KS0tdP+H3xRdfqLCwUDfeeKNPYoZv+et5m6WLpv7973+rurra7SJUkuLj41VWVlbnMmVlZT/bvva/nqwzkHiTs5+aNGmSEhMT3d4QAwcO1IsvvqjVq1fr8ccf19q1azVo0KAm80fQm7x16NBBf/vb3/TOO+/opZdeUk1Nja655hp98803kpr+viad//62efNm7dixQ7/97W/dpjf1/c1TZzuuVVZW6vvvv2+Q970VPPnkkzp+/LhuvfVW17S0tDQtWbJEK1as0IIFC7R//35dd911OnbsmImRmqtNmzZauHCh3nzzTb355ptKSkpS37599cknn0hqmL8zTdnBgwf1wQcfnHFcs9q+VlNTo3Hjxunaa69Vly5dztrO6udtQKB46KGHNHz4cHXs2FFhYWG68sorNW7cOI0YMUIS71VfqU+ey8rK3H5SV5JCQ0MVGxvLWDSgU6dOadKkSbr99ttls9kkkfvG9Pjjjys0NFT33XdfnfPJfcM7fPiwjh8/rscee0wDBw5UUVGRbrnlFg0bNkxr166V9EPew8PDXYWDtTj2n79nn31WKSkpatu2rcLDwzVw4EDl5+frF7/4hSRy31DqumapT27Pdg1TOw9o6hrjng38W2Pdc4J/8ma8169fr0WLFun555/3RYhoQN6M9xdffKE33nhD1dXVKiws1NSpU/WnP/1JjzzyiC9CxnnyZsx//etfa9asWerTp4/CwsJ06aWXqm/fvvw8XxN1rnvSZgk1bcuwpMcee0yvvvqq1qxZo8jISNf04cOHu/6/a9eu6tatmy699FKtWbNG/fv3NyNU09ntdtntdtfra665Rp06ddJf//pXzZ4928TIAseiRYvUtWtX9erVy206+xsaWkFBgWbOnKl33nnH7YZK7RMyJKlbt25KS0tTcnKyXn/9dct+K6ZDhw7q0KGD6/U111yjzz//XPPmzdP//d//mRhZYHjhhRcUExOjoUOHuk232r6Wk5OjHTt2aP369WaHAqABvP7663r55ZdVUFCgzp07u37PPjExUdnZ2WaHB/iU0+nUrbfeKsMwtGDBArPDafJKS0v19NNP65NPPlFQUJDZ4VhGTU2NJOnmm2/W+PHjJf3wJNoNGzZo4cKFuv76680Mr8l79tlntXHjRr377rtKTk7WunXrlJOTw83mBsY1CwD4xtnuOaFpOHbsmEaOHKnnn39eF154odnhwAdqamoUFxen5557TiEhIUpNTdW3336rJ554QtOnTzc7PDSCNWvWaM6cOZo/f77S0tK0b98+/eEPf9Ds2bM1depUs8ODRVj6SVMXXnihQkJCVF5e7ja9vLxcCQkJdS6TkJDws+1r/+vJOgOJNzmr9eSTT+qxxx5TUVGRunXr9rNtL7nkEl144YXat2/fecfsD84nb7Vqv3Vfm5Omvq9J55e3EydO6NVXX61XsUBT2988dbbjms1mU7NmzRpk/23KXn31Vf32t7/V66+/fs4PmGNiYnTFFVdYdl87m169erlywv52doZh6G9/+5tGjhyp8PDwn23blPe13NxcLV++XB999JHatm37s22tft4GBIqJEye6njbVtWtXjRw5UuPHj1deXp4k3qu+Up88JyQk6PDhw27zT58+rSNHjjAWDaC2YOqrr75ScXGx6ylTErlvLH//+991+PBhtWvXTqGhoQoNDdVXX32l+++/XxdffLEkct8YLrzwQoWGhiolJcVteqdOnVw/MZ2QkKCqqipVVFS4teHYf36+//57Pfzww/rzn/+sIUOGqFu3bsrNzdVtt92mJ598UhK5bwhnu2apT27Pdg1TOw9o6hrjng38m6/uOcE/eDren3/+ub788ksNGTLEdb7+4osv6t1331VoaKg+//xzX4UOL3jz/m7Tpo2uuOIKhYSEuKZ16tRJZWVlqqqqatR4cf68GfOpU6dq5MiR+u1vf6uuXbvqlltu0Zw5c5SXl+f6wg2ajnPdkzaLpYumwsPDlZqaqtWrV7um1dTUaPXq1W5P+Pkxu93u1l6SiouLXe3bt2+vhIQEtzaVlZXatGnTWdcZSLzJmSTNnTtXs2fP1ooVK9SzZ89zbuebb77Rd999pzZt2jRI3GbzNm8/Vl1dre3bt7ty0tT3Nen88rZ06VI5HA7dcccd59xOU9vfPHWu41pD7L9N1SuvvKK7775br7zyigYPHnzO9sePH9fnn39u2X3tbLZt2+bKCfvb2a1du1b79u2rVzFoU9zXDMNQbm6u3n77bX344Ydq3779OZex+nkbEChOnjyp4GD3S9OQkBDXByO8V32jPnm22+2qqKhQaWmpq82HH36ompoapaWl+TzmpqS2YGrv3r1atWqVWrVq5Taf3DeOkSNH6rPPPtO2bdtc/xITEzVx4kStXLlSErlvDOHh4br66qu1Z88et+n//Oc/lZycLElKTU1VWFiY2zFpz549OnDgAMf+8+B0OuV0On/27y659965rlnqk1u73a7t27e7FWvWFtL+tNAQaIoa454N/Juv7jnBP3g63h07dtT27dvdztdvuukm3XDDDdq2bZuSkpJ8GT485M37+9prr9W+ffvcimX++c9/qk2bNuf8IjHM582Yn+1zQemH82s0LX573mZY3KuvvmpEREQYS5YsMXbt2mWMHj3aiImJMcrKygzDMIyRI0caDz30kKv9xx9/bISGhhpPPvmksXv3bmP69OlGWFiYsX37dlebxx57zIiJiTHeeecd47PPPjNuvvlmo3379sb333/v8/41Bk9z9thjjxnh4eHGG2+8YRw6dMj179ixY4ZhGMaxY8eMBx54wCgpKTH2799vrFq1yrjqqquMyy+/3Dh16pQpfWwMnuZt5syZxsqVK43PP//cKC0tNYYPH25ERkYaO3fudLVp6vuaYXiet1p9+vQxbrvttjOmW2F/O3bsmPHpp58an376qSHJ+POf/2x8+umnxldffWUYhmE89NBDxsiRI13tv/jiCyMqKsqYOHGisXv3biM/P98ICQkxVqxY4WpzrnFoCjzN28svv2yEhoYa+fn5bse2iooKV5v777/fWLNmjbF//37j448/NtLT040LL7zQOHz4sM/711g8zdu8efOMZcuWGXv37jW2b99u/OEPfzCCg4ONVatWudo09f3N05zVuuOOO4y0tLQ612mFfW3MmDFGdHS0sWbNGrf33MmTJ11tOG8DAlN2drZx0UUXGcuXLzf2799vvPXWW8aFF15oPPjgg642vFcbxrn+BtUnzwMHDjSuvPJKY9OmTcb69euNyy+/3Lj99tvN6lLA+LncV1VVGTfddJPRtm1bY9u2bW5/5xwOh2sd5N4759rvfyo5OdmYN2+e2zRy77lz5f2tt94ywsLCjOeee87Yu3ev8eyzzxohISHG3//+d9c6fv/73xvt2rUzPvzwQ2Pr1q2G3W437Ha7WV0KGOfK/fXXX2907tzZ+Oijj4wvvvjCWLx4sREZGWnMnz/ftQ5y7536XLOcK7enT582unTpYmRkZBjbtm0zVqxYYbRu3dqYPHmyGV0CTNEY92zg3xr6nhP8m7f3fGplZ2cbN998s4+ixfnydLwPHDhgtGzZ0sjNzTX27NljLF++3IiLizMeeeQRs7oAD3k65tOnTzdatmxpvPLKK8YXX3xhFBUVGZdeeqlx6623mtUFeKAx7kmbwfJFU4ZhGM8++6zRrl07Izw83OjVq5exceNG17zrr7/eyM7Odmv/+uuvG1dccYURHh5udO7c2Xj//ffd5tfU1BhTp0414uPjjYiICKN///7Gnj17fNEVn/EkZ8nJyYakM/5Nnz7dMAzDOHnypJGRkWG0bt3aCAsLM5KTk4177rmnydwc/zFP8jZu3DhX2/j4eOPGG280PvnkE7f1WWFfMwzP36P/+Mc/DElGUVHRGeuywv720Ucf1fmeq81Tdna2cf3115+xTI8ePYzw8HDjkksuMRYvXnzGen9uHJoCT/N2/fXX/2x7wzCM2267zWjTpo0RHh5uXHTRRcZtt91m7Nu3z7cda2Se5u3xxx83Lr30UiMyMtKIjY01+vbta3z44YdnrLcp72/evEcrKiqMZs2aGc8991yd67TCvlZXziS5Ha84bwMCU2VlpfGHP/zBaNeunREZGWlccsklxh//+Ee3YhHeqw3jXH+D6pPn7777zrj99tuNFi1aGDabzbj77ru5OVEPP5f7/fv3n/Xv3EcffeRaB7n3zrn2+5+qq2iK3HuuPnlftGiRcdlllxmRkZFG9+7djWXLlrmt4/vvvzfuvfde44ILLjCioqKMW265xTh06JCPexJ4zpX7Q4cOGXfddZeRmJhoREZGGh06dDD+9Kc/GTU1Na51kHvv1OeapT65/fLLL41BgwYZzZo1My688ELj/vvvN5xOp497A5iroe/ZwP815D0n+D9P3+M/RtFU4PF0vDds2GCkpaUZERERxiWXXGI8+uijxunTp30cNc6HJ2PudDqNGTNmuO4bJSUlGffee6/xn//8x/eBw2ONdU/a14IMg+eaAQAAAAAAAAAAAAAAALCO4HM3AQAAAAAAAAAAAAAAAICmg6IpAAAAAAAAAAAAAAAAAJZC0RQAAAAAAAAAAAAAAAAAS6FoCgAAAAAAAAAAAAAAAIClUDQFAAAAAAAAAAAAAAAAwFIomgIAAAAAAAAAAAAAAABgKRRNAQAAAAAAAAAAAAAAALAUiqYAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAshaIpAAgwa9asUVBQkNasWXPOtn379lXfvn0bPab6WLJkiYKCgrR161azQwEAAADg5+666y5dfPHFZocBAAAAAACAJoyiKQAAAAAAAAAAAAAAAACWQtEUAAAAAAAAAAAAAAAAAEuhaAoAAAAAAAAAAAAAAACApVA0BQB+5tNPP9WgQYNks9nUokUL9e/fXxs3bjzncs8995wuvfRSNWvWTL169dLf//73M9qsWbNGQUFBeu211/Twww8rISFBzZs310033aSvv/76jPabNm3SwIEDFR0draioKF1//fX6+OOP3dp89dVXuvfee9WhQwc1a9ZMrVq10q9+9St9+eWX54z5P//5j3r16qW2bdtqz54952wPAAAAoGk4duyYxo0bp4svvlgRERGKi4vTgAED9Mknn5x1mRMnTuj+++9XUlKSIiIi1KFDBz355JMyDMOtXVBQkHJzc/Xyyy+rQ4cOioyMVGpqqtatW3fGOr/99lv95je/UXx8vCIiItS5c2f97W9/a/D+AgAAAMC3336rUaNGKTExUREREWrfvr3GjBmjqqoqHTlyRA888IC6du2qFi1ayGazadCgQfp//+//mR02ADRpoWYHAAD4r507d+q6666TzWbTgw8+qLCwMP31r39V3759tXbtWqWlpdW53KJFi/S73/1O11xzjcaNG6cvvvhCN910k2JjY5WUlHRG+0cffVRBQUGaNGmSDh8+rKeeekrp6enatm2bmjVrJkn68MMPNWjQIKWmpmr69OkKDg7W4sWL1a9fP/39739Xr169JElbtmzRhg0bNHz4cLVt21ZffvmlFixYoL59+2rXrl2KioqqM+Z///vfGjBggI4cOaK1a9fq0ksvbaAsAgAAAPB3v//97/XGG28oNzdXKSkp+u6777R+/Xrt3r1bV1111RntDcPQTTfdpI8++kijRo1Sjx49tHLlSk2cOFHffvut5s2b59Z+7dq1eu2113TfffcpIiJC8+fP18CBA7V582Z16dJFklReXq7evXu7iqxat26tDz74QKNGjVJlZaXGjRvni1QAAAAAsICDBw+qV69eqqio0OjRo9WxY0d9++23euONN3Ty5El98cUXWrZsmX71q1+pffv2Ki8v11//+lddf/312rVrlxITE83uAgA0SUHGT7+OBwAwzS233KLCwkLt3r1bl1xyiSTp0KFD6tChg6688kqtXbtWa9as0Q033KCPPvpIffv2ldPpVNu2bZWYmKhNmzYpPDxckvT8889r9OjRuv7667VmzRpJci170UUXaffu3WrZsqUkaenSpbr11lv19NNP67777pNhGOrQoYMuueQSffDBBwoKCpIkff/99+rcubMuu+wyFRUVuabVFlrV2rhxo+x2u1588UWNHDlSkrRkyRLdfffd2rJli9q2bav09HR9//33+vDDD5WcnNzouQUAAADgP2JiYnTHHXfoL3/5S53z77rrLq1Zs8b1BNt33nlHQ4cO1SOPPKI//vGPrna/+tWv9Oabb2rv3r2uL2LUXr9s3bpVqampkqQDBw6oQ4cOGjRokN566y1J0m9/+1sVFhZq+/btatWqlWudt99+uz744AMdOnTojGsdAAAAAPBGdna2XnrpJW3atEk9e/Z0m2cYhqqqqhQWFqbg4P/+UNSXX36pjh076o9//KOmTp3q65ABwBL4eT4A8BPV1dUqKirS0KFDXQVTktSmTRv9+te/1vr161VZWXnGclu3btXhw4f1+9//3lUwJf1wkyE6OrrObd15552ugilJ+p//+R+1adNGhYWFkqRt27Zp7969+vWvf63vvvtO//73v/Xvf/9bJ06cUP/+/bVu3TrV1NRIkttNBKfTqe+++06XXXaZYmJi6vxpjW+++UbXX3+9nE6n1q1bR8EUAAAAYEExMTHatGmTDh48WK/2hYWFCgkJ0X333ec2/f7775dhGPrggw/cptvtdlfBlCS1a9dON998s1auXKnq6moZhqE333xTQ4YMkWEYrmuef//738rMzNTRo0d/9qcCAQAAAKC+ampqtGzZMg0ZMuSMginphy9+REREuAqmqqur9d1336lFixbq0KED1yYA0Ij4eT4A8BP/+te/dPLkSXXo0OGMeZ06dVJNTY2+/vrrM+Z99dVXkqTLL7/cbXpYWJhb8dWP/bRtUFCQLrvsMte3uPfu3Svph28+nM3Ro0d1wQUX6Pvvv1deXp4WL16sb7/9Vj9+gOHRo0fPWG7kyJEKDQ3V7t27lZCQcNb1AwAAAGi65s6dq+zsbCUlJSk1NVU33nij7rzzzrNew3z11VdKTEx0+/KH9MO1Uu38H/vpNY8kXXHFFTp58qT+9a9/KTg4WBUVFXruuef03HPP1bnNw4cPe9M1AAAAAHDzr3/9S5WVla6fCq9LTU2Nnn76ac2fP1/79+9XdXW1a96Pn4wLAGhYFE0BAM5Q+xSpJ554Qj169KizTYsWLSRJY8eO1eLFizVu3DjZ7XZFR0crKChIw4cPd63nx4YNG6YXX3xRTz/9tPLy8hqtDwAAAAD816233qrrrrtOb7/9toqKivTEE0/o8ccf11tvvaVBgwY1+vZrr1XuuOOOs35ZpFu3bo0eBwAAAABI0pw5czR16lT95je/0ezZsxUbG6vg4GCNGzeuznstAICGQdEUAPiJ1q1bKyoqSnv27Dlj3j/+8Q8FBwcrKSlJ//rXv9zm1f683d69e9WvXz/XdKfTqf3796t79+5nrK/2SVK1DMPQvn37XDcFLr30UkmSzWZTenr6z8b9xhtvKDs7W3/6059c006dOqWKioo6248dO1aXXXaZpk2bpujoaD300EM/u34AAAAATVObNm1077336t5779Xhw4d11VVX6dFHH62zaCo5OVmrVq3SsWPH3J429Y9//MM1/8d+es0jSf/85z8VFRWl1q1bS5Jatmyp6urqc17zAAAAAMD5aN26tWw2m3bs2HHWNm+88YZuuOEGLVq0yG16RUWFLrzwwsYOEQAsK9jsAAAAPwgJCVFGRobeeecd18/kSVJ5ebkKCgrUp08f2Wy2M5br2bOnWrdurYULF6qqqso1fcmSJWctXHrxxRd17Ngx1+s33nhDhw4dct2cSE1N1aWXXqonn3xSx48fP2P5HxduhYSEuP0knyQ9++yzbo+O/ampU6fqgQce0OTJk7VgwYKztgMAAADQ9FRXV5/xU95xcXFKTEyUw+Goc5kbb7xR1dXV+stf/uI2fd68eQoKCjqj0KqkpESffPKJ6/XXX3+td955RxkZGQoJCVFISIiysrL05ptv1nnj4qdfVgEAAAAAbwUHB2vo0KF67733tHXr1jPmG4ZR572WpUuX6ttvv/VVmABgSTxpCgD8yCOPPKLi4mL16dNH9957r0JDQ/XXv/5VDodDc+fOrXOZsLAwPfLII/rd736nfv366bbbbtP+/fu1ePFiXXLJJXUuExsbqz59+ujuu+9WeXm5nnrqKV122WW65557JP1wAv+///u/GjRokDp37qy7775bF110kb799lt99NFHstlseu+99yRJv/zlL/V///d/io6OVkpKikpKSrRq1apz/sb2E088oaNHjyonJ0ctW7bUHXfccR6ZAwAAABAojh07prZt2+p//ud/1L17d7Vo0UKrVq3Sli1b3J5g+2NDhgzRDTfcoD/+8Y/68ssv1b17dxUVFemdd97RuHHjXE/LrdWlSxdlZmbqvvvuU0REhObPny9JmjlzpqvNY489po8++khpaWm65557lJKSoiNHjuiTTz7RqlWrdOTIkcZLAgAAAABLmTNnjoqKinT99ddr9OjR6tSpkw4dOqSlS5dq/fr1+uUvf6lZs2bp7rvv1jXXXKPt27fr5ZdfPut9HgBAw6BoCgD8SOfOnfX3v/9dkydPVl5enmpqapSWlqaXXnpJaWlpZ11u9OjRqq6u1hNPPKGJEyeqa9euevfddzV16tQ62z/88MP67LPPlJeXp2PHjql///6aP3++oqKiXG369u2rkpISzZ49W3/5y190/PhxJSQkKC0tTb/73e9c7Z5++mmFhITo5Zdf1qlTp3Tttddq1apVyszMPGd/Fy5cqOPHj+vuu+9Wy5YtdfPNN3uQLQAAAACBKCoqSvfee6+Kior01ltvqaamRpdddpnmz5+vMWPG1LlMcHCw3n33XU2bNk2vvfaaFi9erIsvvlhPPPGE7r///jPaX3/99bLb7Zo5c6YOHDiglJQULVmyxPWT5JIUHx+vzZs3a9asWXrrrbc0f/58tWrVSp07d9bjjz/eaP0HAAAAYD0XXXSRNm3apKlTp+rll19WZWWlLrroIg0aNEhRUVF6+OGHdeLECRUUFOi1117TVVddpffff18PPfSQ2aEDQJMWZPz0OX8AgCZrzZo1uuGGG7R06VL9z//8j9nhAAAAAECDCwoKUk5Ozhk/5QcAAAAAAAD8WLDZAQAAAAAAAAAAAAAAAACAL1E0BQAAAAAAAAAAAAAAAMBSKJoCAAAAAAAAAAAAAAAAYClBhmEYZgcBAAAAAAAAAAAAAAAAAL7Ck6YAAAAAAAAAAAAAAAAAWApFUwAAAAAAAAAAAAAAAAAsJdTsALxRU1OjgwcPqmXLlgoKCjI7HAAAAMCNYRg6duyYEhMTFRzM9xT8yYwZMzRz5ky3aR06dNA//j979x9nZV3njf81A8Mg4ICYzEgC2S8RlTBMmLLNFJiI3Fz57qa3q2y3W31Z8FYpM75fU5AUb+42+4Xati7YXcad7fZDJWU0f9wJ+IPyu/4oVs2ikhk2W0AkhhHO9w9vZp0AZQ4w58yc5/Px4KHnuq5zPu/r/fmcM9fnXO9zXb/4RZJk27Zt+eQnP5lly5alra0tTU1Nuf7661NfX9+x/bp16zJz5szce++9GTRoUGbMmJGFCxemb999n16Z0wAAUM7MacrX7373u1x22WX50Y9+lK1bt+atb31rlixZkpNOOinJK3135ZVX5utf/3o2btyY97znPbnhhhvytre9reM1/vCHP+TCCy/Mbbfdlurq6kyfPj1f+tKXMmjQoH2KwXwGAIBy1pX5TI8smnr++eczYsSIUocBAACv6Te/+U2OOuqoUofBnzjuuONy9913dzx+dbHTJZdckjvuuCO33nprBg8enNmzZ+ess87Kgw8+mCTZsWNHpk2bloaGhqxcuTLr16/P+eefn5qamlxzzTX7HIM5DQAAPYE5TXn5j//4j7znPe/J+9///vzoRz/KEUcckaeffjqHHXZYxzaLFi3Kl7/85dx88805+uij89nPfjZNTU156qmn0r9//yTJueeem/Xr16e5uTnt7e356Ec/mo9//OO55ZZb9ikO8xkAAHqCfZnPVBUKhUI3xXPAbNq0KUOGDMlvfvOb1NXVdWvb7e3tWbFiRaZMmZKamppubZvd6Y/yo0/Ki/4oL/qj/OiT8tKb+mPz5s0ZMWJENm7cmMGDB5c6HF5l3rx5+f73v5/HHntst3WbNm3KEUcckVtuuSX/1//1fyVJfvGLX+TYY4/NqlWrMnHixPzoRz/Khz70oTz//PMdV5+68cYbc9lll+Xf//3f069fv32Kw5ymZ5Gz4shbceStOPLWdXJWHHkrjrx1XalzZk5Tnj7zmc/kwQcfzP/+3/97j+sLhUKGDx+eT37yk/nUpz6V5JW5R319fZYuXZqzzz47P//5zzNmzJg88sgjHVenuvPOO/PBD34wv/3tbzN8+PDXjcN8pueRt+LIW9fJWXHkrTjyVhx56zo5K04p89aV+UyPvNLUrsu91tXVleSAfMCAAamrq/OGKAP6o/zok/KiP8qL/ig/+qS89Mb+cJuC8vT0009n+PDh6d+/fxobG7Nw4cKMHDkya9asSXt7eyZNmtSx7ejRozNy5MiOoqlVq1blhBNO6HS7vqampsycOTNPPvlkTjzxxD222dbWlra2to7HL774YpLkkEMOySGHHHKQ9nTP+vbtmwEDBuSQQw7pNe+1g03OiiNvxZG34shb18lZceStOPLWdaXOWXt7exJzmnLzwx/+ME1NTfnLv/zL3H///XnjG9+Yv/u7v8vHPvaxJMlzzz2XlpaWTnOawYMHZ8KECVm1alXOPvvsrFq1KkOGDOkomEqSSZMmpbq6Og899FD+4i/+Yrd2zWd6Pnkrjrx1nZwVR96KI2/Fkbeuk7PilDJvXZnP9MiiKQAAgGJMmDAhS5cuzTHHHJP169dn/vz5ee9735snnngiLS0t6devX4YMGdLpOfX19WlpaUmStLS0dCqY2rV+17q9WbhwYebPn7/b8hUrVmTAgAH7uVfFaW5uLkm7PZmcFUfeiiNvxZG3rpOz4shbceSt60qVs61bt5akXV7bL3/5y9xwww2ZM2dO/p//5//JI488kv/23/5b+vXrlxkzZnTMSfY0Z3n1nGbYsGGd1vft2zdDhw7d65zGfKb3kLfiyFvXyVlx5K048lYcees6OStOKfLWlflMl4qm5s2bt9uB8THHHJNf/OIXSZJt27blk5/8ZJYtW5a2trY0NTXl+uuv73SAvm7dusycOTP33ntvBg0alBkzZmThwoXp21f9FgAAcHBNnTq14//Hjh2bCRMmZNSoUfnOd75zUH8hPXfu3MyZM6fj8a7LA0+ZMqUkV89tbm7O5MmT/TJqH8lZceStOPJWHHnrOjkrjrwVR966rtQ527x5c7e3yevbuXNnTjrppFxzzTVJkhNPPDFPPPFEbrzxxsyYMeOgtWs+0/PJW3HkrevkrDjyVhx5K468dZ2cFaeUeevKfKbLlUrHHXdc7r777v98gVcVO11yySW54447cuutt2bw4MGZPXt2zjrrrDz44INJkh07dmTatGlpaGjIypUrs379+px//vmpqanpOMgHAADoLkOGDMnb3/72PPPMM5k8eXK2b9+ejRs3drraVGtraxoaGpIkDQ0Nefjhhzu9Rmtra8e6vamtrU1tbe1uy2tqako20S5l2z2VnBVH3oojb8WRt66Ts+LIW3HkretKlTP9VJ6OPPLIjBkzptOyY489Nv/8z/+c5D/nJK2trTnyyCM7tmltbc24ceM6ttmwYUOn13j55Zfzhz/8Ya9zGvOZ3kPeiiNvXSdnxZG34shbceSt6+SsOKXIW1faq+7qi/ft2zcNDQ0d/97whjckSTZt2pSbbropX/jCF3Laaadl/PjxWbJkSVauXJnVq1cneeVSrU899VS++c1vZty4cZk6dWoWLFiQxYsXZ/v27V0NBQAAYL9s2bIlzz77bI488siMHz8+NTU1ueeeezrWr127NuvWrUtjY2OSpLGxMY8//ninkwzNzc2pq6vb7eQFAADAgfSe97wna9eu7bTs3/7t3zJq1KgkydFHH52GhoZOc5rNmzfnoYce6jSn2bhxY9asWdOxzY9//OPs3LkzEyZM6Ia9AACA8tHlK009/fTTGT58ePr375/GxsYsXLgwI0eOzJo1a9Le3p5JkyZ1bDt69OiMHDkyq1atysSJE7Nq1aqccMIJnW7X19TUlJkzZ+bJJ5/MiSeeuMc229ra0tbW1vF416W02tvb097e3tVd2C+72uvudtkz/VF+9El50R/lRX+UH31SXnpTf/SGfeitPvWpT+WMM87IqFGj8vzzz+fKK69Mnz59cs4552Tw4MG54IILMmfOnAwdOjR1dXW58MIL09jYmIkTJyZJpkyZkjFjxuS8887LokWL0tLSkssvvzyzZs3a4y+vAQAADpRLLrkk7373u3PNNdfkr/7qr/Lwww/nH/7hH/IP//APSZKqqqpcfPHF+dznPpe3ve1tOfroo/PZz342w4cPz5lnnpnklStTfeADH8jHPvax3HjjjWlvb8/s2bNz9tlnZ/jw4SXcOwAA6H5dKpqaMGFCli5dmmOOOSbr16/P/Pnz8973vjdPPPFEWlpa0q9fv063sUiS+vr6tLS0JElaWlo6FUztWr9r3d4sXLgw8+fP3235ihUrMmDAgK7swgHT3NxcknbZM/1RfvRJedEf5UV/lB99Ul56Q39s3bq11CGwF7/97W9zzjnn5IUXXsgRRxyRU045JatXr84RRxyRJLnuuutSXV2d6dOnp62tLU1NTbn++us7nt+nT5/cfvvtmTlzZhobGzNw4MDMmDEjV111Val2CQAAqBDvete78r3vfS9z587NVVddlaOPPjpf/OIXc+6553Zs8+lPfzovvfRSPv7xj2fjxo055ZRTcuedd6Z///4d23zrW9/K7Nmzc/rpp3fMf7785S+XYpcAAKCkulQ0NXXq1I7/Hzt2bCZMmJBRo0blO9/5Tg455JADHtwuc+fOzZw5czoeb968OSNGjMiUKVNSV1d30Nrdk/b29jQ3N2fy5MnuV1kG9Ef50SflRX+UF/1RfvRJeelN/bHryqiUn2XLlr3m+v79+2fx4sVZvHjxXrcZNWpUli9ffqBDAwAAeF0f+tCH8qEPfWiv66uqqnLVVVe95g87hg4dmltuueVghAcAAD1Kl2/P92pDhgzJ29/+9jzzzDOZPHlytm/fno0bN3a62lRra2saGhqSJA0NDXn44Yc7vUZra2vHur2pra3d460uampqSnZCrZRtszv9UX70SXnRH+VFf5QffVJeekN/9PT4AQAAAAAAervq/Xnyli1b8uyzz+bII4/M+PHjU1NTk3vuuadj/dq1a7Nu3bo0NjYmSRobG/P4449nw4YNHds0Nzenrq4uY8aM2Z9QAAAAAAAAAAAA9kmXrjT1qU99KmeccUZGjRqV559/PldeeWX69OmTc845J4MHD84FF1yQOXPmZOjQoamrq8uFF16YxsbGTJw4MUkyZcqUjBkzJuedd14WLVqUlpaWXH755Zk1a9YeryQFAAAAAAAAAABwoHWpaOq3v/1tzjnnnLzwwgs54ogjcsopp2T16tU54ogjkiTXXXddqqurM3369LS1taWpqSnXX399x/P79OmT22+/PTNnzkxjY2MGDhyYGTNmvOa9tcvV8fPuStuOqlKH0a1+de20UocAAAAAsFe+rwGAylCJf/MTf/cBAA60LhVNLVu27DXX9+/fP4sXL87ixYv3us2oUaOyfPnyrjQLAAAAAAAAAABwwFSXOgAAAAAAAAAAAIDupGgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIrSt9QBAAAAAADA3rzpM3eUOoRuV9unkEUnlzoKAACA3s2VpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAACgzM2bNy9VVVWd/o0ePbpj/bZt2zJr1qwcfvjhGTRoUKZPn57W1tZOr7Fu3bpMmzYtAwYMyLBhw3LppZfm5Zdf7u5dAQCAstC31AEAAAAAAADw+o477rjcfffdHY/79v3P0zyXXHJJ7rjjjtx6660ZPHhwZs+enbPOOisPPvhgkmTHjh2ZNm1aGhoasnLlyqxfvz7nn39+ampqcs0113T7vgAAQKkpmgIAAAAAAOgB+vbtm4aGht2Wb9q0KTfddFNuueWWnHbaaUmSJUuW5Nhjj83q1aszceLErFixIk899VTuvvvu1NfXZ9y4cVmwYEEuu+yyzJs3L/369evu3QEAgJJyez4AAAAAAIAe4Omnn87w4cPz5je/Oeeee27WrVuXJFmzZk3a29szadKkjm1Hjx6dkSNHZtWqVUmSVatW5YQTTkh9fX3HNk1NTdm8eXOefPLJ7t0RAAAoA640BQAAAAAAUOYmTJiQpUuX5phjjsn69eszf/78vPe9780TTzyRlpaW9OvXL0OGDOn0nPr6+rS0tCRJWlpaOhVM7Vq/a93etLW1pa2trePx5s2bkyTt7e1pb28/ELu2z3a1V1td6NZ2y0Wx+d71vO7ur55O3rpOzoojb8WRt+LIW9fJWXFKmbeutKloCgAAAAAAoMxNnTq14//Hjh2bCRMmZNSoUfnOd76TQw455KC1u3DhwsyfP3+35StWrMiAAQMOWruvZcFJO0vSbqktX758v57f3Nx8gCKpLPLWdXJWHHkrjrwVR966Ts6KU4q8bd26dZ+3VTQFAAAAAADQwwwZMiRvf/vb88wzz2Ty5MnZvn17Nm7c2OlqU62trWloaEiSNDQ05OGHH+70Gq2trR3r9mbu3LmZM2dOx+PNmzdnxIgRmTJlSurq6g7gHr2+9vb2NDc357OPVqdtZ1W3tl0OnpjXVNTzduVt8uTJqampOcBR9V7y1nVyVhx5K468FUfeuk7OilPKvO26Muq+UDQFAAAAAADQw2zZsiXPPvtszjvvvIwfPz41NTW55557Mn369CTJ2rVrs27dujQ2NiZJGhsbc/XVV2fDhg0ZNmxYkld++V9XV5cxY8bstZ3a2trU1tbutrympqZkJw7bdlalbUflFU3tb75L2Wc9mbx1nZwVR96KI2/Fkbeuk7PilCJvXWlP0RQAAAAAAECZ+9SnPpUzzjgjo0aNyvPPP58rr7wyffr0yTnnnJPBgwfnggsuyJw5czJ06NDU1dXlwgsvTGNjYyZOnJgkmTJlSsaMGZPzzjsvixYtSktLSy6//PLMmjVrj0VRAADQ21WXOgAAAIBSuPbaa1NVVZWLL764Y9m2bdsya9asHH744Rk0aFCmT5/ecbuKXdatW5dp06ZlwIABGTZsWC699NK8/PLL3Rw9AABQaX7729/mnHPOyTHHHJO/+qu/yuGHH57Vq1fniCOOSJJcd911+dCHPpTp06fnz/7sz9LQ0JB/+Zd/6Xh+nz59cvvtt6dPnz5pbGzMX//1X+f888/PVVddVapdAgCAknKlKQAAoOI88sgj+drXvpaxY8d2Wn7JJZfkjjvuyK233prBgwdn9uzZOeuss/Lggw8mSXbs2JFp06aloaEhK1euzPr163P++eenpqYm11xzTSl2BQAAqBDLli17zfX9+/fP4sWLs3jx4r1uM2rUqCxfvvxAhwYAAD2SK00BAAAVZcuWLTn33HPz9a9/PYcddljH8k2bNuWmm27KF77whZx22mkZP358lixZkpUrV2b16tVJkhUrVuSpp57KN7/5zYwbNy5Tp07NggULsnjx4mzfvr1UuwQAAAAAAHSRoikAAKCizJo1K9OmTcukSZM6LV+zZk3a29s7LR89enRGjhyZVatWJUlWrVqVE044IfX19R3bNDU1ZfPmzXnyySe7ZwcAAAAAAID9tl+357v22mszd+7cXHTRRfniF7+YJNm2bVs++clPZtmyZWlra0tTU1Ouv/76TicV1q1bl5kzZ+bee+/NoEGDMmPGjCxcuDB9+7pbIAAAcPAsW7YsP/3pT/PII4/stq6lpSX9+vXLkCFDOi2vr69PS0tLxzavntvsWr9r3d60tbWlra2t4/HmzZuTJO3t7Wlvby9qX4q1q73ubrcnk7PiyFtx5K04u/JVW10ocSTdr9ixYqwVR96Ks795q+1Tee/tXZ9npRprxjgAAFAJiq5SeuSRR/K1r30tY8eO7bT8kksuyR133JFbb701gwcPzuzZs3PWWWflwQcfTJLs2LEj06ZNS0NDQ1auXJn169fn/PPPT01NTa655pr92xsAAIC9+M1vfpOLLroozc3N6d+/f7e2vXDhwsyfP3+35StWrMiAAQO6NZZdmpubS9JuTyZnxZG34shbcRactLPUIXS75cuX79fzjbXiyFtxis3bopMPcCA9SKnG2tatW0vSLgAAQHcqqmhqy5YtOffcc/P1r389n/vc5zqWb9q0KTfddFNuueWWnHbaaUmSJUuW5Nhjj83q1aszceLErFixIk899VTuvvvu1NfXZ9y4cVmwYEEuu+yyzJs3L/369TswewYAAPAqa9asyYYNG/LOd76zY9mOHTvywAMP5Ktf/WruuuuubN++PRs3bux0tanW1tY0NDQkSRoaGvLwww93et3W1taOdXszd+7czJkzp+Px5s2bM2LEiEyZMiV1dXUHYvf2WXt7e5qbmzN58uTU1NR0a9s9lZwVR96KI2/F2ZW3zz5anbadVaUOp1s9Ma+pqOcZa8WRt+Lsb96On3fXQYiqvNVWF7LgpJ0lG2u7rowKAADQmxVVNDVr1qxMmzYtkyZN6lQ0tWbNmrS3t2fSpEkdy0aPHp2RI0dm1apVmThxYlatWpUTTjih0y0tmpqaMnPmzDz55JM58cQT92N3AAAA9uz000/P448/3mnZRz/60YwePTqXXXZZRowYkZqamtxzzz2ZPn16kmTt2rVZt25dGhsbkySNjY25+uqrs2HDhgwbNizJK7/+r6ury5gxY/badm1tbWpra3dbXlNTU7ITrqVsu6eSs+LIW3HkrThtO6vStqOyiqb2d5wYa8WRt+IUm7dKe1+/WqnGmvENAABUgi4XTS1btiw//elP88gjj+y2rqWlJf369ev0q+wkqa+vT0tLS8c2ry6Y2rV+17o9aWtrS1tbW8fjXb9yaW9v7/Z7q+9qb9c95StJOd7HfldM5RhbpdIn5UV/lBf9UX70SXnpTf3RG/ahNzr00ENz/PHHd1o2cODAHH744R3LL7jggsyZMydDhw5NXV1dLrzwwjQ2NmbixIlJkilTpmTMmDE577zzsmjRorS0tOTyyy/PrFmz9lgUBQAAAAAAlKcuFU395je/yUUXXZTm5ub079//YMW0m4ULF2b+/Pm7LV+xYkUGDBjQbXG82oKTdpak3VJavnx5qUPYq+bm5lKHwJ/QJ+VFf5QX/VF+9El56Q39sXXr1lKHQJGuu+66VFdXZ/r06Wlra0tTU1Ouv/76jvV9+vTJ7bffnpkzZ6axsTEDBw7MjBkzctVVV5UwagAAAAAAoKu6VDS1Zs2abNiwIe985zs7lu3YsSMPPPBAvvrVr+auu+7K9u3bs3Hjxk5Xm2ptbU1DQ0OSpKGhIQ8//HCn121tbe1Ytydz587NnDlzOh5v3rw5I0aMyJQpU1JXV9eVXdhv7e3taW5uzmcfrU7bzsq6LPQT85pKHcJudvXH5MmTXTK6TOiT8qI/yov+KD/6pLz0pv7YdWVUyt99993X6XH//v2zePHiLF68eK/PGTVqVFn/oAAAAAAAAHh9XSqaOv300/P44493WvbRj340o0ePzmWXXZYRI0akpqYm99xzT6ZPn54kWbt2bdatW5fGxsYkSWNjY66++ups2LAhw4YNS/LK1QTq6uoyZsyYPbZbW1u7x1tdlOp+7knStrMqbTsqq2iqnE9elnIssGf6pLzoj/KiP8qPPikvvaE/enr8AAAAAAAAvV2XiqYOPfTQHH/88Z2WDRw4MIcffnjH8gsuuCBz5szJ0KFDU1dXlwsvvDCNjY2ZOHFikmTKlCkZM2ZMzjvvvCxatCgtLS25/PLLM2vWrD0WRgEAAAAAAAAAABxIXSqa2hfXXXddqqurM3369LS1taWpqSnXX399x/o+ffrk9ttvz8yZM9PY2JiBAwdmxowZueqqqw50KAAAAAAAAAAAALvZ76Kp++67r9Pj/v37Z/HixVm8ePFenzNq1KgsX758f5sGAAAAAAAAAADosupSBwAAAAAAAAAAANCdFE0BAAAAAAAAAAAVRdEUAAAAAAAAAABQURRNAQAAAAAAAAAAFUXRFAAAAAAAAAAAUFEUTQEAAAAAAAAAABVF0RQAAAAAAAAAAFBRFE0BAAAAAAAAAAAVRdEUAAAAAAAAAABQURRNAQAAAAAAAAAAFUXRFAAAAAAAAAAAUFEUTQEAAAAAAAAAABVF0RQAAAAAAAAAAFBRFE0BAAAAAAAAAAAVRdEUAAAAAAAAAABQURRNAQAAAAAAAAAAFUXRFAAAAAAAAAAAUFEUTQEAAAAAAAAAABVF0RQAAAAAAAAAAFBRFE0BAAAAAAAAAAAVRdEUAAAAAABAD3PttdemqqoqF198cceybdu2ZdasWTn88MMzaNCgTJ8+Pa2trZ2et27dukybNi0DBgzIsGHDcumll+bll1/u5ugBAKD0FE0BAAAAAAD0II888ki+9rWvZezYsZ2WX3LJJbntttty66235v7778/zzz+fs846q2P9jh07Mm3atGzfvj0rV67MzTffnKVLl+aKK67o7l0AAICSUzQFAAAAAADQQ2zZsiXnnntuvv71r+ewww7rWL5p06bcdNNN+cIXvpDTTjst48ePz5IlS7Jy5cqsXr06SbJixYo89dRT+eY3v5lx48Zl6tSpWbBgQRYvXpzt27eXapcAAKAkFE0BAAAAAAD0ELNmzcq0adMyadKkTsvXrFmT9vb2TstHjx6dkSNHZtWqVUmSVatW5YQTTkh9fX3HNk1NTdm8eXOefPLJ7tkBAAAoE31LHQAAAAAAAACvb9myZfnpT3+aRx55ZLd1LS0t6devX4YMGdJpeX19fVpaWjq2eXXB1K71u9btSVtbW9ra2joeb968OUnS3t6e9vb2ovelGLvaq60udGu75aLYfO96Xnf3V08nb10nZ8WRt+LIW3HkrevkrDilzFtX2lQ0BQAAAAAAUOZ+85vf5KKLLkpzc3P69+/fbe0uXLgw8+fP3235ihUrMmDAgG6L49UWnLSzJO2W2vLly/fr+c3NzQcoksoib10nZ8WRt+LIW3HkrevkrDilyNvWrVv3eVtFUwAAAAAAAGVuzZo12bBhQ975znd2LNuxY0ceeOCBfPWrX81dd92V7du3Z+PGjZ2uNtXa2pqGhoYkSUNDQx5++OFOr9va2tqxbk/mzp2bOXPmdDzevHlzRowYkSlTpqSuru5A7d4+aW9vT3Nzcz77aHXadlZ1a9vl4Il5TUU9b1feJk+enJqamgMcVe8lb10nZ8WRt+LIW3HkrevkrDilzNuuK6PuC0VTAAAAAAAAZe7000/P448/3mnZRz/60YwePTqXXXZZRowYkZqamtxzzz2ZPn16kmTt2rVZt25dGhsbkySNjY25+uqrs2HDhgwbNizJK7/+r6ury5gxY/bYbm1tbWpra3dbXlNTU7ITh207q9K2o/KKpvY336Xss55M3rpOzoojb8WRt+LIW9fJWXFKkbeutKdoCgAAAAAAoMwdeuihOf744zstGzhwYA4//PCO5RdccEHmzJmToUOHpq6uLhdeeGEaGxszceLEJMmUKVMyZsyYnHfeeVm0aFFaWlpy+eWXZ9asWXssjAIAgN5M0RQAAAAAAEAvcN1116W6ujrTp09PW1tbmpqacv3113es79OnT26//fbMnDkzjY2NGThwYGbMmJGrrrqqhFEDAEBpKJoCAAAAAADoge67775Oj/v375/Fixdn8eLFe33OqFGjsnz58oMcGQAAlL/qUgcAAAAAAAAAAADQnRRNAQAAAAAAAAAAFUXRFAAAAAAAAAAAUFEUTQEAAAAAAAAAABVF0RQAAAAAAAAAAFBRFE0BAAAAAAAAAAAVRdEUAAAAAAAAAABQURRNAQAAFeOGG27I2LFjU1dXl7q6ujQ2NuZHP/pRx/pt27Zl1qxZOfzwwzNo0KBMnz49ra2tnV5j3bp1mTZtWgYMGJBhw4bl0ksvzcsvv9zduwIAAAAAAOwHRVMAAEDFOOqoo3LttddmzZo1efTRR3Paaaflwx/+cJ588skkySWXXJLbbrstt956a+6///48//zzOeusszqev2PHjkybNi3bt2/PypUrc/PNN2fp0qW54oorSrVLAAAAAABAEfqWOgAAAIDucsYZZ3R6fPXVV+eGG27I6tWrc9RRR+Wmm27KLbfcktNOOy1JsmTJkhx77LFZvXp1Jk6cmBUrVuSpp57K3Xffnfr6+owbNy4LFizIZZddlnnz5qVfv36l2C0AAAAAAKCLulQ0dcMNN+SGG27Ir371qyTJcccdlyuuuCJTp05N8sqtLD75yU9m2bJlaWtrS1NTU66//vrU19d3vMa6desyc+bM3HvvvRk0aFBmzJiRhQsXpm9f9VsAAED32bFjR2699da89NJLaWxszJo1a9Le3p5JkyZ1bDN69OiMHDkyq1atysSJE7Nq1aqccMIJneY4TU1NmTlzZp588smceOKJe2yrra0tbW1tHY83b96cJGlvb097e/tB2sM929Ved7fbk8lZceStOPJWnF35qq0ulDiS7lfsWDHWiiNvxdnfvNX2qbz39q7Ps1KNNWMcAACoBF2qVNp1K4u3ve1tKRQKufnmm/PhD384P/vZz3LcccflkksuyR133JFbb701gwcPzuzZs3PWWWflwQcfTPKft7JoaGjIypUrs379+px//vmpqanJNddcc1B2EAAA4NUef/zxNDY2Ztu2bRk0aFC+973vZcyYMXnsscfSr1+/DBkypNP29fX1aWlpSZK0tLR0KpjatX7Xur1ZuHBh5s+fv9vyFStWZMCAAfu5R8Vpbm4uSbs9mZwVR96KI2/FWXDSzlKH0O2WL1++X8831oojb8UpNm+LTj7AgfQgpRprW7duLUm7AAAA3alLRVNuZQEAAPR0xxxzTB577LFs2rQp3/3udzNjxozcf//9B7XNuXPnZs6cOR2PN2/enBEjRmTKlCmpq6s7qG3/qfb29jQ3N2fy5Mmpqanp1rZ7KjkrjrwVR96Ksytvn320Om07q0odTrd6Yl5TUc8z1oojb8XZ37wdP++ugxBVeautLmTBSTtLNtZ2XRkVAACgNyv6nniVfisLl3svDy6JXn70SXnRH+VFf5QffVJeelN/9IZ96M369euXt771rUmS8ePH55FHHsmXvvSlfOQjH8n27duzcePGTlebam1tTUNDQ5KkoaEhDz/8cKfXa21t7Vi3N7W1tamtrd1teU1NTclOuJay7Z5Kzoojb8WRt+K07axK247KKpra33FirBVH3opTbN4q7X39aqUaa8Y3AABQCbpcNOVWFq9wuffy4pLo5UeflBf9UV70R/nRJ+WlN/SHW1n0LDt37kxbW1vGjx+fmpqa3HPPPZk+fXqSZO3atVm3bl0aGxuTJI2Njbn66quzYcOGDBs2LMkrY7auri5jxowp2T4AAAAAAABd0+WiKbeycLn3cuKS6OVHn5QX/VFe9Ef50SflpTf1h1tZlK+5c+dm6tSpGTlyZF588cXccsstue+++3LXXXdl8ODBueCCCzJnzpwMHTo0dXV1ufDCC9PY2JiJEycmSaZMmZIxY8bkvPPOy6JFi9LS0pLLL788s2bN2uOVpAAAAAAAgPLU5aIpt7J4hcu9lxeXRC8/+qS86I/yoj/Kjz4pL72hP3p6/L3Zhg0bcv7552f9+vUZPHhwxo4dm7vuuiuTJ09Oklx33XWprq7O9OnT09bWlqamplx//fUdz+/Tp09uv/32zJw5M42NjRk4cGBmzJiRq666qlS7BAAAAAAAFKHLRVN/yq0sAACAnuKmm256zfX9+/fP4sWLs3jx4r1uM2rUqLK+dTUAAAAAAPD6ulQ05VYWAAAAAAAAAABAT9eloim3sgAAAAAAAAAAAHq6LhVNuZUFAAAAAAAAAADQ01WXOgAAAAAAAAAAAIDupGgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAADK3A033JCxY8emrq4udXV1aWxszI9+9KOO9du2bcusWbNy+OGHZ9CgQZk+fXpaW1s7vca6desybdq0DBgwIMOGDcull16al19+ubt3BQAAyoKiKQAAAAAAgDJ31FFH5dprr82aNWvy6KOP5rTTTsuHP/zhPPnkk0mSSy65JLfddltuvfXW3H///Xn++edz1llndTx/x44dmTZtWrZv356VK1fm5ptvztKlS3PFFVeUapcAAKCk+pY6AAAAAAAAAF7bGWec0enx1VdfnRtuuCGrV6/OUUcdlZtuuim33HJLTjvttCTJkiVLcuyxx2b16tWZOHFiVqxYkaeeeip333136uvrM27cuCxYsCCXXXZZ5s2bl379+pVitwAAoGQUTQEAAAAAAPQgO3bsyK233pqXXnopjY2NWbNmTdrb2zNp0qSObUaPHp2RI0dm1apVmThxYlatWpUTTjgh9fX1Hds0NTVl5syZefLJJ3PiiSfusa22tra0tbV1PN68eXOSpL29Pe3t7QdpD/dsV3u11YVubbdcFJvvXc/r7v7q6eSt6+SsOPJWHHkrjrx1nZwVp5R560qbiqYAAAAAAAB6gMcffzyNjY3Ztm1bBg0alO9973sZM2ZMHnvssfTr1y9DhgzptH19fX1aWlqSJC0tLZ0Kpnat37VubxYuXJj58+fvtnzFihUZMGDAfu5RcRactLMk7Zba8uXL9+v5zc3NByiSyiJvXSdnxZG34shbceSt6+SsOKXI29atW/d5W0VTAAAAAAAAPcAxxxyTxx57LJs2bcp3v/vdzJgxI/fff/9BbXPu3LmZM2dOx+PNmzdnxIgRmTJlSurq6g5q23+qvb09zc3N+eyj1WnbWdWtbZeDJ+Y1FfW8XXmbPHlyampqDnBUvZe8dZ2cFUfeiiNvxZG3rpOz4pQyb7uujLovFE0BAAAAAAD0AP369ctb3/rWJMn48ePzyCOP5Etf+lI+8pGPZPv27dm4cWOnq021tramoaEhSdLQ0JCHH3640+u1trZ2rNub2tra1NbW7ra8pqamZCcO23ZWpW1H5RVN7W++S9lnPZm8dZ2cFUfeiiNvxZG3rpOz4pQib11pr/ogxgEAAAAAAMBBsnPnzrS1tWX8+PGpqanJPffc07Fu7dq1WbduXRobG5MkjY2Nefzxx7Nhw4aObZqbm1NXV5cxY8Z0e+wAAFBqrjQFAAAAAABQ5ubOnZupU6dm5MiRefHFF3PLLbfkvvvuy1133ZXBgwfnggsuyJw5czJ06NDU1dXlwgsvTGNjYyZOnJgkmTJlSsaMGZPzzjsvixYtSktLSy6//PLMmjVrj1eSAgCA3k7RFAAAAAAAQJnbsGFDzj///Kxfvz6DBw/O2LFjc9ddd2Xy5MlJkuuuuy7V1dWZPn162tra0tTUlOuvv77j+X369Mntt9+emTNnprGxMQMHDsyMGTNy1VVXlWqXAACgpBRNAQAAAAAAlLmbbrrpNdf3798/ixcvzuLFi/e6zahRo7J8+fIDHRoAAPRI1aUOAAAAAAAAAAAAoDspmgIAAAAAAAAAACqKoikAAAAAAAAAAKCiKJoCAAAAAAAAAAAqiqIpAAAAAAAAAACgoiiaAgAAAAAAAAAAKoqiKQAAAAAAAAAAoKIomgIAAAAAAAAAACqKoikAAAAAAAAAAKCiKJoCAAAAAAAAAAAqiqIpAAAAAAAAAACgoiiaAgAAAAAAAAAAKoqiKQAAAAAAAAAAoKIomgIAAAAAAAAAACqKoikAAAAAAAAAAKCiKJoCAAAqxsKFC/Oud70rhx56aIYNG5Yzzzwza9eu7bTNtm3bMmvWrBx++OEZNGhQpk+fntbW1k7brFu3LtOmTcuAAQMybNiwXHrppXn55Ze7c1cAAAAAAID9oGgKAACoGPfff39mzZqV1atXp7m5Oe3t7ZkyZUpeeumljm0uueSS3Hbbbbn11ltz//335/nnn89ZZ53VsX7Hjh2ZNm1atm/fnpUrV+bmm2/O0qVLc8UVV5RilwAAAAAAgCJ0qWjKr7IBAICe7M4778zf/M3f5Ljjjss73vGOLF26NOvWrcuaNWuSJJs2bcpNN92UL3zhCznttNMyfvz4LFmyJCtXrszq1auTJCtWrMhTTz2Vb37zmxk3blymTp2aBQsWZPHixdm+fXspdw8AAAAAANhHXSqa8qtsAACgN9m0aVOSZOjQoUmSNWvWpL29PZMmTerYZvTo0Rk5cmRWrVqVJFm1alVOOOGE1NfXd2zT1NSUzZs358knn+zG6AEAAAAAgGL17crGd955Z6fHS5cuzbBhw7JmzZr82Z/9Wcevsm+55ZacdtppSZIlS5bk2GOPzerVqzNx4sSOX2Xffffdqa+vz7hx47JgwYJcdtllmTdvXvr163fg9g4AAGAvdu7cmYsvvjjvec97cvzxxydJWlpa0q9fvwwZMqTTtvX19WlpaenY5tUFU7vW71q3J21tbWlra+t4vHnz5iRJe3t72tvbD8j+7Ktd7XV3uz2ZnBVH3oojb8XZla/a6kKJI+l+xY4VY6048lac/c1bbZ/Ke2/v+jwr1VgzxgEAgErQpaKpP9XVX2VPnDhxr7/KnjlzZp588smceOKJ+xMSAADAPpk1a1aeeOKJ/OQnPznobS1cuDDz58/fbfmKFSsyYMCAg97+njQ3N5ek3Z5Mzoojb8WRt+IsOGlnqUPodsuXL9+v5xtrxZG34hSbt0UnH+BAepBSjbWtW7eWpF0AAIDuVHTRVKX/KtsvF8uDX/eVH31SXvRHedEf5UeflJfe1B+9YR96u9mzZ+f222/PAw88kKOOOqpjeUNDQ7Zv356NGzd2mte0tramoaGhY5uHH3640+u1trZ2rNuTuXPnZs6cOR2PN2/enBEjRmTKlCmpq6s7ULu1T9rb29Pc3JzJkyenpqamW9vuqeSsOPJWHHkrzq68ffbR6rTtrCp1ON3qiXlNRT3PWCuOvBVnf/N2/Ly7DkJU5a22upAFJ+0s2Vjb9R08AABAb1Z00VSl/yrbLxfLi1/3lR99Ul70R3nRH+VHn5SX3tAffpVdvgqFQi688MJ873vfy3333Zejjz660/rx48enpqYm99xzT6ZPn54kWbt2bdatW5fGxsYkSWNjY66++ups2LAhw4YNS/LKuK2rq8uYMWP22G5tbW1qa2t3W15TU1OyE66lbLunkrPiyFtx5K04bTur0rajsoqm9necGGvFkbfiFJu3Sntfv1qpxprxDQAAVIKiiqb8KtsvF8uFX/eVH31SXvRHedEf5UeflJfe1B9+lV2+Zs2alVtuuSU/+MEPcuihh3Zc7Xbw4ME55JBDMnjw4FxwwQWZM2dOhg4dmrq6ulx44YVpbGzMxIkTkyRTpkzJmDFjct5552XRokVpaWnJ5ZdfnlmzZu2xMAoAAAAAACg/XSqa8qvs/+SXi+XFr/vKjz4pL/qjvOiP8qNPyktv6I+eHn9vdsMNNyRJTj311E7LlyxZkr/5m79Jklx33XWprq7O9OnT09bWlqamplx//fUd2/bp0ye33357Zs6cmcbGxgwcODAzZszIVVdd1V27AQAAAAAA7KcuFU35VTYAANCTFQqF192mf//+Wbx4cRYvXrzXbUaNGlXWt68GAAAAAABeW5eKpvwqGwAAAAAAAOgub/rMHSVpt7ZPIYtOTo6fd1dJ7j7zq2undXubAFBpunx7vtfjV9kAAAAAAAAAAEA5qy51AAAAAAAAAAAAAN1J0RQAAAAAAAAAAFBRFE0BAAAAAAAAAAAVRdEUAAAAAAAAAABQURRNAQAAAAAAAAAAFUXRFAAAAAAAQJlbuHBh3vWud+XQQw/NsGHDcuaZZ2bt2rWdttm2bVtmzZqVww8/PIMGDcr06dPT2traaZt169Zl2rRpGTBgQIYNG5ZLL700L7/8cnfuCgAAlAVFUwAAAAAAAGXu/vvvz6xZs7J69eo0Nzenvb09U6ZMyUsvvdSxzSWXXJLbbrstt956a+6///48//zzOeusszrW79ixI9OmTcv27duzcuXK3HzzzVm6dGmuuOKKUuwSAACUVN9SBwAAAAAAAMBru/POOzs9Xrp0aYYNG5Y1a9bkz/7sz7Jp06bcdNNNueWWW3LaaaclSZYsWZJjjz02q1evzsSJE7NixYo89dRTufvuu1NfX59x48ZlwYIFueyyyzJv3rz069evFLsGAAAloWiKffamz9xR6hB2U9unkEUnJ8fPuyttO6oOWju/unbaQXttAAAAAADoqk2bNiVJhg4dmiRZs2ZN2tvbM2nSpI5tRo8enZEjR2bVqlWZOHFiVq1alRNOOCH19fUd2zQ1NWXmzJl58sknc+KJJ+7WTltbW9ra2joeb968OUnS3t6e9vb2g7Jve7OrvdrqQre2Wy6Kzfeu53V3fx0otX1K09+7xlmpxltP7K+ePtZKRd6KI2/Fkbeuk7PilDJvXWlT0RQAAAAAAEAPsnPnzlx88cV5z3vek+OPPz5J0tLSkn79+mXIkCGdtq2vr09LS0vHNq8umNq1fte6PVm4cGHmz5+/2/IVK1ZkwIAB+7srRVlw0s6StFtqy5cv36/nNzc3H6BIuteik0vbfqnG2/72dyn11LFWavJWHHkrjrx1nZwVpxR527p16z5vq2gKAAAAAACgB5k1a1aeeOKJ/OQnPznobc2dOzdz5szpeLx58+aMGDEiU6ZMSV1d3UFv/9Xa29vT3Nyczz5anbadB+/uE+XqiXlNRT1vV94mT56cmpqaAxzVwXf8vLtK0m5tdSELTtpZsvFWbH+XUk8fa6Uib8WRt+LIW9fJWXFKmbddV0bdF4qmAAAAAAAAeojZs2fn9ttvzwMPPJCjjjqqY3lDQ0O2b9+ejRs3drraVGtraxoaGjq2efjhhzu9Xmtra8e6PamtrU1tbe1uy2tqakp24rBtZ1XadlRe0dT+5ruUfbY/St3XpRpvPbGvdumpY63U5K048lYcees6OStOKfLWlfaqD2IcAAAAAAAAHACFQiGzZ8/O9773vfz4xz/O0Ucf3Wn9+PHjU1NTk3vuuadj2dq1a7Nu3bo0NjYmSRobG/P4449nw4YNHds0Nzenrq4uY8aM6Z4dAQCAMuFKUwAAAAAAAGVu1qxZueWWW/KDH/wghx56aFpaWpIkgwcPziGHHJLBgwfnggsuyJw5czJ06NDU1dXlwgsvTGNjYyZOnJgkmTJlSsaMGZPzzjsvixYtSktLSy6//PLMmjVrj1eTAgCA3kzRFAAAAAAAQJm74YYbkiSnnnpqp+VLlizJ3/zN3yRJrrvuulRXV2f69Olpa2tLU1NTrr/++o5t+/Tpk9tvvz0zZ85MY2NjBg4cmBkzZuSqq67qrt0AAICyoWgKAAAAAACgzBUKhdfdpn///lm8eHEWL168121GjRqV5cuXH8jQAACgR6oudQAAAAAAAAAAAADdSdEUAAAAAAAAAABQURRNAQAAAAAAAAAAFUXRFAAAAAAAAAAAUFEUTQEAAAAAAAAAABVF0RQAAAAAAAAAAFBRFE0BAAAAAAAAAAAVRdEUAAAAAAAAAABQURRNAQAAAAAAAAAAFUXRFAAAAAAAAAAAUFEUTQEAAAAAAAAAABWlb6kDgJ7gTZ+5o9QhlMSvrp1W6hAAAAAAAAAAAA44V5oCAAAAAAAAAAAqiqIpAAAAAAAAAACgoiiaAgAAAAAAAAAAKoqiKQAAAAAAAAAAoKIomgIAAAAAAAAAACqKoikAAAAAAAAAAKCiKJoCAAAAAAAAAAAqiqIpAAAAAAAAAACgoiiaAgAAAAAAAAAAKoqiKQAAAAAAAAAAoKL0LXUAAAAAAAAAAFDJjp93V9p2VJU6jG71q2unlToEoMK50hQAAAAAAAAAAFBRFE0BAAAV44EHHsgZZ5yR4cOHp6qqKt///vc7rS8UCrniiity5JFH5pBDDsmkSZPy9NNPd9rmD3/4Q84999zU1dVlyJAhueCCC7Jly5Zu3AsAAAAAAGB/dbloykkGAACgp3rppZfyjne8I4sXL97j+kWLFuXLX/5ybrzxxjz00EMZOHBgmpqasm3bto5tzj333Dz55JNpbm7O7bffngceeCAf//jHu2sXAAAAAACAA6DLRVNOMgAAAD3V1KlT87nPfS5/8Rd/sdu6QqGQL37xi7n88svz4Q9/OGPHjs03vvGNPP/88x0/Fvn5z3+eO++8M//4j/+YCRMm5JRTTslXvvKVLFu2LM8//3w37w0AAAAAAFCsvl19wtSpUzN16tQ9rvvTkwxJ8o1vfCP19fX5/ve/n7PPPrvjJMMjjzySk046KUnyla98JR/84Afz+c9/PsOHD9+P3QEAACjOc889l5aWlkyaNKlj2eDBgzNhwoSsWrUqZ599dlatWpUhQ4Z0zGWSZNKkSamurs5DDz20x2KsJGlra0tbW1vH482bNydJ2tvb097efpD2aM92tdfd7fZkclYceSuOvBVnV75qqwsljqT7FTtWjLXiyFtx9jdvtX0q77296/OsVGPNGAcAACpBl4umXsvBOslQjicYKvFLuHK0qx/0x8FRzPvLl4flRX+UF/1RfvRJeelN/dEb9qEStbS0JEnq6+s7La+vr+9Y19LSkmHDhnVa37dv3wwdOrRjmz1ZuHBh5s+fv9vyFStWZMCAAfsbelGam5tL0m5PJmfFkbfiyFtxFpy0s9QhdLvly5fv1/ONteLIW3GKzduikw9wID1Iqcba1q1bS9IuAABAdzqgRVMH6yRDOZ5gqMQv4cqZ/jg49ueLV18elhf9UV70R/nRJ+WlN/SHEwz8qblz52bOnDkdjzdv3pwRI0ZkypQpqaur69ZY2tvb09zcnMmTJ6empqZb2+6p5Kw48lYceSvOrrx99tHqtO2sKnU43eqJeU1FPc9YK468FWd/83b8vLsOQlTlrba6kAUn7SzZWNv1w2UAAIDe7IAWTR0s5XiCoRK/hCtHu7480B8HRzFfvPrysLzoj/KiP8qPPikvvak/nGDomRoaGpIkra2tOfLIIzuWt7a2Zty4cR3bbNiwodPzXn755fzhD3/oeP6e1NbWpra2drflNTU1JRvvpWy7p5Kz4shbceStOG07q9K2o7K+H9jfcWKsFUfeilNs3irtff1qpRprxjcAAFAJDmjR1ME6yVCOJxgq8Uu4cqY/Do79eX/58rC86I/yoj/Kjz4pL72hP3p6/JXq6KOPTkNDQ+65556O+cvmzZvz0EMPZebMmUmSxsbGbNy4MWvWrMn48eOTJD/+8Y+zc+fOTJgwoVShAwAAAAAAXVR9IF/s1ScZdtl1kqGxsTFJ55MMuzjJAAAAdIctW7bksccey2OPPZYkee655/LYY49l3bp1qaqqysUXX5zPfe5z+eEPf5jHH388559/foYPH54zzzwzSXLsscfmAx/4QD72sY/l4YcfzoMPPpjZs2fn7LPPzvDhw0u3YwAAQEV44IEHcsYZZ2T48OGpqqrK97///U7rC4VCrrjiihx55JE55JBDMmnSpDz99NOdtvnDH/6Qc889N3V1dRkyZEguuOCCbNmypRv3AgAAykOXi6acZAAAAHqqRx99NCeeeGJOPPHEJMmcOXNy4okn5oorrkiSfPrTn86FF16Yj3/843nXu96VLVu25M4770z//v07XuNb3/pWRo8endNPPz0f/OAHc8opp+Qf/uEfSrI/AABAZXnppZfyjne8I4sXL97j+kWLFuXLX/5ybrzxxjz00EMZOHBgmpqasm3bto5tzj333Dz55JNpbm7O7bffngceeCAf//jHu2sXAACgbHT59nyPPvpo3v/+93c8njNnTpJkxowZWbp0aT796U/npZdeysc//vFs3Lgxp5xyyh5PMsyePTunn356qqurM3369Hz5y18+ALsDAACwd6eeemoKhcJe11dVVeWqq67KVVddtddthg4dmltuueVghAcAAPCapk6dmqlTp+5xXaFQyBe/+MVcfvnl+fCHP5wk+cY3vpH6+vp8//vfz9lnn52f//znufPOO/PII4/kpJNOSpJ85StfyQc/+MF8/vOf9+N2AAAqSpeLppxkAAAAAAAAKC/PPfdcWlpaMmnSpI5lgwcPzoQJE7Jq1aqcffbZWbVqVYYMGdJRMJUkkyZNSnV1dR566KH8xV/8RSlCBwCAkuhy0RQAAAAAAADlpaWlJUlSX1/faXl9fX3HupaWlgwbNqzT+r59+2bo0KEd2/yptra2tLW1dTzevHlzkqS9vT3t7e0HLP59sau92uq9/7i/Nys237ue1939daDU9ilNf+8aZ6Uabz2xv3r6WCuVSv5s25+xYrwVR966Ts6KU8q8daVNRVMAAAAAAADs0cKFCzN//vzdlq9YsSIDBgwoQUTJgpN2lqTdUlu+fPl+Pb+5ufkARdK9Fp1c2vZLNd72t79LqaeOtVKrxM+2AzHOjbfiyFvXyVlxSpG3rVu37vO2iqaAvXrTZ+7o8nNq+xSy6OTk+Hl3pW1H1UGI6uD71bXTSh0CAAAAAECXNDQ0JElaW1tz5JFHdixvbW3NuHHjOrbZsGFDp+e9/PLL+cMf/tDx/D81d+7czJkzp+Px5s2bM2LEiEyZMiV1dXUHeC9eW3t7e5qbm/PZR6vTtrNnfv+8P56Y11TU83blbfLkyampqTnAUR18x8+7qyTt1lYXsuCknSUbb8X2dyn19LFWKpX82bY/49x4K468dZ2cFaeUedt1ZdR9oWgKAAAAAACghzv66KPT0NCQe+65p6NIavPmzXnooYcyc+bMJEljY2M2btyYNWvWZPz48UmSH//4x9m5c2cmTJiwx9etra1NbW3tbstrampKduKwbWdVj/3R7v7Y33yXss/2R6n7ulTjrSf21S49dayVWiV+th2IcWK8FUfeuk7OilOKvHWlPUVTAAAAAAAAPcCWLVvyzDPPdDx+7rnn8thjj2Xo0KEZOXJkLr744nzuc5/L2972thx99NH57Gc/m+HDh+fMM89Mkhx77LH5wAc+kI997GO58cYb097entmzZ+fss8/O8OHDS7RXAABQGoqmAAAAAAAAeoBHH30073//+zse77pt3owZM7J06dJ8+tOfzksvvZSPf/zj2bhxY0455ZTceeed6d+/f8dzvvWtb2X27Nk5/fTTU11dnenTp+fLX/5yt+8LAACUmqIpAACACnT8vLsq7pLvv7p2WqlDAACA/XLqqaemUCjsdX1VVVWuuuqqXHXVVXvdZujQobnlllsORngAANCjVJc6AAAAAAAAAAAAgO6kaAoAAAAAAAAAAKgobs8H8Cfe9Jk7Sh3CAVPbp5BFJ+/b7XfcrgYAAAAAAACASuFKUwAAAAAAAAAAQEVRNAUAAAAAAAAAAFQURVMAAAAAAAAAAEBFUTQFAAAAAAAAAABUlL6lDgAAAAAAAAAAoFK86TN3lKTd2j6FLDo5OX7eXWnbUdXt7f/q2mnd3ia8FleaAgAAAAAAAAAAKoqiKQAAAAAAAAAAoKIomgIAAAAAAAAAACqKoikAAAAAAAAAAKCiKJoCAAAAAAAAAAAqiqIpAAAAAAAAAACgoiiaAgAAAAAAAAAAKoqiKQAAAAAAAAAAoKIomgIAAAAAAAAAACpK31IHAEB5eNNn7ih1CCXxq2unlToEAAAAAAAAALqZK00BAAAAAAAAAAAVRdEUAAAAAAAAAABQURRNAQAAAAAAAAAAFUXRFAAAAAAAAAAAUFEUTQEAAAAAAAAAABVF0RQAAAAAAAAAAFBRFE0BAAAAAAAAAAAVRdEUAAAAAAAAAABQUfqWOgAAKKU3feaObmurtk8hi05Ojp93V9p2VHVbu3vyq2unlbR9AAAAAAAAgFJypSkAAAAAAAAAAKCiKJoCAAAAAAAAAAAqiqIpAAAAAAAAAACgovQtdQAAAAAAAAAAANAbvekzd5Q6hG5X26eQRSeXOorX50pTAAAAAAAAAABARVE0BQAAAAAAAAAAVJSSFk0tXrw4b3rTm9K/f/9MmDAhDz/8cCnDAQAA2GfmMwAAQE9mTgMAQKXrW6qG/9f/+l+ZM2dObrzxxkyYMCFf/OIX09TUlLVr12bYsGGlCgsAoFfqCffL3nV/6+Pn3ZW2HVUH5DV/de20A/I68KfMZwAAgJ7MnAYAAEp4pakvfOEL+djHPpaPfvSjGTNmTG688cYMGDAg//RP/1SqkAAAAPaJ+QwAANCTmdMAAECJrjS1ffv2rFmzJnPnzu1YVl1dnUmTJmXVqlWlCAkAKkpPuOrQweLKQ8D+Mp8BAAB6MnMaAAB4RUmKpn7/+99nx44dqa+v77S8vr4+v/jFL3bbvq2tLW1tbR2PN23alCT5wx/+kPb29oMb7J9ob2/P1q1b07e9Ojt2HpjbxlC8vjsL2bp1p/4oI/qkvOiP8qI/ysMLL7zQ8f+7/q6/8MILqampKWFUB1/fl18qdQiv62C8R17d393pxRdfTJIUCoWStM/B1dX5TGJOUy6K/UyopL8XB5K8FUfeiuOzreuMteLIW3H2N289YT5zoO2aH5VqrJnT9G7O0fRclfp3v1R/B0r9fW6pvtfaHz19rJVKJX+27c847+njzWdbz3Egxpo5Tfe+R7synylJ0VRXLVy4MPPnz99t+dFHH12CaCg3/6XUAbAbfVJe9Ed50R+l94a/L3UEvJYD/R4pdX+/+OKLGTx4cGmDoCyY05SHUn8mABwMPtug9yqH7xDMaUjMZ8qJv/vdr5SfxfqbSmCcl4bPNrpLqec0+zKfKUnR1Bve8Ib06dMnra2tnZa3tramoaFht+3nzp2bOXPmdDzeuXNn/vCHP+Twww9PVVX3Vj9u3rw5I0aMyG9+85vU1dV1a9vsTn+UH31SXvRHedEf5UeflJfe1B+FQiEvvvhihg8fXupQOAi6Op9JzGl6OjkrjrwVR96KI29dJ2fFkbfiyFvXlTpn5jS9m3M0lUfeiiNvXSdnxZG34shbceSt6+SsOKXMW1fmMyUpmurXr1/Gjx+fe+65J2eeeWaSVw6y77nnnsyePXu37Wtra1NbW9tp2ZAhQ7oh0r2rq6vzhigj+qP86JPyoj/Ki/4oP/qkvPSW/vBr7N6rq/OZxJymt5Cz4shbceStOPLWdXJWHHkrjrx1XSlzZk7TezlHU7nkrTjy1nVyVhx5K468FUfeuk7OilOqvO3rfKZkt+ebM2dOZsyYkZNOOiknn3xyvvjFL+all17KRz/60VKFBAAAsE/MZwAAgJ7MnAYAAEpYNPWRj3wk//7v/54rrrgiLS0tGTduXO68887U19eXKiQAAIB9Yj4DAAD0ZOY0AABQwqKpJJk9e/Zeb19Rrmpra3PllVfudilaSkN/lB99Ul70R3nRH+VHn5QX/UFP0xPnM4n3WjHkrDjyVhx5K468dZ2cFUfeiiNvXSdndIeeOKfx3iiOvBVH3rpOzoojb8WRt+LIW9fJWXF6St6qCoVCodRBAAAAAAAAAAAAdJfqUgcAAAAAAAAAAADQnRRNAQAAAAAAAAAAFUXRFAAAAAAAAAAAUFEUTXXR4sWL86Y3vSn9+/fPhAkT8vDDD5c6pIr1wAMP5Iwzzsjw4cNTVVWV73//+6UOqWItXLgw73rXu3LooYdm2LBhOfPMM7N27dpSh1XRbrjhhowdOzZ1dXWpq6tLY2NjfvSjH5U6LP6Pa6+9NlVVVbn44otLHUpFmjdvXqqqqjr9Gz16dKnDqmi/+93v8td//dc5/PDDc8ghh+SEE07Io48+WuqwoMfo6hzl1ltvzejRo9O/f/+ccMIJWb58eaf1hUIhV1xxRY488sgccsghmTRpUp5++umDuQsl0ZW8ff3rX8973/veHHbYYTnssMMyadKk3bb/m7/5m93+vnzgAx842LvR7bqSt6VLl+6Wk/79+3faphLGW1dyduqpp+6Ws6qqqkybNq1jm0oYa8XM9++77768853vTG1tbd761rdm6dKlu23Tm7/T6WrO/uVf/iWTJ0/OEUcc0TFnvOuuuzptUwnHzV3N23333bfH92hLS0un7XrzWEu6nrc9fW5VVVXluOOO69imt4+3Yr87c9xGpTrQc5xKcaCP1Xu7g3XM2dsdrOOn3uxgHQf0dsXkzWdbcecHK32sdTVnxtme7eu5z3Icb4qmuuB//a//lTlz5uTKK6/MT3/607zjHe9IU1NTNmzYUOrQKtJLL72Ud7zjHVm8eHGpQ6l4999/f2bNmpXVq1enubk57e3tmTJlSl566aVSh1axjjrqqFx77bVZs2ZNHn300Zx22mn58Ic/nCeffLLUoVW8Rx55JF/72tcyduzYUodS0Y477risX7++499PfvKTUodUsf7jP/4j73nPe1JTU5Mf/ehHeeqpp/L3f//3Oeyww0odGvQIXZ2jrFy5Muecc04uuOCC/OxnP8uZZ56ZM888M0888UTHNosWLcqXv/zl3HjjjXnooYcycODANDU1Zdu2bd21WwddV/N233335Zxzzsm9996bVatWZcSIEZkyZUp+97vfddruAx/4QKe/L9/+9re7Y3e6TTFz4rq6uk45+fWvf91pfW8fb13N2b/8y790ytcTTzyRPn365C//8i87bdfbx1pX5/vPPfdcpk2blve///157LHHcvHFF+dv//ZvOxUB9fbvdLqaswceeCCTJ0/O8uXLs2bNmrz//e/PGWeckZ/97Gedtuvtx83Ffre0du3aTnkZNmxYx7rePtaSruftS1/6Uqd8/eY3v8nQoUN3+2zrzeOtmO/OHLdRqQ7GHKcSHIxj9d7uYBxzVoKDcfzU2x2s44Derthzj5X+2dbV84PGWnHnVCt9nP2pfT33WbbjrcA+O/nkkwuzZs3qeLxjx47C8OHDCwsXLixhVBQKhUKSwve+971Sh8H/sWHDhkKSwv3331/qUHiVww47rPCP//iPpQ6jor344ouFt73tbYXm5ubC+973vsJFF11U6pAq0pVXXll4xzveUeow+D8uu+yywimnnFLqMKDH6uoc5a/+6q8K06ZN67RswoQJhU984hOFQqFQ2LlzZ6GhoaHwP/7H/+hYv3HjxkJtbW3h29/+9kHYg9LY37ndyy+/XDj00EMLN998c8eyGTNmFD784Q8f6FDLSlfztmTJksLgwYP3+nqVMN72d6xdd911hUMPPbSwZcuWjmWVMNZebV/m+5/+9KcLxx13XKdlH/nIRwpNTU0djyvpO51ivyMZM2ZMYf78+R2PK+24eV/ydu+99xaSFP7jP/5jr9tU0lgrFIobb9/73vcKVVVVhV/96lcdyyptvO3Ld2eO26hUB3qOUykO9LF6pTlQx5yV5kAdP1WaA3EcUIn2JW8+2/bstc4PGmt79lo5M84668q5z3Idb640tY+2b9+eNWvWZNKkSR3LqqurM2nSpKxataqEkUH52bRpU5Jk6NChJY6EJNmxY0eWLVuWl156KY2NjaUOp6LNmjUr06ZN6/S3hNJ4+umnM3z48Lz5zW/Oueeem3Xr1pU6pIr1wx/+MCeddFL+8i//MsOGDcuJJ56Yr3/966UOC3qEYuYoq1at2u3vUFNTU8f2zz33XFpaWjptM3jw4EyYMKHXzHsOxNxu69ataW9v3+1497777suwYcNyzDHHZObMmXnhhRcOaOylVGzetmzZklGjRmXEiBG7/Uqvt4+3AzHWbrrpppx99tkZOHBgp+W9eawV4/U+23yn8/p27tyZF198cbfPNcfNezZu3LgceeSRmTx5ch588MGO5cbavrnpppsyadKkjBo1qtPyShpv+/LdmeM2KtHBmONUgoNxrM7ujLX9s7fjp0p0II4DKtG+nnv02faf9uX8oLHW2b6eUzXO/lNXzn2W63hTNLWPfv/732fHjh2pr6/vtLy+vr6i7rsLr2fnzp25+OKL8573vCfHH398qcOpaI8//ngGDRqU2tra/N//9/+d733vexkzZkypw6pYy5Yty09/+tMsXLiw1KFUvAkTJmTp0qW58847c8MNN+S5557Le9/73rz44oulDq0i/fKXv8wNN9yQt73tbbnrrrsyc+bM/Lf/9t9y8803lzo0KHvFzFFaWlpec/td/+3N854DMbe77LLLMnz48E6T/A984AP5xje+kXvuuSf//b//99x///2ZOnVqduzYcUDjL5Vi8nbMMcfkn/7pn/KDH/wg3/zmN7Nz5868+93vzm9/+9skvX+87e9Ye/jhh/PEE0/kb//2bzst7+1jrRh7+2zbvHlz/vjHP/pOZx98/vOfz5YtW/JXf/VXHcscN+/uyCOPzI033ph//ud/zj//8z9nxIgROfXUU/PTn/40ie8P98Xzzz+fH/3oR7t9tlXSeNvX784ct1GJDsYcpxIcjGN1dvd6x5zs2esdP1WaA3UcUGn2NW8+217RlfODxtorupIz4+w/dfXcZ7mOt74lbR3odWbNmpUnnngiP/nJT0odSsU75phj8thjj2XTpk357ne/mxkzZuT+++9XOFUCv/nNb3LRRRelubk5/fv3L3U4FW/q1Kkd/z927NhMmDAho0aNyne+851ccMEFJYysMu3cuTMnnXRSrrnmmiTJiSeemCeeeCI33nhjZsyYUeLoAHZ37bXXZtmyZbnvvvs6/V0/++yzO/7/hBNOyNixY/OWt7wl9913X04//fRShFpyjY2NnX6V9+53vzvHHntsvva1r2XBggUljKxnuOmmm3LCCSfk5JNP7rTcWONAu+WWWzJ//vz84Ac/yLBhwzqWO27e3THHHJNjjjmm4/G73/3uPPvss7nuuuvyP//n/yxhZD3HzTffnCFDhuTMM8/stLySxpvvzoBy4Fid7uL4qTPHAcXZ17z5bHuF84Nd15WcGWev6E3nPl1pah+94Q1vSJ8+fdLa2tppeWtraxoaGkoUFZSX2bNn5/bbb8+9996bo446qtThVLx+/frlrW99a8aPH5+FCxfmHe94R770pS+VOqyKtGbNmmzYsCHvfOc707dv3/Tt2zf3339/vvzlL6dv374VfVWAcjBkyJC8/e1vzzPPPFPqUCrSkUceudvE49hjj+3Vt+KAA6WYOUpDQ8Nrbr/rv7153rM/c7vPf/7zufbaa7NixYqMHTv2Nbd985vfnDe84Q295u/LgZgT19TU5MQTT+zISW8fb/uTs5deeinLli3bp0KB3jbWirG3z7a6uroccsghvtN5DcuWLcvf/u3f5jvf+c7rXkrfcfOenXzyyR05MdZeW6FQyD/90z/lvPPOS79+/V5z29463rry3ZnjNirRwZjjVIKDcazO7l7vmJN99+rjp0pyII8DKsn+nHus1M+2rpwfNNZesT/nVCt1nBVz7rNcx5uiqX3Ur1+/jB8/Pvfcc0/Hsp07d+aee+55zftZQiUoFAqZPXt2vve97+XHP/5xjj766FKHxB7s3LkzbW1tpQ6jIp1++ul5/PHH89hjj3X8O+mkk3LuuefmscceS58+fUodYkXbsmVLnn322Rx55JGlDqUivec978natWs7Lfu3f/u3jBo1qkQRQc9RzBylsbGx0/ZJ0tzc3LH90UcfnYaGhk7bbN68OQ899FCvmfcUO7dbtGhRFixYkDvvvDMnnXTS67bz29/+Ni+88EKv+ftyIObEO3bsyOOPP96Rk94+3vYnZ7feemva2try13/916/bTm8ba8V4vc823+ns2be//e189KMfzbe//e1Mmzbtdbd33Lxnjz32WEdOjLXXdv/99+eZZ57Zp4LQ3jbeivnuzHEblehgzHEqwcE4Vmd3xtqB8+rjp0pwMI4DKsGBOPfos+0Vr3V+0Fjbs66cU63UcVbMuc+yHW8F9tmyZcsKtbW1haVLlxaeeuqpwsc//vHCkCFDCi0tLaUOrSK9+OKLhZ/97GeFn/3sZ4UkhS984QuFn/3sZ4Vf//rXpQ6t4sycObMwePDgwn333VdYv359x7+tW7eWOrSK9ZnPfKZw//33F5577rnCv/7rvxY+85nPFKqqqgorVqwodWj8H+973/sKF110UanDqEif/OQnC/fdd1/hueeeKzz44IOFSZMmFd7whjcUNmzYUOrQKtLDDz9c6Nu3b+Hqq68uPP3004VvfetbhQEDBhS++c1vljo06BFeb45y3nnnFT7zmc90bP/ggw8W+vbtW/j85z9f+PnPf1648sorCzU1NYXHH3+8Y5trr722MGTIkMIPfvCDwr/+678WPvzhDxeOPvrowh//+Mdu37+Dpat5u/baawv9+vUrfPe73+10vPviiy8WCoVX5iaf+tSnCqtWrSo899xzhbvvvrvwzne+s/C2t72tsG3btpLs48HQ1bzNnz+/cNdddxWeffbZwpo1awpnn312oX///oUnn3yyY5vePt66mrNdTjnllMJHPvKR3ZZXylh7vfn+Zz7zmcJ5553Xsf0vf/nLwoABAwqXXnpp4ec//3lh8eLFhT59+hTuvPPOjm16+3c6Xc3Zt771rULfvn0Lixcv7vS5tnHjxo5tKuG4uat5u+666wrf//73C08//XTh8ccfL1x00UWF6urqwt13392xTW8fa4VC1/O2y1//9V8XJkyYsMfX7O3jbV++O3PcBq84GHOcSnAwjtV7u4NxzFkJDsbxU293sI4Derti8uaz7fXPDxpru+tqzoyzvfvTc589Zbwpmuqir3zlK4WRI0cW+vXrVzj55JMLq1evLnVIFevee+8tJNnt34wZM0odWsXZUz8kKSxZsqTUoVWs//pf/2th1KhRhX79+hWOOOKIwumnn65gqswomiqdj3zkI4Ujjzyy0K9fv8Ib3/jGwkc+8pHCM888U+qwKtptt91WOP744wu1tbWF0aNHF/7hH/6h1CFBj/Jac5T3ve99ux0ff+c73ym8/e1vL/Tr169w3HHHFe64445O63fu3Fn47Gc/W6ivry/U1tYWTj/99MLatWu7Y1e6VVfyNmrUqD0e71555ZWFQqFQ2Lp1a2HKlCmFI444olBTU1MYNWpU4WMf+1ivOkG+S1fydvHFF3dsW19fX/jgBz9Y+OlPf9rp9SphvHX1PfqLX/yikGSPx++VMtZeb74/Y8aMwvve977dnjNu3LhCv379Cm9+85v3OB/tzd/pdDVn73vf+173O5VKOG7uat7++3//74W3vOUthf79+xeGDh1aOPXUUws//vGPd3vd3jzWCoXi3qMbN24sHHLIIXs91u/t421fvjtz3Ab/6UDPcSrFgT5W7+0O1jFnb3ewjp96s4N1HNDbFZM3n22vf37QWNtdV3NmnO3dn5777CnjrapQKBSKukQVAAAAAAAAAABAD1Rd6gAAAAAAAAAAAAC6k6IpAAAAAAAAAACgoiiaAgAAAAAAAAAAKoqiKQAAAAAAAAAAoKIomgIAAAAAAAAAACqKoikAAAAAAAAAAKCiKJoCAAAAAAAAAAAqiqIpAAAAAAAAAACgoiiaAgAAAAAAAAAAKoqiKYAKUVVVldmzZx+w17vvvvtSVVWV++6774C9JgAAAAAAAAB0B0VTAL3MypUrM2/evGzcuLHUoQAAAHToSXOVnhQrAAAAAMVRNAXQy6xcuTLz58/35T4AAFBWetJcpSfFCgAAAEBxFE0BAAAA0OMUCoX88Y9/LHUYAAAAAPRQiqYAepF58+bl0ksvTZIcffTRqaqqSlVVVX71q191bPP9738/xx9/fGpra3Pcccflzjvv7PQav/71r/N3f/d3OeaYY3LIIYfk8MMPz1/+5V92eg0AAICueK25ypIlS3Laaadl2LBhqa2tzZgxY3LDDTfs9hpvetOb8qEPfSh33XVXTjrppBxyyCH52te+luSVecyf//mfZ+DAgRk2bFguueSS3HXXXamqqsp9993X6XUeeuihfOADH8jgwYMzYMCAvO9978uDDz64T7ECAAAA0Hv0LXUAABw4Z511Vv7t3/4t3/72t3PdddflDW94Q5LkiCOOSJL85Cc/yb/8y7/k7/7u73LooYfmy1/+cqZPn55169bl8MMPT5I88sgjWblyZc4+++wcddRR+dWvfpUbbrghp556ap566qkMGDCgZPsHAAD0TK81V7nhhhty3HHH5c///M/Tt2/f3Hbbbfm7v/u77Ny5M7Nmzer0OmvXrs0555yTT3ziE/nYxz6WY445Ji+99FJOO+20rF+/PhdddFEaGhpyyy235N57790tjh//+MeZOnVqxo8fnyuvvDLV1dUdRVv/+3//75x88smvO68CAAAAoHeoKhQKhVIHAcCB8/nPfz6XXnppnnvuubzpTW/qWF5VVZV+/frlqaeeylve8pYkyb/+67/mHe94R77yla9k9uzZSZI//vGPOeSQQzq95urVq9PY2JhvfOMbOe+885Ik9913X97//vfn3nvvzamnntot+wYAAPRce5ur7GkO8oEPfCBPP/10nn322Y5lb3rTm/LrX/86d955Z5qamjqWf+ELX8gnP/nJfP/738+HP/zhJMm2bdty4okn5he/+EXHnKVQKOSYY47Jm9/85vzoRz9KVVVVR/vHHXdc3vrWt2bFihWvGSsAAAAAvYfb8wFUkEmTJnUUTCXJ2LFjU1dXl1/+8pcdy159sqK9vT0vvPBC3vrWt2bIkCH56U9/2q3xAgAAvd+r5yCbNm3K73//+7zvfe/LL3/5y2zatKnTtkcffXSngqkkufPOO/PGN74xf/7nf96xrH///vnYxz7WabvHHnssTz/9dP7Lf/kveeGFF/L73/8+v//97/PSSy/l9NNPzwMPPJCdO3cehD0EAAAAoBy5PR9ABRk5cuRuyw477LD8x3/8R8fjP/7xj1m4cGGWLFmS3/3ud3n1BQn/9IQFAADA/nrwwQdz5ZVXZtWqVdm6dWundZs2bcrgwYM7Hh999NG7Pf/Xv/513vKWt3RcOWqXt771rZ0eP/3000mSGTNm7DWWTZs25bDDDuvyPgAAAADQ8yiaAqggffr02ePyVxdGXXjhhVmyZEkuvvjiNDY2ZvDgwamqqsrZZ5/tV9cAAMAB9eyzz+b000/P6NGj84UvfCEjRoxIv379snz58lx33XW7zUH+9DZ+XbHrtf7H//gfGTdu3B63GTRoUNGvDwAAAEDPomgKoJf5019Xd9V3v/vdzJgxI3//93/fsWzbtm3ZuHHjfkYGAABUsj3NVW677ba0tbXlhz/8Yacr49577737/LqjRo3KU089lUKh0KmNZ555ptN2u25VXldXl0mTJnU5VgAAAAB6l+pSBwDAgTVw4MAkKbrIqU+fPp2uPJUkX/nKV7Jjx479DQ0AAKhge5qr7Loa7p/eFnzJkiX7/LpNTU353e9+lx/+8Icdy7Zt25avf/3rnbYbP3583vKWt+Tzn/98tmzZstvr/Pu///trxgoAAABA7+JKUwC9zPjx45Mk/+//+//m7LPPTk1NTc4444x9fv6HPvSh/M//+T8zePDgjBkzJqtWrcrdd9+dww8//GCFDAAAVIA9zVX+7M/+LP369csZZ5yRT3ziE9myZUu+/vWvZ9iwYVm/fv0+ve4nPvGJfPWrX80555yTiy66KEceeWS+9a1vpX///kn+86pR1dXV+cd//MdMnTo1xx13XD760Y/mjW98Y373u9/l3nvvTV1dXW677ba9xnrGGWd0FFMBAAAA0PMpmgLoZd71rndlwYIFufHGG3PnnXdm586dee655/b5+V/60pfSp0+ffOtb38q2bdvynve8J3fffXeampoOYtQAAEBvt7e5yne/+91cfvnl+dSnPpWGhobMnDkzRxxxRP7rf/2v+/S6gwYNyo9//ONceOGF+dKXvpRBgwbl/PPPz7vf/e5Mnz69o3gqSU499dSsWrUqCxYsyFe/+tVs2bIlDQ0NmTBhQj7xiU+8bqyKpgAAAAB6j6rCn96DCQAAAAB6uC9+8Yu55JJL8tvf/jZvfOMbSx0OAAAAAGVG0RQAAAAAPdof//jHHHLIIR2Pt23blhNPPDE7duzIv/3bv5UwMgAAAADKldvzAQAAANCjnXXWWRk5cmTGjRuXTZs25Zvf/GZ+8Ytf5Fvf+lapQwMAAACgTCmaAgAAAKBHa2pqyj/+4z/mW9/6Vnbs2JExY8Zk2bJl+chHPlLq0AAAAAAoU27PBwAAAAAAAAAAVJTqUgcAAAAAAAAAAADQnRRNAQAAAAAAAAAAFUXRFAAAAAAAAAAAUFH6ljqAYuzcuTPPP/98Dj300FRVVZU6HAAA6KRQKOTFF1/M8OHDU13tdwrszpwGAIByZk4DAABUgh5ZNPX8889nxIgRpQ4DAABe029+85scddRRpQ6DMmROAwBAT2BOAwAA9GY9smjq0EMPTfLKhK2urq5b225vb8+KFSsyZcqU1NTUdGvbvD79U770TXnTP+VN/5QvfVPeStk/mzdvzogRIzqOW+FPmdPQXfR3ZdHflUefVxb9XVlK3d/mNAAAQCXokUVTu25fUVdXV5ITDAMGDEhdXZ0vJ8qQ/ilf+qa86Z/ypn/Kl74pb+XQP267xt6Y09Bd9Hdl0d+VR59XFv1dWcqlv81pAACA3szNyAEAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICK0rfUAQBAKb3pM3eUOoTXVdunkEUnJ8fPuyttO6oOyGv+6tppB+R1AAAA4GDrCXP3A23XdwEAAAAcPK40BQAAAAAAAAAAVBRFUwAAAAAAAAAAQEVRNAUAAAAAAAAAAFQURVMAAAAAAAAAAEBFUTQFAAAAAAAAAABUFEVTAAAAAAAAAABARVE0BQAAAAAAAAAAVBRFUwAAQMWYN29eqqqqOv0bPXp0x/pt27Zl1qxZOfzwwzNo0KBMnz49ra2tnV5j3bp1mTZtWgYMGJBhw4bl0ksvzcsvv9zduwIAAAAAAOyHvqUOAAAAoDsdd9xxufvuuzse9+37n9OiSy65JHfccUduvfXWDB48OLNnz85ZZ52VBx98MEmyY8eOTJs2LQ0NDVm5cmXWr1+f888/PzU1Nbnmmmu6fV8AAAAAAIDiKJoCAAAqSt++fdPQ0LDb8k2bNuWmm27KLbfcktNOOy1JsmTJkhx77LFZvXp1Jk6cmBUrVuSpp57K3Xffnfr6+owbNy4LFizIZZddlnnz5qVfv37dvTsAAAAAAEAR3J4PAACoKE8//XSGDx+eN7/5zTn33HOzbt26JMmaNWvS3t6eSZMmdWw7evTojBw5MqtWrUqSrFq1KieccELq6+s7tmlqasrmzZvz5JNPdu+OAAAAAAAARXOlKQAAoGJMmDAhS5cuzTHHHJP169dn/vz5ee9735snnngiLS0t6devX4YMGdLpOfX19WlpaUmStLS0dCqY2rV+17q9aWtrS1tbW8fjzZs3J0na29vT3t5+IHZtn+1qr7vbpTT0d2XR35VHn1eWSu7v2j6FUofQ7WqrX9nnUvV3JY4zAACg8iiaAgAAKsbUqVM7/n/s2LGZMGFCRo0ale985zs55JBDDlq7CxcuzPz583dbvmLFigwYMOCgtftampubS9IupaG/K4v+rjz6vLJUYn8vOrnUEZROqfp769atJWkXAACgOymaAgAAKtaQIUPy9re/Pc8880wmT56c7du3Z+PGjZ2uNtXa2pqGhoYkSUNDQx5++OFOr9Ha2tqxbm/mzp2bOXPmdDzevHlzRowYkSlTpqSuru4A7tHra29vT3Nzcz77aHXadlZ1a9ul9sS8plKH0O129ffkyZNTU1NT6nA4yPR35dHnlaWS+/v4eXeVOoRuV1tdyIKTdpasv3ddGRUAAKA3UzQFAABUrC1btuTZZ5/Neeedl/Hjx6empib33HNPpk+fniRZu3Zt1q1bl8bGxiRJY2Njrr766mzYsCHDhg1L8sqv/+vq6jJmzJi9tlNbW5va2trdltfU1JTspGfbzqq07aisoqlKO8H8aqUca3Q//V159HllqcT+rrRjllcrVX9X2hgDAAAqU3VXNp43b16qqqo6/Rs9enTH+m3btmXWrFk5/PDDM2jQoEyfPr3jV9e7rFu3LtOmTcuAAQMybNiwXHrppXn55ZcPzN4AAAC8hk996lO5//7786tf/SorV67MX/zFX6RPnz4555xzMnjw4FxwwQWZM2dO7r333qxZsyYf/ehH09jYmIkTJyZJpkyZkjFjxuS8887L//f//X+56667cvnll2fWrFl7LIoCAAAAAADKU5evNHXcccfl7rvv/s8X6PufL3HJJZfkjjvuyK233prBgwdn9uzZOeuss/Lggw8mSXbs2JFp06aloaEhK1euzPr163P++eenpqYm11xzzQHYHQAAgL377W9/m3POOScvvPBCjjjiiJxyyilZvXp1jjjiiCTJddddl+rq6kyfPj1tbW1pamrK9ddf3/H8Pn365Pbbb8/MmTPT2NiYgQMHZsaMGbnqqqtKtUsAAAAAAEARulw01bdv3zQ0NOy2fNOmTbnppptyyy235LTTTkuSLFmyJMcee2xWr16diRMnZsWKFXnqqady9913p76+PuPGjcuCBQty2WWXZd68eenXr9/+7xEAAMBeLFu27DXX9+/fP4sXL87ixYv3us2oUaOyfPnyAx0aAAAAAADQjbp0e74kefrppzN8+PC8+c1vzrnnnpt169YlSdasWZP29vZMmjSpY9vRo0dn5MiRWbVqVZJk1apVOeGEE1JfX9+xTVNTUzZv3pwnn3xyf/cFAAAAAAAAAADgdXXpSlMTJkzI0qVLc8wxx2T9+vWZP39+3vve9+aJJ55IS0tL+vXrlyFDhnR6Tn19fVpaWpIkLS0tnQqmdq3ftW5v2tra0tbW1vF48+bNSZL29va0t7d3ZRf22672urtd9o3+KV/6prxVcv/U9imUOoTXVVtd6PTfA6ES+/pgqOT3Tk9Qyv4xJgAAAAAAAMpbl4qmpk6d2vH/Y8eOzYQJEzJq1Kh85zvfySGHHHLAg9tl4cKFmT9//m7LV6xYkQEDBhy0dl9Lc3NzSdpl3+if8qVvylsl9s+ik0sdwb5bcNLOA/Zabit1YFXie6cnKUX/bN26tdvbBAAAAAAAYN91qWjqTw0ZMiRvf/vb88wzz2Ty5MnZvn17Nm7c2OlqU62trWloaEiSNDQ05OGHH+70Gq2trR3r9mbu3LmZM2dOx+PNmzdnxIgRmTJlSurq6vZnF7qsvb09zc3NmTx5cmpqarq1bV6f/ilf+qa8VXL/HD/vrlKH8LpqqwtZcNLOfPbR6rTtrDogr/nEvKYD8jqVrpLfOz1BKftn15VRAQAAAAAAKE/7VTS1ZcuWPPvssznvvPMyfvz41NTU5J577sn06dOTJGvXrs26devS2NiYJGlsbMzVV1+dDRs2ZNiwYUle+eV/XV1dxowZs9d2amtrU1tbu9vympqakp2gLGXbvD79U770TXmrxP5p23FgipC6Q9vOqgMWb6X188FWie+dnqQU/WM8AAAAAAAAlLcuFU196lOfyhlnnJFRo0bl+eefz5VXXpk+ffrknHPOyeDBg3PBBRdkzpw5GTp0aOrq6nLhhRemsbExEydOTJJMmTIlY8aMyXnnnZdFixalpaUll19+eWbNmrXHoigAAAAAAAAAAIADrUtFU7/97W9zzjnn5IUXXsgRRxyRU045JatXr84RRxyRJLnuuutSXV2d6dOnp62tLU1NTbn++us7nt+nT5/cfvvtmTlzZhobGzNw4MDMmDEjV1111YHdKwAAAAAAAAAAgL3oUtHUsmXLXnN9//79s3jx4ixevHiv24waNSrLly/vSrMAAAAAAAAAAAAHTHWpAwAAAAAAAAAAAOhOiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAAAAAAAAAKgoiqYAAAAAAAAAAICKomgKAAAAAAAAAACoKIqmAAAAAAAAAACAiqJoCgAAAAAAAAAAqCiKpgAAAAAAAAAAgIqiaAoAAKhI1157baqqqnLxxRd3LNu2bVtmzZqVww8/PIMGDcr06dPT2tra6Xnr1q3LtGnTMmDAgAwbNiyXXnppXn755W6OHgAAAAAA2B+KpgAAgIrzyCOP5Gtf+1rGjh3bafkll1yS2267Lbfeemvuv//+PP/88znrrLM61u/YsSPTpk3L9u3bs3Llytx8881ZunRprrjiiu7eBQAAAAAAYD8omgIAACrKli1bcu655+brX/96DjvssI7lmzZtyk033ZQvfOELOe200zJ+/PgsWbIkK1euzOrVq5MkK1asyFNPPZVvfvObGTduXKZOnZoFCxZk8eLF2b59e6l2CQAAAAAA6KK+pQ4AAACgO/3/7d1/lFT1fT/+Fwv7Q8CFYMouViBGE5SgwYDCmF/+ALaGY7VyTjX14DYh8ZQuHhWbKqk/+KFCSBpN4qKpJWLaUlJNNQ0SYSWCjS7+QDlFNDRGDWl0lySGH8KHYd2d7x85O19XQNlld+6s9/E4Zw/Mve+Z+7o872Xm7rzuvXV1dTF16tSYNGlS3HzzzfnpGzdujJaWlpg0aVJ+2kknnRQjRoyIxsbGmDhxYjQ2NsYpp5wSVVVV+TE1NTUxc+bM2LJlS5x22mkHXWY2m41sNpt/vGvXroiIaGlpiZaWlu5exXfVvrzyklxBl1sMCv1vXQza1zmN655G8k4fmadLmvMu75u+zy3tn9WSyjuN2xkAAJA+mqYAAIDUWLFiRTz77LPx9NNPHzCvqakpysrKYvDgwR2mV1VVRVNTU37M2xum2ue3zzuUhQsXxrx58w6YvmbNmujfv39nV6NbLBjflshyk7Rq1aqkS0hMQ0ND0iVQQPJOH5mnSxrzXnxG0hUkJ6m89+7dm8hyAQAACknTFAAAkAq//vWv48orr4yGhoaoqKgo6LLnzJkTs2fPzj/etWtXDB8+PKZMmRKVlZUFraWlpSUaGhrihmdKItvWp6DLTtrzc2uSLqHg2vOePHlylJaWJl0OPUze6SPzdElz3mPmrk66hIIrL8nFgvFtieXdfmVUAACA97MjappatGhRzJkzJ6688sq4/fbbIyJi3759cc0118SKFSsim81GTU1NLFmypMPZ2Nu2bYuZM2fGo48+GgMHDoza2tpYuHBh9OunhwsAoCd86LqHki6h4Mr75lJ9RjoH2rhxY2zfvj0+8YlP5Ke1trbGY489FnfccUesXr069u/fHzt27Ohwtanm5uaorq6OiIjq6up46qmnOrxuc3Nzft6hlJeXR3l5+QHTS0tLE/vSM9vWJ7Kt6WqaStsXzG+X5LZG4ck7fWSeLmnMO22fWd4uqbzTto0BAADpVNLVJz799NPx3e9+N0499dQO06+++ur48Y9/HPfdd1+sX78+Xnvttbjooovy81tbW2Pq1Kmxf//+eOKJJ+Lee++NZcuWxY033tj1tQAAAHgP5557bmzevDk2bdqU/xk/fnxceuml+b+XlpbG2rVr88/ZunVrbNu2LTKZTEREZDKZ2Lx5c2zfvj0/pqGhISorK2P06NEFXycAAAAAAKBrunRppzfffDMuvfTSuPvuu+Pmm2/OT9+5c2csXbo0li9fHuecc05ERNxzzz1x8sknx4YNG2LixImxZs2aeOGFF+KRRx6JqqqqGDt2bCxYsCCuvfbamDt3bpSVlXXPmgEAALzN0UcfHWPGjOkwbcCAAXHMMcfkp8+YMSNmz54dQ4YMicrKyrjiiisik8nExIkTIyJiypQpMXr06Jg+fXosXrw4mpqa4vrrr4+6urqDXkkKAAAAAAAoTl1qmqqrq4upU6fGpEmTOjRNbdy4MVpaWmLSpEn5aSeddFKMGDEiGhsbY+LEidHY2BinnHJKh9v11dTUxMyZM2PLli1x2mmnHbC8bDYb2Ww2/7j9fuotLS3R0tLSlVXosvblFXq5HB75FC/ZFLc051PeN5d0Ce+pvCTX4c/ukMase0Jv2nd6w7be3dr3mSTy6Q3bBAd32223RUlJSUybNq3D7cbb9e3bN1auXBkzZ86MTCYTAwYMiNra2pg/f36CVQMAAAAAAJ3V6aapFStWxLPPPhtPP/30AfOampqirKwsBg8e3GF6VVVVNDU15ce8vWGqfX77vINZuHBhzJs374Dpa9asif79+3d2FbpFQ0NDIsvl8MineMmmuKUxn8VnJF3B4Vswvq3bXmvVqlXd9lr0jn2nN23r3S2JfPbu3VvwZdI169at6/C4oqIi6uvro76+/pDPGTlypP9HAQAAAACgl+tU09Svf/3ruPLKK6OhoSEqKip6qqYDzJkzJ2bPnp1/vGvXrhg+fHhMmTIlKisrC1ZHxB+vGtDQ0BCTJ0+O0tLSgi6b9yaf4iWb4pbmfMbMXZ10Ce+pvCQXC8a3xQ3PlES2rU+3vObzc2u65XXSrjftO71hW+9u7ftOEvm0XxkVAAAAAACA4tSppqmNGzfG9u3b4xOf+ER+Wmtrazz22GNxxx13xOrVq2P//v2xY8eODlebam5ujurq6oiIqK6ujqeeeqrD6zY3N+fnHUx5eXmUl5cfML20tDSxLyiTXDbvTT7FSzbFLY35ZFu7pwmpELJtfbqt3rTl3NN6w77Tm7b17pZEPsW+PQAAAAAAAKRdSWcGn3vuubF58+bYtGlT/mf8+PFx6aWX5v9eWloaa9euzT9n69atsW3btshkMhERkclkYvPmzbF9+/b8mIaGhqisrIzRo0d302oBAAAAAAAAAAAcXKeuNHX00UfHmDFjOkwbMGBAHHPMMfnpM2bMiNmzZ8eQIUOisrIyrrjiishkMjFx4sSIiJgyZUqMHj06pk+fHosXL46mpqa4/vrro66u7qBXkwIAAAAAAAAAAOhOnWqaOhy33XZblJSUxLRp0yKbzUZNTU0sWbIkP79v376xcuXKmDlzZmQymRgwYEDU1tbG/Pnzu7sUAAAAAAAAAACAAxxx09S6des6PK6oqIj6+vqor68/5HNGjhwZq1atOtJFAwAAAAAAAAAAdFpJ0gUAAAAAAAAAAAAUkqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAIDUuPPOO+PUU0+NysrKqKysjEwmEz/5yU/y8/ft2xd1dXVxzDHHxMCBA2PatGnR3Nzc4TW2bdsWU6dOjf79+8fQoUPjK1/5Srz11luFXhUAAAAAAOAIaJoCAABS47jjjotFixbFxo0b45lnnolzzjknLrjggtiyZUtERFx99dXx4x//OO67775Yv359vPbaa3HRRRfln9/a2hpTp06N/fv3xxNPPBH33ntvLFu2LG688cakVgkAAAAAAOiCfkkXAAAAUCjnn39+h8e33HJL3HnnnbFhw4Y47rjjYunSpbF8+fI455xzIiLinnvuiZNPPjk2bNgQEydOjDVr1sQLL7wQjzzySFRVVcXYsWNjwYIFce2118bcuXOjrKwsidUCAAAAAAA6SdMUAACQSq2trXHffffFnj17IpPJxMaNG6OlpSUmTZqUH3PSSSfFiBEjorGxMSZOnBiNjY1xyimnRFVVVX5MTU1NzJw5M7Zs2RKnnXbaQZeVzWYjm83mH+/atSsiIlpaWqKlpaWH1vDg2pdXXpIr6HKLQaH/rYtB+zqncd3TSN7pI/N0SXPe5X3T97ml/bNaUnmncTsDAADSp1NNU3feeWfceeed8eqrr0ZExMc+9rG48cYb47zzzouIiH379sU111wTK1asiGw2GzU1NbFkyZIOXyhs27YtZs6cGY8++mgMHDgwamtrY+HChdGvn/4tAACg523evDkymUzs27cvBg4cGA888ECMHj06Nm3aFGVlZTF48OAO46uqqqKpqSkiIpqamjoc37TPb593KAsXLox58+YdMH3NmjXRv3//I1yjrlkwvi2R5SZp1apVSZeQmIaGhqRLoIDknT4yT5c05r34jKQrSE5See/duzeR5QIAABRSpzqVjjvuuFi0aFF85CMfiVwuF/fee29ccMEF8dxzz8XHPvaxuPrqq+Ohhx6K++67LwYNGhSzZs2Kiy66KB5//PGI+OOZ3FOnTo3q6up44okn4vXXX4/LLrssSktL49Zbb+2RFQQAAHi7UaNGxaZNm2Lnzp1x//33R21tbaxfv75HlzlnzpyYPXt2/vGuXbti+PDhMWXKlKisrOzRZb9TS0tLNDQ0xA3PlES2rU9Bl5205+fWJF1CwbXnPXny5CgtLU26HHqYvNNH5umS5rzHzF2ddAkFV16SiwXj2xLLu/3KqAAAAO9nnWqaOv/88zs8vuWWW+LOO++MDRs2xHHHHRdLly6N5cuXxznnnBMREffcc0+cfPLJsWHDhpg4cWKsWbMmXnjhhXjkkUeiqqoqxo4dGwsWLIhrr7025s6dG2VlZd23ZgAAAAdRVlYWJ554YkREjBs3Lp5++un41re+FRdffHHs378/duzY0eFqU83NzVFdXR0REdXV1fHUU091eL3m5ub8vEMpLy+P8vLyA6aXlpYm9qVntq1PZFvT1TSVti+Y3y7JbY3Ck3f6yDxd0ph32j6zvF1SeadtGwMAANKppKtPbG1tjRUrVsSePXsik8nExo0bo6WlJSZNmpQfc9JJJ8WIESOisbExIiIaGxvjlFNO6XA7i5qamti1a1ds2bLlCFYDAACga9ra2iKbzca4ceOitLQ01q5dm5+3devW2LZtW2QymYiIyGQysXnz5ti+fXt+TENDQ1RWVsbo0aMLXjsAAAAAANA1nbrSVETE5s2bI5PJxL59+2LgwIHxwAMPxOjRo2PTpk1RVlbW4YzsiIiqqqpoamqKiIimpqYODVPt89vnHUo2m41sNpt/3H5p4JaWlmhpaensKhyR9uUVerkcHvkUL9kUtzTnU943l3QJ76m8JNfhz+6Qxqx7Qm/ad3rDtt7d2veZJPLpDdtEWs2ZMyfOO++8GDFiROzevTuWL18e69ati9WrV8egQYNixowZMXv27BgyZEhUVlbGFVdcEZlMJiZOnBgREVOmTInRo0fH9OnTY/HixdHU1BTXX3991NXVHfRKUgAAAAAAQHHqdNPUqFGjYtOmTbFz5864//77o7a2NtavX98TteUtXLgw5s2bd8D0NWvWRP/+/Xt02YfS0NCQyHI5PPIpXrIpbmnMZ/EZSVdw+BaMb+u211q1alW3vRa9Y9/pTdt6d0sin7179xZ8mRye7du3x2WXXRavv/56DBo0KE499dRYvXp1TJ48OSIibrvttigpKYlp06ZFNpuNmpqaWLJkSf75ffv2jZUrV8bMmTMjk8nEgAEDora2NubPn5/UKgEAAAAAAF3Q6aapsrKyOPHEEyMiYty4cfH000/Ht771rbj44otj//79sWPHjg5Xm2pubo7q6uqIiKiuro6nnnqqw+s1Nzfn5x3KnDlzYvbs2fnHu3btiuHDh8eUKVOisrKys6twRFpaWqKhoSEmT57svu5FSD7FSzbFLc35jJm7OukS3lN5SS4WjG+LG54piWxbn255zefn1nTL66Rdb9p3esO23t3a950k8mm/MirFZ+nSpe86v6KiIurr66O+vv6QY0aOHKn5FAAAAAAAerlON029U1tbW2Sz2Rg3blyUlpbG2rVrY9q0aRERsXXr1ti2bVtkMpmIiMhkMnHLLbfE9u3bY+jQoRHxxzP/KysrY/To0YdcRnl5+UFvdVFaWprYF5RJLpv3Jp/iJZvilsZ8sq3d04RUCNm2Pt1Wb9py7mm9Yd/pTdt6d0sin2LfHgAAAAAAANKuU01Tc+bMifPOOy9GjBgRu3fvjuXLl8e6deti9erVMWjQoJgxY0bMnj07hgwZEpWVlXHFFVdEJpOJiRMnRkTElClTYvTo0TF9+vRYvHhxNDU1xfXXXx91dXUHbYoCAAAAAAAAAADobp1qmtq+fXtcdtll8frrr8egQYPi1FNPjdWrV8fkyZMjIuK2226LkpKSmDZtWmSz2aipqYklS5bkn9+3b99YuXJlzJw5MzKZTAwYMCBqa2tj/vz53btWAAAAAAAAAAAAh9CppqmlS5e+6/yKioqor6+P+vr6Q44ZOXJkrFq1qjOLBQAAAAAAAAAA6DYlSRcAAAAAAAAAAABQSJqmAAAAAAAAAACAVNE0BQAAAAAAAAAApIqmKQAAAAAAAAAAIFU0TQEAAAAAAAAAAKmiaQoAAAAAAAAAAEgVTVMAAAAAAAAAAECqaJoCAAAAAAAAAABSRdMUAAAAAAAAAACQKpqmAAAAAAAAAACAVNE0BQAAAAAAAAAApIqmKQAAAAAAAAAAIFU0TQEAAAAAAAAAAKmiaQoAAAAAAAAAAEgVTVMAAAAAAAAAAECqaJoCAAAAAAAAAABSRdMUAAAAAAAAAACQKpqmAAAAAAAAAACAVNE0BQAAAAAAAAAApIqmKQAAAAAAAAAAIFU0TQEAAAAAAAAAAKmiaQoAAAAAAAAAAEgVTVMAAAAAAAAAAECqaJoCAAAAAAAAAABSRdMUAAAAAAAAAACQKpqmAAAAAAAAAACAVNE0BQAAAAAAAAAApIqmKQAAAAAAAAAAIFU0TQEAAAAAAAAAAKmiaQoAAAAAAAAAAEgVTVMAAAAAAAAAAECqaJoCAAAAAAAAAABSRdMUAAAAAAAAAACQKpqmAACA1Fi4cGGcfvrpcfTRR8fQoUPjwgsvjK1bt3YYs2/fvqirq4tjjjkmBg4cGNOmTYvm5uYOY7Zt2xZTp06N/v37x9ChQ+MrX/lKvPXWW4VcFQAAAAAA4AhomgIAAFJj/fr1UVdXFxs2bIiGhoZoaWmJKVOmxJ49e/Jjrr766vjxj38c9913X6xfvz5ee+21uOiii/LzW1tbY+rUqbF///544okn4t57741ly5bFjTfemMQqAQAAAAAAXdAv6QIAAAAK5eGHH+7weNmyZTF06NDYuHFjfOYzn4mdO3fG0qVLY/ny5XHOOedERMQ999wTJ598cmzYsCEmTpwYa9asiRdeeCEeeeSRqKqqirFjx8aCBQvi2muvjblz50ZZWVkSqwYAAAAAAHRCp5qmFi5cGP/5n/8ZP//5z+Ooo46KM888M772ta/FqFGj8mP27dsX11xzTaxYsSKy2WzU1NTEkiVLoqqqKj9m27ZtMXPmzHj00Udj4MCBUVtbGwsXLox+/fRwAQAAhbNz586IiBgyZEhERGzcuDFaWlpi0qRJ+TEnnXRSjBgxIhobG2PixInR2NgYp5xySodjnJqampg5c2Zs2bIlTjvttAOWk81mI5vN5h/v2rUrIiJaWlqipaWlR9btUNqXV16SK+hyi0Gh/62LQfs6p3Hd00je6SPzdElz3uV90/e5pf2zWlJ5p3E7AwAA0qdTXUrtt7I4/fTT46233oqvfvWrMWXKlHjhhRdiwIABEfHHW1k89NBDcd9998WgQYNi1qxZcdFFF8Xjjz8eEf//rSyqq6vjiSeeiNdffz0uu+yyKC0tjVtvvbX71xAAAOAg2tra4qqrropPfvKTMWbMmIiIaGpqirKyshg8eHCHsVVVVdHU1JQf8/aGqfb57fMOZuHChTFv3rwDpq9Zsyb69+9/pKvSJQvGtyWy3CStWrUq6RIS09DQkHQJFJC800fm6ZLGvBefkXQFyUkq77179yayXAAAgELqVNOUW1kAAADvF3V1dfH888/Hz372sx5f1pw5c2L27Nn5x7t27Yrhw4fHlClTorKysseX/3YtLS3R0NAQNzxTEtm2PgVddtKen1uTdAkF15735MmTo7S0NOly6GHyTh+Zp0ua8x4zd3XSJRRceUkuFoxvSyzv9iujAgAAvJ8d0f3w0nwrC5cnLk7yKV6yKW5pzqc3XOK//ZL83XkbpTRm3RN6077TG7b17pbk7Sx6wzaRdrNmzYqVK1fGY489Fscdd1x+enV1dezfvz927NjR4WpTzc3NUV1dnR/z1FNPdXi95ubm/LyDKS8vj/Ly8gOml5aWJvalZ7atT2Rb09U0lbYvmN8uyW2NwpN3+sg8XdKYd9o+s7xdUnmnbRsDAADSqctNU2m/lUUaL4Pdm8ineMmmuKUxn950if/uvI1Smm9P1BN6w77Tm7b17pZEPm5lUbxyuVxcccUV8cADD8S6devi+OOP7zB/3LhxUVpaGmvXro1p06ZFRMTWrVtj27ZtkclkIiIik8nELbfcEtu3b4+hQ4dGxB+3s8rKyhg9enRhVwgAAAAAAOiSLjdNpf1WFmm8DHZvIJ/iJZviluZ8esMl/tsvyd+dt1FK4+2JekJv2nd6w7be3ZK8nYVbWRSvurq6WL58efzoRz+Ko48+On/ixqBBg+Koo46KQYMGxYwZM2L27NkxZMiQqKysjCuuuCIymUxMnDgxIiKmTJkSo0ePjunTp8fixYujqakprr/++qirqzvo1aQAAAAAAIDi06WmKbeySOdlsHsT+RQv2RS3NObTmy7x3523UUpbzj2tN+w7vWlb725J5FPs20Oa3XnnnRERcdZZZ3WYfs8998Rf//VfR0TEbbfdFiUlJTFt2rTIZrNRU1MTS5YsyY/t27dvrFy5MmbOnBmZTCYGDBgQtbW1MX/+/EKtBgAAAAAAcIQ61TTlVhYAAEBvlsvl3nNMRUVF1NfXR319/SHHjBw50q1OAQAAAACgF+tU05RbWQAAAAAAAAAAAL1dp5qm3MoCAAAAAAAAAADo7Tp9e7734lYWAAAAAAAAAABAMStJugAAAAAAAAAAAIBC0jQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAgNR577LE4//zz49hjj40+ffrEgw8+2GF+LpeLG2+8MYYNGxZHHXVUTJo0KX7xi190GPPGG2/EpZdeGpWVlTF48OCYMWNGvPnmmwVcCwAAAAAA4Eh1umnKlwwAAEBvtWfPnvj4xz8e9fX1B52/ePHi+Pa3vx133XVXPPnkkzFgwICoqamJffv25cdceumlsWXLlmhoaIiVK1fGY489FpdffnmhVgEAAAAAAOgGnW6a8iUDAADQW5133nlx8803x1/8xV8cMC+Xy8Xtt98e119/fVxwwQVx6qmnxve///147bXX8ieLvPjii/Hwww/HP//zP8eECRPiU5/6VHznO9+JFStWxGuvvVbgtQEAAAAAALqqX2efcN5558V555130Hnv/JIhIuL73/9+VFVVxYMPPhiXXHJJ/kuGp59+OsaPHx8REd/5znfic5/7XHzjG9+IY4899ghWBwAAoGteeeWVaGpqikmTJuWnDRo0KCZMmBCNjY1xySWXRGNjYwwePDh/LBMRMWnSpCgpKYknn3zyoM1YERHZbDay2Wz+8a5duyIioqWlJVpaWnpojQ6ufXnlJbmCLrcYFPrfuhi0r3Ma1z2N5J0+Mk+XNOdd3jd9n1vaP6sllXcatzMAACB9Ot009W568ksGAACAntTU1BQREVVVVR2mV1VV5ec1NTXF0KFDO8zv169fDBkyJD/mYBYuXBjz5s07YPqaNWuif//+R1p6lywY35bIcpO0atWqpEtITENDQ9IlUEDyTh+Zp0sa8158RtIVJCepvPfu3ZvIcgEAAAqpW5umeupLhmI8K9uZNsVJPsVLNsUtzfn0hrNV288u7c4rgqQx657Qm/ad3rCtd7ckz8zuDdsEhTVnzpyYPXt2/vGuXbti+PDhMWXKlKisrCxoLS0tLdHQ0BA3PFMS2bY+BV120p6fW5N0CQXXnvfkyZOjtLQ06XLoYfJOH5mnS5rzHjN3ddIlFFx5SS4WjG9LLO/238EDAAC8n3Vr01RPKcazstN4RldvIp/iJZvilsZ8etPZqt15RZA0X2mjJ/SGfac3bevdLYl8nJXdO1VXV0dERHNzcwwbNiw/vbm5OcaOHZsfs3379g7Pe+utt+KNN97IP/9gysvLo7y8/IDppaWliX3pmW3rE9nWdDVNpe0L5rdLcluj8OSdPjJPlzTmnbbPLG+XVN5p28YAAIB06tamqZ76kqEYz8pO4xldvYF8ipdsilua8+kNZ6u2n13anVcESeOVNnpCb9p3esO23t2SPDPbWdm90/HHHx/V1dWxdu3a/PHLrl274sknn4yZM2dGREQmk4kdO3bExo0bY9y4cRER8dOf/jTa2tpiwoQJSZUOAAAAAAB0Urc2TfXUlwzFeFZ2Gs/o6k3kU7xkU9zSmE9vOlu1O68Ikrace1pv2Hd607be3ZLIp9i3hzR7880346WXXso/fuWVV2LTpk0xZMiQGDFiRFx11VVx8803x0c+8pE4/vjj44Ybbohjjz02LrzwwoiIOPnkk+PP/uzP4stf/nLcdddd0dLSErNmzYpLLrkkjj322ITWCgAAAAAA6KxON035kgEAAOitnnnmmTj77LPzj9uvaFtbWxvLli2Lv//7v489e/bE5ZdfHjt27IhPfepT8fDDD0dFRUX+Of/2b/8Ws2bNinPPPTdKSkpi2rRp8e1vf7vg6wIAAAAAAHRdp5umfMkAAAD0VmeddVbkcrlDzu/Tp0/Mnz8/5s+ff8gxQ4YMieXLl/dEeQAAAAAAQIF0umnKlwwAAAAAAAAAAEBvVpJ0AQAAAAAAAAAAAIWkaQoAAAAAAAAAAEgVTVMAAAAAAAAAAECqaJoCAAAAAAAAAABSRdMUAAAAAAAAAACQKpqmAAAAAAAAAACAVNE0BQAAAAAAAAAApIqmKQAAAAAAAAAAIFU0TQEAAAAAAAAAAKmiaQoAAAAAAAAAAEgVTVMAAAAAAAAAAECq9Eu6AKB4fei6h7rttcr75mLxGRFj5q6ObGufbnvdnvDqoqlJlwAAAAAAAAAA9CBXmgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYAAAAAAAAAAIBU0TQFAAAAAAAAAACkiqYpAAAAAAAAAAAgVTRNAQAAAAAAAAAAqaJpCgAAAAAAAAAASBVNUwAAAAAAAAAAQKok2jRVX18fH/rQh6KioiImTJgQTz31VJLlAAAAHDbHMwAAAAAA0Hv1S2rBP/jBD2L27Nlx1113xYQJE+L222+Pmpqa2Lp1awwdOjSpsg7bmLmrI9vaJ+kyCurVRVOTLgEAAIpCbz+eAQAAAACAtEvsSlPf/OY348tf/nJ84QtfiNGjR8ddd90V/fv3j+9973tJlQQAAHBYHM8AAAAAAEDvlsiVpvbv3x8bN26MOXPm5KeVlJTEpEmTorGx8YDx2Ww2stls/vHOnTsjIuKNN96IlpaWni/4bVpaWmLv3r3Rr6UkWtvSdaWp3//+90mX8J7a8/n9738fpaWlSZfT6/V7a0/3vVZbLvbubesV+05v2Na7W5r3ne7czntKT+w/adzOe0Jv2nd6w7be3dr3nSTy2b17d0RE5HK5gi6Xwujs8UyEY5pikcb3v970XsWRk3f6yDxd0py345nC5+2YBgAASINEmqZ+97vfRWtra1RVVXWYXlVVFT//+c8PGL9w4cKYN2/eAdOPP/74HquRA33wH5OugN7ur5Iu4DDZ1ilG3b3/2M5Ji6Tfe3bv3h2DBg1KuAq6W2ePZyIc0xQL738AQG+S9PFMhGMaAADg/S2RpqnOmjNnTsyePTv/uK2tLd5444045phjok+fwp4ZvWvXrhg+fHj8+te/jsrKyoIum/cmn+Ilm+Imn+Imn+Ilm+KWZD65XC52794dxx57bEGXS/FyTENS5J0u8k4fmaeLvNMl6bwd0wAAAGmQSNPUBz/4wejbt280Nzd3mN7c3BzV1dUHjC8vL4/y8vIO0wYPHtyTJb6nyspKv5woYvIpXrIpbvIpbvIpXrIpbknl42zs96/OHs9EOKYhefJOF3mnj8zTRd7pkmTejmkAAID3u5IkFlpWVhbjxo2LtWvX5qe1tbXF2rVrI5PJJFESAADAYXE8AwAAAAAAvV9it+ebPXt21NbWxvjx4+OMM86I22+/Pfbs2RNf+MIXkioJAADgsDieAQAAAACA3i2xpqmLL744fvvb38aNN94YTU1NMXbs2Hj44YejqqoqqZIOS3l5edx0000H3FqD4iCf4iWb4iaf4iaf4iWb4iYfelJvPZ6JsG+kjbzTRd7pI/N0kXe6yBsAAKDn9cnlcrmkiwAAAAAAAAAAACiUkqQLAAAAAAAAAAAAKCRNUwAAAAAAAAAAQKpomgIAAAAAAAAAAFJF0xQAAAAAAAAAAJAqmqYOor6+Pj70oQ9FRUVFTJgwIZ566ql3HX/ffffFSSedFBUVFXHKKafEqlWrClRpOnUmn2XLlkWfPn06/FRUVBSw2vR47LHH4vzzz49jjz02+vTpEw8++OB7PmfdunXxiU98IsrLy+PEE0+MZcuW9XidadXZfNatW3fAvtOnT59oamoqTMEpsnDhwjj99NPj6KOPjqFDh8aFF14YW7dufc/nee/peV3JxvtO4dx5551x6qmnRmVlZVRWVkYmk4mf/OQn7/oc+w1p4pgmXTqT99133x2f/vSn4wMf+EB84AMfiEmTJr3n9kFx6ez+3W7FihXRp0+fuPDCC3u2QLpdZzPfsWNH1NXVxbBhw6K8vDw++tGP+n+9F+ls3rfffnuMGjUqjjrqqBg+fHhcffXVsW/fvgJVy5HwuzQAAIDkaZp6hx/84Acxe/bsuOmmm+LZZ5+Nj3/841FTUxPbt28/6PgnnngiPv/5z8eMGTPiueeeiwsvvDAuvPDCeP755wtceTp0Np+IiMrKynj99dfzP7/61a8KWHF67NmzJz7+8Y9HfX39YY1/5ZVXYurUqXH22WfHpk2b4qqrroovfelLsXr16h6uNJ06m0+7rVu3dth/hg4d2kMVptf69eujrq4uNmzYEA0NDdHS0hJTpkyJPXv2HPI53nsKoyvZRHjfKZTjjjsuFi1aFBs3boxnnnkmzjnnnLjgggtiy5YtBx1vvyFNHNOkS2fzXrduXXz+85+PRx99NBobG2P48OExZcqU+M1vflPgyumKrhwTR0S8+uqr8Xd/93fx6U9/ukCV0l06m/n+/ftj8uTJ8eqrr8b9998fW7dujbvvvjv+9E//tMCV0xWdzXv58uVx3XXXxU033RQvvvhiLF26NH7wgx/EV7/61QJXTlf4XRoAAEDy+uRyuVzSRRSTCRMmxOmnnx533HFHRES0tbXF8OHD44orrojrrrvugPEXX3xx7NmzJ1auXJmfNnHixBg7dmzcddddBas7LTqbz7Jly+Kqq66KHTt2FLjSdOvTp0888MAD73oG87XXXhsPPfRQhy/jLrnkktixY0c8/PDDBagyvQ4nn3Xr1sXZZ58df/jDH2Lw4MEFq42I3/72tzF06NBYv359fOYznznoGO89yTicbLzvJGvIkCHx9a9/PWbMmHHAPPsNaeKYJl06m/c7tba2xgc+8IG444474rLLLuvpcjlCXcm7tbU1PvOZz8QXv/jF+O///u/YsWPHYV3NhOLQ2czvuuuu+PrXvx4///nPo7S0tNDlcoQ6m/esWbPixRdfjLVr1+anXXPNNfHkk0/Gz372s4LVzZHzuzQAAIBkuNLU2+zfvz82btwYkyZNyk8rKSmJSZMmRWNj40Gf09jY2GF8RERNTc0hx9N1XcknIuLNN9+MkSNHxvDhw9/1ChQUln2ndxg7dmwMGzYsJk+eHI8//njS5aTCzp07I+KPzR+HYv9JxuFkE+F9Jwmtra2xYsWK2LNnT2QymYOOsd+QFo5p0qWrx0hvt3fv3mhpaXnP9zeS19W858+fH0OHDj1oUzHFrSuZ/9d//VdkMpmoq6uLqqqqGDNmTNx6663R2tpaqLLpoq7kfeaZZ8bGjRvzt/B7+eWXY9WqVfG5z32uIDVTWD6zAQAAdD9NU2/zu9/9LlpbW6OqqqrD9Kqqqmhqajroc5qamjo1nq7rSj6jRo2K733ve/GjH/0o/vVf/zXa2trizDPPjP/7v/8rRMm8i0PtO7t27Yr/9//+X0JV0W7YsGFx1113xQ9/+MP44Q9/GMOHD4+zzjornn322aRLe19ra2uLq666Kj75yU/GmDFjDjnOe0/hHW423ncKa/PmzTFw4MAoLy+Pv/mbv4kHHnggRo8efdCx9hvSwjFNunQl73e69tpr49hjjz3gS1iKT1fy/tnPfhZLly6Nu+++uxAl0s26kvnLL78c999/f7S2tsaqVavihhtuiH/8x3+Mm2++uRAlcwS6kvdf/dVfxfz58+NTn/pUlJaWxgknnBBnnXWW2/O9T/ldGgAAQPfrl3QB0JMymUyHK06ceeaZcfLJJ8d3v/vdWLBgQYKVQXEbNWpUjBo1Kv/4zDPPjF/+8pdx2223xb/8y78kWNn7W11dXTz//PNuo1CEDjcb7zuFNWrUqNi0aVPs3Lkz7r///qitrY3169cfsnEKgI4WLVoUK1asiHXr1kVFRUXS5dDNdu/eHdOnT4+77747PvjBDyZdDgXS1tYWQ4cOjX/6p3+Kvn37xrhx4+I3v/lNfP3rX4+bbrop6fLoZuvWrYtbb701lixZEhMmTIiXXnoprrzyyliwYEHccMMNSZcHAAAARU/T1Nt88IMfjL59+0Zzc3OH6c3NzVFdXX3Q51RXV3dqPF3XlXzeqbS0NE477bR46aWXeqJEOuFQ+05lZWUcddRRCVXFuznjjDM08/SgWbNmxcqVK+Oxxx6L44477l3Heu8prM5k807ed3pWWVlZnHjiiRERMW7cuHj66afjW9/6Vnz3u989YKz9hrRwTJMuR3KM9I1vfCMWLVoUjzzySJx66qk9WSbdpLN5//KXv4xXX301zj///Py0tra2iIjo169fbN26NU444YSeLZoj0pV9fNiwYVFaWhp9+/bNTzv55JOjqakp9u/fH2VlZT1aM13XlbxvuOGGmD59enzpS1+KiIhTTjkl9uzZE5dffnn8wz/8Q5SUuMnA+4nfpQEAAHQ/R85vU1ZWFuPGjYu1a9fmp7W1tcXatWs7XDXi7TKZTIfxERENDQ2HHE/XdSWfd2ptbY3NmzfHsGHDeqpMDpN9p/fZtGmTfacH5HK5mDVrVjzwwAPx05/+NI4//vj3fI79pzC6ks07ed8prLa2tshmswedZ78hLRzTpEtXj5EWL14cCxYsiIcffjjGjx9fiFLpBp3N+6STTorNmzfHpk2b8j9//ud/HmeffXZs2rQphg8fXsjy6YKu7OOf/OQn46WXXso3yEVE/O///m8MGzZMw1SR60ree/fuPaAxqr1hLpfL9VyxJMJnNgAAgB6Qo4MVK1bkysvLc8uWLcu98MILucsvvzw3ePDgXFNTUy6Xy+WmT5+eu+666/LjH3/88Vy/fv1y3/jGN3Ivvvhi7qabbsqVlpbmNm/enNQqvK91Np958+blVq9enfvlL3+Z27hxY+6SSy7JVVRU5LZs2ZLUKrxv7d69O/fcc8/lnnvuuVxE5L75zW/mnnvuudyvfvWrXC6Xy1133XW56dOn58e//PLLuf79++e+8pWv5F588cVcfX19rm/fvrmHH344qVV4X+tsPrfddlvuwQcfzP3iF7/Ibd68OXfllVfmSkpKco888khSq/C+NXPmzNygQYNy69aty73++uv5n7179+bHeO9JRley8b5TONddd11u/fr1uVdeeSX3P//zP7nrrrsu16dPn9yaNWtyuZz9hnRzTJMunc170aJFubKystz999/f4f1t9+7dSa0CndDZvN+ptrY2d8EFFxSoWrpDZzPftm1b7uijj87NmjUrt3Xr1tzKlStzQ4cOzd18881JrQKd0Nm8b7rpptzRRx+d+/d///fcyy+/nFuzZk3uhBNOyP3lX/5lUqtAJ/hdGgAAQPI0TR3Ed77zndyIESNyZWVluTPOOCO3YcOG/LzPfvazudra2g7j/+M//iP30Y9+NFdWVpb72Mc+lnvooYcKXHG6dCafq666Kj+2qqoq97nPfS737LPPJlD1+9+jjz6ai4gDftrzqK2tzX32s5894Dljx47NlZWV5T784Q/n7rnnnoLXnRadzedrX/ta7oQTTshVVFTkhgwZkjvrrLNyP/3pT5Mp/n3uYLlERIf9wXtPMrqSjfedwvniF7+YGzlyZK6srCz3J3/yJ7lzzz033zCVy9lvwDFNunQm75EjRx70/e2mm24qfOF0SWf377fTNNU7dTbzJ554IjdhwoRceXl57sMf/nDulltuyb311lsFrpqu6kzeLS0tublz5+aP34cPH57727/929wf/vCHwhdOp/ldGgAAQPL65HKu1QwAAAAAAAAAAKRHyXsPAQAAAAAAAAAAeP/QNAUAAAAAAAAAAKSKpikAAAAAAAAAACBVNE0BAAAAAAAAAACpomkKAAAAAAAAAABIFU1TAAAAAAAAAABAqmiaAgAAAAAAAAAAUkXTFAAAAAAAAAAAkCqapgAAAAAAAAAAgFTRNAUAAAAAAAAAAKSKpikAAAAAAAAAACBVNE0BAAAAAAAAAACp8v8B1TBfG4Ko9LcAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 3000x2000 with 14 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(30,20))\n",
    "for i,feature in enumerate(num_col):\n",
    "    plt.subplot(5,3,i+1)\n",
    "    df[feature].hist()\n",
    "    plt.title(feature)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    Observations:\n",
    "        1.age looks a bit left skewed\n",
    "        2.Blood gluscose random is right skewed\n",
    "        3.Blood Urea is also a bit right skewed\n",
    "        4.Rest of the features are lightly skewed"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Now, let's check the label distribution for categorical data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(cat_col)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Figure size 2000x2000 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(20,20))\n",
    "for i,feature in enumerate(cat_col):\n",
    "    plt.subplot(4,3,i+1)\n",
    "    df[feature].hist()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    A few features have imbalanced categories. Stratified folds will be necessary while cross validation."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'sns.countplot(x=\\'class\\',data=df)\\nplt.xlabel(\"classification\")\\nplt.ylabel(\"Count\")\\nplt.title(\"target Class\")'"
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'''sns.countplot(x='class',data=df)\n",
    "plt.xlabel(\"classification\")\n",
    "plt.ylabel(\"Count\")\n",
    "plt.title(\"target Class\")'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "## ckd-chronic kidney disease\n",
    "## notckd-->> not crornic kidney disease"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "###  7. Correlations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<AxesSubplot: >"
      ]
     },
     "execution_count": 32,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAALECAYAAAA8S26jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXQU19vA8e/GNu6bYCG4JQSX4BR3ihQoLsVK+ysuQQoUqUCxFkqR4lAopUKBAsU9QAhEiLu7b/T9I2GTDbshgUCavvdzzp6TndyZefbuM7N75965K8nLy8tDEARBEARBEAShktGo6AAEQRAEQRAEQRBeh2jMCIIgCIIgCIJQKYnGjCAIgiAIgiAIlZJozAiCIAiCIAiCUCmJxowgCIIgCIIgCJWSaMwIgiAIgiAIglApicaMIAiCIAiCIAiVkmjMCIIgCIIgCIJQKYnGjCAIgiAIgiAIlZJozAiCIAiCIAiCUCmJxowgCIIgCIIgCC+5fv06gwYNolq1akgkEs6cOfPKda5evUrLli2RSqXUq1ePn3766a3GKBozgiAIgiAIgiC8JDU1lWbNmvHdd9+Vqry/vz8DBgyge/fuuLi48NlnnzFt2jQuXLjw1mKU5OXl5b21rQuCIAiCIAiCUOlJJBJ+/fVXhg4dqrbM4sWLOXv2LM+ePVMsGz16NAkJCZw/f/6txCV6ZgRBEARBEATh/wG5XE5SUpLSQy6Xl9v279y5Q8+ePZWW9enThzt37pTbPorTemtb/g/LivGr6BDKxKm1U0WHUCa6lbCN/aFOfEWHUCZp6doVHUKZhGfqV3QIZXJBL7eiQyizqxlBFR1CmayQ1KnoEMqklkZaRYdQZj9oa1Z0CGWyQKdy1fHjFLOKDqFMTmunVHQIZXYy8LeKDkGlivweuWHHQVavXq20bNWqVXz++eflsv2IiAisra2VlllbW5OUlER6ejp6enrlsp+iRGNGEARBEARBEP4fWLp0KfPmzVNaJpVKKyia8iEaM4IgCIIgCILw/4BUKn2rjZcqVaoQGRmptCwyMhJjY+O30isDojEjCIIgCIIgCO9Obk5FR/DWODo68tdffyktu3jxIo6Ojm9tn5Xv5gRBEARBEARBEN66lJQUXFxccHFxAfKnXnZxcSEoKP8+y6VLlzJhwgRF+ZkzZ+Ln58eiRYvw9PTk+++/5+eff2bu3LlvLUbRMyMIgiAIgiAI70pe5ZkkxtnZme7duyuev7jfZuLEifz000+Eh4crGjYAtWvX5uzZs8ydO5etW7dSo0YN9uzZQ58+fd5ajKIxIwiCIAiCIAjCS7p160ZJP0n5008/qVzn8ePHbzEqZaIxIwiCIAiCIAjvSm7l6ZmpDMQ9M4IgCIIgCIIgVEqiMSMIgiAIgiAIQqUkhpkJgiAIgiAIwjuSV4kmAKgMRM+MIAiCIAiCIAiVkuiZEQRBEARBEIR3RUwAUK5Ez4wgCIIgCIIgCJWSaMwIgiAIgiAIglApiWFmgiAIgiAIgvCuiAkAypXomREEQRAEQRAEoVISPTMVzNnlKfuPnsLd04fo2Di2blhBjy4dKjoshd5zR9B2zHvoGRsQ4PycX5fvIyYgQm352m0b0XX6QGo0rYOxtRkHpm/C7W/ncovnvbnDaTWmO7rGBgQ5e/HH8n3EBUSWuE7b8b3oOGMAhjITIj2COLvqAKFP/AAwrWHJvJtbVa53YvZW3P66j3XjmnSeNQjb1g3RNzciISSaB0cuc3f/hTLFbjp2IBZTh6MpM0Pu6U/k2p1kuHqpLGvyQR9MhvZAWt8WgAw3H6I3H1Aq38jrL5XrRn25l7i9v5QpNnUsJ/bHesZQtGVmpHsEELxyN2ku3irLWozphcWI7ug2yI857akvYV8dKiyvpUm1hWMxea8VOjWrkJOcRvKNJ4RtPEhWZFy5xGs7uRd1Zg9CamVCknsQbst+IvGxr8qyhg1r0GDRCEwc6qBfU4bbioME7D6nVKbup0Oo0r8NhvWrkZORSfwDLzzXHiPVN7xc4gXoP3ckjmN6oGdsgL/zc35evofoEo6xum0b02P6IGya1sbE2pwfp3/N02LHWL/PRtByUAdMq1qQk5VN8FN//vzmOIEuPuUS8+xFHzF87GCMjI1weeDKF4u/Isg/RG35Dya+zwcTh1HNpioAvs/9+GHzPm7+c1dRpoZtdeav+oQW7RzQ0dHh1pW7bFi2ibiY+FLHVXdSLxrOHoCuzIQE9yAeOx0g3sVPbfkaA9tit3gkBjUsSfGPxPWLY0T880Txf019KQ5Oo6nWtzVSM0NSg6Px3nsBv4OXFWWkMhOarfwQ6y72aBnqkuwbjsfW3wg9+6DUcRdlNbEfVWYNRVtmSpp7AEEr9pCq5piz/LAXliO6odewJgCpT30J3XhEqbxZv/bIxvfBwKEuWmZGPOs9l3S3gNeKrSRD5o6i85ie6Bvr4+P8nMPLdxNVQh7Xb9uYvtOHYNu0DqbW5uyY/iUufyvX2Z6AUyrXPbn+IBd2//7asf6bz8X1J/Wi0awB6MlMiHcP4uHyA8SVkMM2A9visCg/h5P9I3FZd4zwIjk8JuyIyvUerz2K586zGNSwxG7u+1h3bIKuzJT0yHgCTt/CfesZcrNyyhR7UaPmfUiPMb0wMDbA09mTH512EhGg/rw5dPZw2vV1pHrdGmRmyHn+0JMjGw8S5heqKDN9/SyadmqGubU5GakZPH/oyeGNBwjzDVW73X+t3NevW+Fllapn5vz583Tq1AlTU1MsLCwYOHAgvr6FX1Ru375N8+bN0dXVpXXr1pw5cwaJRIKLi4uizLNnz+jXrx+GhoZYW1szfvx4YmJiKuDV5EtPz6BhvTo4zZ9dYTGo023mIDpO7stpp71sH7qCzHQ5Uw8uQUuqrXYdHX0p4R5B/LpyX7nH02nmQNpN7sMfTvvZPXQlmelyJrwiHvuB7em7fCxXt55m14DlRLgHMeHgEgwsjAFIDIvlqzazlR7/bD6FPCUd76v5HwjV7GuTGpvEL3O/Z0evRVzb8Rs9F42i7YRepY7dqH8XrJZ+RMyOowQM/QS5px82e9eiaW6isrx+WweS/rxG0ISlBI6aT1Z4DDb7vkDL2kJRxrvDWKVH+JJvycvNJfnvW6WOqyRmgzpRY8UUwrecwLP/PNLd/al36HO0LFTHbOTYlLjfbuA9ajnPhy4iKzyGeoc/R7uKOQAaelL07esSvvVnPPvNw++jDejWrU6dfU7lEm/VIe1pvHo83pt+4WavZSS7BdLu+BJ0LI1VltfU0yEtMArPdcfIiFT9hdncsTGB+//mVv+V3Bu5Hg0tLdqeWIqmvrRcYu45czBdJvfjZ6c9bB7qRGZ6BrMOLnvlMRbqEcjJEo6xKL9wTq7cz8Y+C9kyYhVxIdHMPuiEobnRG8c8ec44Ppw6krWLvmJs/6mkp6Wz6/gWdKQ6ateJDItmy7rvGd17EmP6TOb+zYds/ekr6jasDYCevi4/nNhCXl4eHw3/hImDZqCtrcX2Q98gkUhKFVeNwe1p9vlY3Ded5mKf5SS6B9Hl2BKkFqrff4vW9Wm3cw7+R69ysbcToeed6bh/HsYNayjKNF89jirdHbg/53vOd1mI14/naLFuIlV7t1SUabt9FkZ1q3Jz4ib+7r6E0L+ccfzhU0ztbUsVd1Hmgztis2oyYZtP4NZ3PmnuATQ4slLtMWfsaEfsbzfw/GAFHoOXkBkWQ4OjqxTHHICGvpSU+x4ErztY5nhKq+/MofSY3J/DTrtZP3QZ8nQ5cw+uKDGPpfq6BHsEcGTlHrVl5rWZpvTYv/A7cnNzeXjurtp1XuXffC6uObg9LVaN5dnm05zvs5wE9yC6H1Wfw5at69Ph+zn4HrvK+d5OhJx3pvO+eZgUyeFfm81Wetyd+wN5ubkEn70PgHG9akg0JDxYvI+/ui/i8eeHqT++Bw5LR5Up9qKGzBxGv0kD2L1sJ0uHLESelsHyQ5+jXUI+2LWz58LBv1g2dCFrx61CS1uL5Yc+R6pXeK71e+rL9wu28VmPOXwx4XMkEgkrDq1GQ6NSfZUV3oJKlQGpqanMmzcPZ2dnLl++jIaGBu+//z65ubkkJSUxaNAgmjZtyqNHj1i7di2LFy9WWj8hIYH33nuPFi1a4OzszPnz54mMjOSDDz6ooFcEnR3b8On0ifTs2rHCYlCn05R+XN7+K+4XHxLhGcSJed9jbG2GXe/Watd5fvUJFzb9jNuF8uuNecFxSl+ubz+D58WHRHoGc3reToysTWnUu5XadTpM68fD41d4fPI60T6h/OG0j6x0OS0/6ApAXm4eKdGJSo/GfVrz7Ow9MtPkADw+eY1zqw8RcM+T+OBoXM/c4vHJ6zTp26bUsZtPfp/En8+TePoimb7BRKzcQW6GHJMRvVWWD1/wNQlHzyL38CPTL4QIp62goYG+YzNFmZyYeKWHYc/2pN1zJStY/dXQsrD6aAgxx/4m7ufLZHgHE7R0J7kZcixG9VRZPuDTzcQcPEe6uz9y31ACF+5AoqGBUcf8mHOT0/AZu4qEP28h9wsl7bEXwSt+wMChHtrVLN843tozBxB8+B9Cjl8jxSuUpwv3kpOeic2YbirLJ7r44bnmKOFn7pArz1ZZ5sGYjYScuE7K8xCS3YN48r+d6NvIMHGo/cbxAnSd0p+/t5/m6UVnwjyDODTvO0yszXDorT63PK66cHbTCVwvqL/y//D3W3jdekpscBQR3iH8+sVB9Iz1qdao7F+wixv30Sh+3PITVy/cwNvDF6dP1iCztuS9vl3UrnPt4k1uXr5DkH8IgX7BbN/4A2mp6Ti0tAegeRsHqtlUZcX/1uLt6Yu3py/LP12LXbNGtO2k/nxTVIMZ/fA/coWAE9dJ9grl4aJ95KTLqTWmq8ry9af1JeKKK147z5LsHYbbV6eIfxpAvSmFx6RF6/oEnLxB9B0P0kJi8D98hUT3IMxb1FWUsWxdH+99fxPv4kdqUDQeW86QmZiK2WvkiPVHg4k+epGYn/8hwzuEwCW7yE2XYzm6h8ryfp9sIfrAedLdAsjwDSVgwfdINCQYd3JQlIn95RphW34m6cYTldsoDz2nDODP7b/gcvEBIZ6B7Ju3HVNrM1r0bqt2nWdXH3Nm03EeX7ivtkxSdILSo3mvNjy/40ZMcNRrx/pvPhc3nN4P36NX8D9xnSTvUB4s3kd2upw6anK4wbS+hF9xxXPnWZJ8wnj6dX4O159c+FoyohOVHjX6tCLyljupQdH5r++qK/fm7ibi2lNSg6IJ/fsRHrvOYtOv9J9vxQ2YOohfdpzE+eJ9gjwD2TFvC2ZW5rTp3V7tOusmrubqqX8I8Q4m0COA7+ZvRVbDijpNC4+1S8f+xuO+O9EhUfg/8+PYN4exrC5DVsPqtWMV/hsqVWNm+PDhDBs2jHr16tG8eXP27dvH06dPcXd35+jRo0gkEn788UeaNGlCv379WLhwodL6O3bsoEWLFqxfv55GjRrRokUL9u3bx5UrV/DyUt3F/P+VuY0VxlZmeN96pliWkZxOsIsvti3rv/N4zGxkGFmZ4XvLTbFMnpxOqIsvNmri0dTWpKp9bXyLvIa8vDx8bz2jhpp1qtrXoqpdLR6duFpiPLpGeqQnpJYueG0tdO3qkXrbpXBZXh5pt13Qa96oVJvQ0JMi0dIkJyFF5f81LUwx7NqGxJN/ly6mV5Boa6HftC7JN4t8AcrLI/nGEwxaNSzVNjT0pEi0NclOSFZbRtPIgLzcXHKSSlmXauPVxMShNjE3Ct9r8vKIuf4M09bll69aRvoAZKp5H8rCwsYKEysznt96qliWkZxOoIsPtcrxGNPU1qTDmB6kJaUS6hH4RtuqXrMaMmtL7l4vbEilJKfy9LE7zVrbl2obGhoa9B3SEz19XZ48zH/tOjo65OXlkZmZpSgnl2eSm5tLy3YO6jalINHWxMyhNpHF3v/IG8+waKW6Li1a1yOqaHkg4qorFq3qKZ7HOntTrXdLdKuYASDr0ATDOlWIvFb4nsU4e2MzuD3apgYgkWAzpD2autpE3fZ4dWUovQYtDBzqKjc68vJIuumKYamPOR0kWppkl0N+lpaljRWmVmZ43HJVLEtPTsPPxZu6LRuU236MLU1o2r0lN05cfnVhdf7F52INbU3MHWoToSKHLdXksGWreso5D4Rfc8WySA4XpWtpTLUezfE7fq3EWLSN9JG/Zg5Z2VhjZmXO0yKfHWnJafi4eNGwZenyGEC/4FyboiYOqZ6U7iN7EhkUQWx4xY2ueW15uRX3+A+qVPfMeHt7s3LlSu7du0dMTAy5BT86FBQUxPPnz3FwcEBXV1dRvm1b5atCT5484cqVKxgaGr60bV9fXxo0ePnEK5fLkcvlSss05HKk0vIZZvJvZSTL73JPiU5UWp4cnYiRzPSdx2NYsM/i8aREJyr+V5y+mRGaWpqkxiivkxqdhKxuNZXrtBrVjSjvUIIfqR6jDmDTsj72A9tzeMo3pYpdy8w4/wtGsbH/2TEJ6NexKdU2ZAsmkx0VR9rtxyr/b/J+T3JT08ttiJmWeUHM0QlKy7NjEtCtV0P1SsVUXzaBrMg45QZRERKpNtWXTiD+txvkpqS/Ubw65sZoaGkiL5Yf8uhEDOqrfq/LTCKhyRcTiLvnSYqn+vtDSsu4IG+TVRxjxuVwjNm915JJ2/+Htp4OSVEJfD9uHanx6huWpWFplT+0JjZa+R6n2Og4LKwsVK2iUL9RXQ6d3Y2OVIe01HQ+m7IEP68AAFwfPSM9LYO5yz9m24adSCQS/uc0Gy0tLSytXt1rJzU3QkNLk4xidZkRnYRRPdXvv67M9KXy8uhEdK1MFc8fOx2g1ddTGfR4B7lZ2eTl5vFw4R5i7noqytydvo32P3zCUI/d5GZlk5Oeye0pW0h9xb18xWmZGyHR0iSr2PkqKzoB3brVS7UNG6cJZEbGv9VemOJMZPkNvaRi54qk6ERMyvGzosPwbshT03l04d5rb+PffC5Wm8Mxr8jhmOI5n4hekRwuqvYHXchKySD4L/W9uoa1rGkwpTcua46WKf4XTK3y8yEhJkFpeUJMAqYFufIqEomESaum4fnAnWCvIKX/9R7fj/FLJ6JroEeoTwhrx64iO0t1z7rw/0elaswMGjQIW1tbfvzxR6pVq0Zubi729vZkZmaWav2UlBQGDRrEl19++dL/qlatqnKdDRs2sHr1aqVlyxd+yspF/yv7C/gXazGkI8PWT1M83z/lqwqMBhyGdGDQ+qmK50emfP3W96kl1abpkA5c23ZGbRmrBjX48Md5XN36K743nqotV57Mp4/EeEBXgsYvJq/IleuiTEb0IumPK2r//65Zzx6O2eDOeI90Ik+uIiYtTWrvXAQSCUHLdr77AF+D/cbJGDW04c7gz19r/dZDOjFq/UeK5z9M2VhOkanmfceNL/svwtDcGMfR7zH5u8/YNNSJlNikUm+j/7DerPy6cLjux+MWvHY8/r6BjOwxEUNjA3oNfI8vtq1gyvuz8fMKID42gQUfObH8y4V8OG0kubm5nPv1Iu5PPMmrwCuJ9ab0xqJlPW5O+Ia0kBgs2zeixfpJpEfEE3Ujv5fYbtEItI31uTZyPfK4ZKr3bU37Hz7hytC1JHkGv7NYq3w8DPPBnfAcuUL1MVdO2g3pzPj10xXPt03Z8Nb2VVTHD97j7pkbZL/F1/YqlfFcXFSd0V0J/PUWuWrqUK+KGd2OLCL4z3v4Hr1Sqm12GtqVGetnKZ5vmLz2jeOctnYGNg1qsmLE0pf+d/PMNVxvuGBmZcbg6e8z7/uFLB++hKwKzIvXkvvf7CGpKJWmMRMbG8vz58/58ccf6dy5MwA3b95U/L9hw4YcPnwYeZFekwcPlK8+tGzZkl9++YVatWqhpVW6l7506VLmzZuntEwjuRLOnPEK7pceElRkpiMtnfwb9QxlJiQXueJmJDMhzD3grcfjeekRIS6Fkzto6mgp4kkpEo+hzIRwd9VDZ9Lik8nJzsHAUvnGTgOZ8UtXwwHs+rdDW1eKy+kbKrcnq1edSUeW4XzsH67tOFPq15Idn0Redg5alspXpbQsTckudoW7OPMpw7CYPpLgSU7InweoLKPX2g5pHRvCPiu/L8fZcQUxF7uyqmVpSlZ0ybNLWc0YivXsYfh8uIp0TxXvjZYmdXYuQqe6DO9RK964VwYgMy6J3OwcpDLl91oqM0EelfDG27dbPwmrXi25M3Q1GeGvN/Pa00vOBBSZZerFMWYkM1G6qm0kMyGkHI6xzHQ5MYGRxARGEvDYm+VXtuA46j0ufn+m1Nu4euEmTx+5K57rFNzAayEzJyYqVrHcQmbO82clD9XNzsomOCC/R8vD9Tn2zRszdtoo1i7Kv7h059p9BrQfiam5CTnZOSQnpfCP65+E/Bb2yjjlccnkZuegW+z915UZkxH18rEOkBGd8FJ5qcyEjIJ80dDVpunSUdya8i0Rl10ASPQIxtTOloazBhB1ww0DWyvqT+3Dha6LSPLK/1xIdA/Csl1D6k3uxaPFpZ8IJTsumbzsHLSLna+0ZaZkFev1KK7KjCFU/XgYz0evIv0NhxK+isulB/gr5XH+udlYZkpikTiNZSYEl9NnRf02jalatzo/zNn8Rtv5N5+L1eawpfFLvTUvZEQnoGtZPOdNSFdxzpO1bYhxvWrcmrlddezWprx30okYZ2/uL9xb6ridL97H5/FzxfMX5zVTS1MSogo/K0wtTQlw93/l9qaumU7LHm1Y9cFS4iJiX/p/WnIaaclpRASE4/3Yi/2uR2jbpz23flf9uS38/1Bp7pkxMzPDwsKC3bt34+Pjwz///KPUyPjwww/Jzc1l+vTpeHh4cOHCBb75Jn8Y0IvZcD7++GPi4uIYM2YMDx48wNfXlwsXLjB58mRyclRPkyeVSjE2NlZ6/BeHmMlTM4gNjFQ8Ir1DSIqKp36HwnHwUkM9bJrXJbCEIVjlJTM1g7jASMUj2juU5Kh46nSwU4qnevO6aoeE5WTlEP7MX2kdiURCnQ72hKhYp+Worjy/9Ii0uJeH4sjqV2fyMSdcfrnB5W9Olu3FZGWT4eaDQZEbRpFI0HdsTrqLp9rVzKeNwOLjMQRPXUHGM/V1bjqiN+lPvZF7vvqDorTysrJJe+qLUcci9ytIJBh1ciD14XO161nPfJ+qn36Az/jVpLmqmAa4oCEjrV0VnzErySnhfpqyxZtDoqs/lp2L3LchkWDR2Y4E5zfLV7v1k6jSvw13h39BesFNs69DnpqhaFzEBEYS4R1CYlQ8DTo0VZTRNdTDtnk9At7CMaahIVF88SyttNQ0ggNCFA/f5/5ER8bQrnPhTfkGhvo0bdGEJ87PStiS6nh0VMxulBCXSHJSCm07tsLc0oyrF179JSUvK4d4V3+sOhUe60gkWHWyJ/ah6rqMdfZRLg9Yd7En9mF+3mpoaaGhowV5ecr7ys2FgtmTNAtmWspTUUaiUbpZ2ApfQzaprr5KN+8jkWDcqSkpJRxzVWYNpepnI/Eat4Y0V9XTkJcneWoGUYERikeYdwgJUfE0LpbHdZrXx/dR+dyL2mnUewS4+hLypg21f/G5ODcrhzhXf6oUy2HrTvbEqMnhmIc+WHdWzuEqXeyJefjyubfOmG7EPvEjwT3opf/pVTHjvVPLiX/qz725P7yU8yXJSE0nIjBC8QjxDiY+Kg77Ip8deoZ61GvegOeP1Ocx5Ddk2vZpz+oxy4kqzSQPkvzPdG0d9bOk/Vvl5eVW2OO/qNI0ZjQ0NDh+/DgPHz7E3t6euXPn8vXXhUOPjI2N+eOPP3BxcaF58+Y4OTmxcuVKAMV9NNWqVePWrVvk5OTQu3dvmjZtymeffYapqWmFTe2XlpaOp5cvnl75H0KhYZF4evkSHvH6s7WUl5v7zvHeJ0Np0rMVVRraMGrzLJIi45V+N+ajI050mFA4c4qOvpSqTWyp2iR/1iRzGxlVm9hiWq3k8fSlcWffebp+MpSGPVti1dCGYZtnkhyZgOffDxVlJh1ZqjRl8u0952g1pjvNh3fGsm41Bq6bjI6+lEcnlW+ANLe1xrZtIx6eeLlr3apBDSYfc8LnxlNu7/0LQ5kJhjIT9MswzW3c/l8x+aAvxu/3QKeuDdarP0ZDT0riLxcBqPrVfGTzJxXG89EILD8bT8TSLWSFRqFpaYampRkSfV2l7WoY6GHUtzOJJ8v2mzelEfXjb1iO6Y35iO7o1quBzfqZaOjpEvvzJQBsv/2MaovHK8pbzxpG1QVjCVywncyQKLRkpmjJTNF4EbOWJnV+WIy+Qz0CPtkMmhqKMhLtN+8k9t91Fpux3an+QRcM61fD/qspaOlLCS642bXZ9lk0dBqtKC/R1sTYzhZjO1s0dLTQrWKGsZ0t+rWsFWXsN06h+ohOPJ61g5yUdKQyE6QyEzR0y+fD89q+v+jzyfvY92xF1YY2jNv8MYmR8bgW+b2Nj48sp/OEPornOvpSqjexpXrBMWZhY0X1JraYFRxjOnpSBi4cTa0W9TGrbomNfW0+/GomJlXMeXz29ae0feHwjyeY/tkkuvXuRP1GdVm3fSXRkTH8c/66osyPJ7czesoIxfNPl82iVfvmVLOpQv1Gdfl02Sxad2jJ2V8K83bI6AE4tLSjhm11Bgzvwzc/ruPQ7uME+L785UsVrx/OUWdsd2xHdsaofjVafjkZLX0pAQXvf5ttM7FfVjjdrPee81Tp7kCDGf0xqleVJvOHYd6sDj778m/czk5JJ+q2Ow4rxiBzbIy+jQzbD7pQa0RnQgvuOUj2CSPZL4JWX03FrHkdDGytaDCjP9Zd7Ak9V/YZHSN//B3Zh72wGJl/zNlunIGGni4xBTe91976KTWWjFOUrzL7faov/JCA+TuQB6s45gBNU0P07Gqh1yD/nhC9utXRs6v1Uq/rm7i07ywDPhlOs56tqd6wJlM3f0JCZDyP/y6cqWz+kVV0n9BX8Vyqr4tNk1rYNKkFgMzGGpsmtTAvNrOhrqEerfs7vtmN/0X8m8/Fz3efo+6H3ak9sjPG9arRZmN+DvsX5HD7rTNpVmTKZK8956nazYFGBTlsP38Y5g518N6vPPmAlqEeNQe1xe/o1Zf2qVfFjB6nlpMWFsvjNUeRWhijKzN5qYeoLM7u/YPhn3xA655tqdnQljmbPyM+Ko4Hfxeef1YeXUPfif0Vz6d9MYPOQ7uy9dNNZKSmYyozxVRmqpjy3crGmqGzh1PHvi6W1Sxp0KoR879fTGaGnEdXHr4Ug/D/S6UZZgbQs2dP3N3dlZYVvSLWoUMHnjwpvPHxyJEjaGtrU7NmTcWy+vXrc/r06bcfbCk98/RmyieFY9K/2r4bgCH9erJu+fyKCguAq7v+QEdPyvAN09A11ifgwXP2TtyoNGbZwtYagyJf6ms41GHm8ZWK54NWTADA+dQ1fl6w643iubnrT3T0pAzeMBVdY32CHnhxaOKXSvGYFYvn2Z930Tc34r25IzCUmRDhEcihiV+SGqN830DLD7qSFB6H7/WX74Ox698WQ0sTmg/rRPNhnRTL40Oi+bbTZ6WKPfmv62iaGyP7dHz+D7V5+BE8dSU5sQkAaFeVKY2hNRszAA0dbarvUP4NlpjtR4jZXvgjaEYDu4IEkv68Wqo4yiL+j5tomRtTdf6H+T+a6e6Pz/jVZBfccKpT3VJpZhTL8X3RkGpTZ/cSpe2Ebz5G+LfH0aligWnvdgA0/lv5h0q9RjqRcrdsV/aLC//tLjoWxjRYNAKplSlJboHcH7ORzIIhGnrVLcnLLTxf6FYxo/M/hcNB6n48iLofDyL2ljt3h+WP+7adnN8wdjyzkqKefLqTkBPXeVOXdv2Ojp6U0Rumo2esj9+D5+ycuEEppy1trZV+H6amQ10+Pb5K8XzYiokA3Dt1lSMLdpKbm4t13eq0Hd4VQzMjUhOSCXL1ZevIz4nwfvOJC/bvOIyevh4rv1mCkbEhj++7MmvMXDLlhfcu1qhVHbMiv9thbmnGF9tXIrOyICU5BS93X2aO/kxpVrRadWvyv2WzMDE1JjQ4nB+3/sShH46XOq6Q3+8itTDCbtGI/B/NdAvkxodfIi841vWrW0CR9z/W2Zt7s7/DfvFI7Jd+QIp/BLcmbybpeWEd3Z25g6bLRtHuu9nomBqSGhrD0y9/VvxoZl52DjfHfUVTp9F0OrgALQMpKf6R3P/fD0o/vllacb/fQsvcmOoLRqMtMyPNzR+vcWsKj7lqMqXXYDUh/5ir96PyzxCEbjpO2OYTAJj2bkOdbz9V/K/uzgUvlXlT53edQaonZcKGGegbG+D9wJMtE79QymOZrTVG5oW/l1LLoS4LjxfejzpqxSQAbp26wv4F3ymWtx3UESQS7v9eOKz8Tfybz8VBBTncdGF+Dse7BXJ17JdkFMnhouewGGdvbn/8HQ6LR+Kw5AOS/SO4MWUzic+Vj3PbIe1BIiHwzO2X9lmlS1OM6lTBqE4Vhj7aofS/Y9XGvtbr+G3XaXT1dZmxYTb6xgZ4OnuwbsJqpftarGtWwcisMB/6jM9v2Kz+eb3Str6bv5Wrp/4hS55F47ZNGDBlMIYmBiTEJOJx343lw5aQFKt6GJ7w/4ckr3j/eCV28OBB6tSpQ/Xq1Xny5Alz5syhW7duHD58uFz3kxWj/td4/42cWpfPjxK+K7qVp8NQ4UOd0v9K+b9BWnrl6pYPz9Sv6BDK5IJe5evKv5pRuh6Qf4sVkjoVHUKZ1NJIq+gQyuwHbc2KDqFMFuhUrjp+nFK62b3+LU5rv7spv8vLycDfKjoEleTeLzcs3xVp/Q4Vtu+3pVL1zLxKREQEK1euJCIigqpVqzJy5EjWrVtX0WEJgiAIgiAIgvAW/KcaM4sWLWLRokUVHYYgCIIgCIIgqPYfvRG/olS+8TyCIAiCIAiCIAiIxowgCIIgCIIgCJXUf2qYmSAIgiAIgiD8q+Wq/m1D4fWInhlBEARBEARBECol0TMjCIIgCIIgCO+KmACgXImeGUEQBEEQBEEQKiXRMyMIgiAIgiAI70qu6JkpT6JnRhAEQRAEQRCESkk0ZgRBEARBEARBqJTEMDNBEARBEARBeFfEBADlSvTMCIIgCIIgCIJQKYmeGUEQBEEQBEF4V8QEAOVK9MwIgiAIgiAIglApicaMIAiCIAiCIAiVkhhm9hqcWjtVdAhlss55XUWHUCbftFpZ0SGU2eFM04oOoUwCNTIqOoQy6aStWdEhlIksr/JdJxolrVPRIZSJSUZORYdQJgHoV3QIZdYoV1LRIZTJ8ySdig6hTGprpFd0CGWSkptZ0SH8Z+TlVa7z179d5fvEFQRBEARBEARBQPTMCIIgCIIgCMK7I6ZmLleiZ0YQBEEQBEEQhEpJ9MwIgiAIgiAIwrsipmYuV6JnRhAEQRAEQRCESkk0ZgRBEARBEARBqJTEMDNBEARBEARBeFfEBADlSvTMCIIgCIIgCIJQKYmeGUEQBEEQBEF4V3LFj2aWJ9EzIwiCIAiCIAhCpSQaM4IgCIIgCIIgVEpimJkgCIIgCIIgvCtiAoByJXpmBEEQBEEQBEGolETPjCAIgiAIgiC8K7miZ6Y8iZ4ZQRAEQRAEQRAqJdEzIwiCIAiCIAjvirhnplyJxsw71nvuCNqOeQ89YwMCnJ/z6/J9xAREqC1fu20juk4fSI2mdTC2NuPA9E24/e38DiNW5uzylP1HT+Hu6UN0bBxbN6ygR5cO72z/necNp/mY7kiN9Qlx9uKC037iAyJLXKflhJ60mz4AQ5kJUR5B/L3qIOFP/FSW/eDAQup2a8apj77F+++HiuW9Ph9P9dYNkDWoQaxPGPv6O5Uq3h5zR9B6THd0jQ0Icvbi9+X7iC3h/QZoN74XnWYMxFBmQoRHEH+uOkDoE18ATGtYsuDmNpXrHZu9Fbe/7gFQp4MdPeePxLqhDZnpch7/cp1LX/9Mbs6bn0CHzRtN9zG90DfWx8vZk5+cdhMZEK62/KDZw2jdtz1V61YnKyMT74eeHN94iAi/sDeKw25iT5rNHICezIRYjyBurThItIvq9xWgzoC2tF44AqMaliQGRHJv/XGC/3kCgIaWJm0WjcDmveYY15SRmZRO6M1n3NtwgrTIBACqOjZm8EnV7/vpASuJVpNTxXWdN5wWBTkR7OzFOad9xL0ih1tP6IVjQQ5HegRxftUBworsb/xxJ2o5NlFa5+Hhy/zltE/xfEXgkZfjnrMdtz/ulrjvLgXxSo0NCCmI91XHXKsJvWhfJN6/i8Vb1OgDi6jbrRknP9qMV5FjrlZHO7rOH4GsoQ1ZaXJcf7nB1a9/Jq+MOWwzuTe1Zg9Cx8qEFPcgPJbtJ+mxr8qyBg1rUG/RSIwd6qBXU4bnigME7T6ndtu1PhlMg+UfErj7L56vOFimuF6oO6kXDWcPQFdmQoJ7EI+dDhBfQh7XGNgWu8UjMahhSYp/JK5fHCOiII8BNPWlODiNplrf1kjNDEkNjsZ77wX8Dl5WlOn6ixNWHZTzxffgZR4t3kdpdJw3nKYf5p+Hw5y9uLhsPwmvyInmE3rSZsYADGQmRHsEcXnlQSIKckLXxIAO84ZTq0tTjKpbkB6bhM/fD7n5zSkyk9MBsBvRmX6bZ6jc9vctZpMWm1Sq2GtP7kW92QORykxIcg/C1ekACWrywahhdRotHIlps9ro28h4uuIgfj+eVypj0b4R9WYPxNShNrpVzLg3aTMR59/uZ7T1pL5UmzUUbZkpae4B+C/fQ6qLj8qyVh/2xHJkN/Qb1gQg9akvQRuOqC1fXsbPH0/fMX0xMDHA/YE7O5btICxA/Tn/g48/oGO/jtSoW4PMjEzcH7qzb/0+Qv1CFWXMZGZMdZpKi84t0DfUJ8Q3hOPbj3Pr3K23+lqEfz8xzOwd6jZzEB0n9+W00162D11BZrqcqQeXoCXVVruOjr6UcI8gfl1Zug+Zty09PYOG9ergNH/2O993+5kDaT2pN+eX7ePAkFVkpckZdWgxmiXUX+OB7eixfCw3t/7KvoHLifQIYtShxehbGL9Uts3UvpCXp3Zbrj9fw+PPkr/4FdV55iDaT+7Db0772DV0BZnpGUx8xfttP7A9/ZaP48rW03w/wIkI9yAmHVyCQUG8iWGxbGwzS+lxefNJ5CnpeF91AaBK45pM2L8I72tP+G7AMk7M2Uajnq3ovXh0qWNXZ8DM9+k9aQD7l+3i8yFLkKfJWXRoBdolvKZG7ey4dPAcq4cu4ctxq9HU1mLxoVVI9aSvHUfdQe1wXDmWh9/+yi/9lhPnHsSAw4vRVfG+Ali3qk+P7z7m+fFr/NJ3OQHnH9Jnz1zMGtYAQEtPB0v7WjzacoZf+q7g7+lbMKlblb775im2EensxcEWHys9PI5eISkwqtQNmQ4zB9J2Uh/+WraffUNWkpUm58NDS0rM4SYD29Nr+Viubz3NjwU5/OGhJS/l8KOj/7C59WzF49KGYy9t67f5PyiV8SzSeFDFceZA2kzqw7ll+/mpIN4xr4i38cD29Fw+lhtbT7N34HKiPIIYrSJegLZT+5Kn4pizalyTUfsX4nvVlb39nfh1znYa9GrJe0vKlsPWQxxpuHo8vptOcbfXUpLdAml1fCk6lqrzRFNPh/TAKLzXHUUeGV/ito2b18FmQk+S3QLLFFNRNQa3p9nnY3HfdJqLfZaT6B5El2NLkKrJY4vW9Wm3cw7+R69ysbcToeed6bh/HsYFeQzQfPU4qnR34P6c7znfZSFeP56jxbqJVO3dUmlbfof/4XeH2YqH69qX80WVtrMG0mJyby4u3ceRwfnn4RGHSz4PNxzUjm4rxnJny68cGpCfEyMOF56HDa3NMLQ25eq6o/zUawnn5u+mVlcH+n79kWIbz/+4y/etPlZ6+F91JfiOR6kbMtWGtMfu83E833Saa72dSHQLwvHYkhLyQUpqUBTuXxwnQ00+aOpLSXQLxHXp/lLF8KYsBnfEdtVkQjb/zNM+C0h1D6Dx0ZVoWZioLG/cwZ7YMzdxH7mSZ4OXIg+LpfGxVWhXMX9rMY6cNZLBkwezfdl2Phv0GRnpGXxx+IsSPyeatm/KHwf+YO6QuSz7cBlaWlqsO7JO6XNiwZYF1Khbg9VTVzOr1yxunb/F0p1LqWtX9629FqFyqJSNmVOnTtG0aVP09PSwsLCgZ8+epKamArBnzx4aN26Mrq4ujRo14vvvv1esN2XKFBwcHJDL5QBkZmbSokULJkyY8E7i7jSlH5e3/4r7xYdEeAZxYt73GFubYde7tdp1nl99woVNP+N2oeJ6Y4rq7NiGT6dPpGfXju98322m9uXWjt/wvviIaM9g/py3CyMrUxr0bqV2nbbT+vHk+BWenrxOrHcY55ftJztdjsMHXZXKWTWpSduP+nN24Y8qt3Px80M8OniJhKDoUsfbYUpfrm4/g+fFh0R6BnNq3k6MrE1pXML73XFaf5yPX+HRyWtE+4Tyu9NestLltCqINy83j5ToRKVH4z5teHb2Lplp+XnddKAjEZ5BXNn2K3GBkQTc8+TChmO0m9AbHQPdUsevSt+pA/l9xykeXXxAsGcgP8zbhqmVOa16t1W7ztcT13Lj1BVCvYMJ8ghg9/ztWNaQUavp638ANZ3eD49jV3j+83USvMO4vmQ/2RlyGo3uqrr81D4EX3Xlya6zJPiE4fzNKWKeBWA/qRcAmcnpnP3wS/z+vEeiXzhRj3y5tfwgsmZ1MKxmAUBuVg7p0YmKhzw+hVq9W/L85+uljrvt1L7c2HEGr4sPifIM5rd5OzGyMqVRCTncflo/Hh+/wpOT14nxDuXssn1kpctpXiyHs9LlpEYnKh6ZKekvbUuelKpUJkee9cp4bxaJ9/eCeBuWEG+7af1wOX4F14J4/1q2j+x0Oc2KxWvdxJZ2Hw3gz4W7X9pGk4HtifIM4ua2X4kPjCTonif/rD9Gqwm9ypTDtWYOIOTwP4Qdv0aqVyjuC/eQk55JtTHdVJZPcvHDa80RIs7cIVeerXa7mvpSmn7/CW7zd5OVkFrqeIprMKMf/keuEHDiOsleoTxctI+cdDm1xqjO4/rT+hJxxRWvnWdJ9g7D7atTxD8NoN6U3ooyFq3rE3DyBtF3PEgLicH/8BUS3YMwb6F8vGWny5FHJyoe2SryRZWWU/tyd/tv+F58RIxnMH/N3YWhlSn1SsiJ1tP68fTYFZ4VnIcvLt1PVroc+1H5rzPGK4TfZ27D79JjEgOjCL7tzs2vT1KnRwskmvlfU7LlWaRFJyoeeTm51OzQhKcnrpYqboB6M/oTeOQKQcevkewVypNFe8lJl2Or5ryR4OKH+5qjhP52h9xM1fkQ9c8TPL88Sfi5d/MZXXX6IKKOXiT6xD+ke4fgv/gHctPlWI15T2V5nzlbiDxwnjS3ADJ8QvGb/z1oSDDp5PDWYhw6dSjHtx/n7t93CfAM4JvPvsHC2oIOfdSP4lgxfgWXTl4iyCsIfw9/Ns/bjHUNa+o71FeUadyqMb/v/x0vFy8igiI4vu04qUmp1Gta7629lrcmN7fiHv9Bla4xEx4ezpgxY5gyZQoeHh5cvXqVYcOGkZeXx5EjR1i5ciXr1q3Dw8OD9evXs2LFCg4cOADAtm3bSE1NZcmSJQA4OTmRkJDAjh073nrc5jZWGFuZ4X3rmWJZRnI6wS6+2LasX8KaAoCpjQxDK1MCbhbWnzw5nTAXX6qrqT8NbU2qNK2N/023woV5eQTcdKN6y8KTn5auDkO2fczfK34iNTqxXOI1s7HCyMoM31vK8Ya4+GKjJl5NbU2q2ddWWicvLw/fW8/UrlPNvjbV7GrhXOQDXVNHi+xiX1KzMzLR1tWhetPar/2aZDbWmFqZ8exm4ZCW9OQ0/Fy8qdeyYam3o2ekD0BqQsprxaGhrYmsaW1Cbyi/ryE33LBuqfpDzapVPUJvPFNaFnLNFetW6j8EdYz0yMvNRZ6UpvL/tr1bIjUzKnVjxtRGhpGVmVI+ypPTCX1FDldtWhv/InlPXh7+N59Ro9g69kM7Mv/xLmb8vZH3Fo1CS1fnpe31XTuJ+Y93MeW3NS81LlTFa2hlRsBbiPfFMXdBzTGnKdV+KYezCnK4SilzWKKtiZFDbWJvPFWKJe76U0xbNyjVNtRpvHEKMZceE3f92asLlxCfmUNtIm8o11XkjWdYtFJdvxat6xFVLI8jrrpiUSSPY529qda7JbpVzACQdWiCYZ0qRF57qrSe7bCODHbbRe8rG7FfNgpNvZfzpTiTmvnn4cAi729mcjrhLr5UUxOzhrYm1k1rE1jsPBx0041qao5XAKmRPpkp6WqHFdoN70RWuhyvs/dfGTfk17eJQ22iryvXd/SNZ5i1rhyfwRJtLQwc6pJ4w7VwYV4eiTdcMWxVunOwhp4OGlqaZCckv5UYq9Ssgrm1OY9vPFYsS0tO47nLcxq1bFTq7egb539OJBeJ0+OhB10GdcHQ1BCJRELXwV3RkergetdV3WaE/ycq3T0z4eHhZGdnM2zYMGxtbQFo2rQpAKtWrWLTpk0MGzYMgNq1a+Pu7s4PP/zAxIkTMTQ05PDhw3Tt2hUjIyO2bNnClStXMDZW3cUMIJfLFT05L2Tn5aAl0SxT3Eay/C7glGIf3MnRiRjJTMu0rf+PDKxMAUiNUR5OkBqThIFMdfe6vpkRGlqapMUkFlsnEYu6VRXPe64cR8hDb7wvPiq3eA3VvN8p0YmKXFAVr6aWJikxL69jWbeaynVajepGlHcIwY+8Fct8rrvSYUo/HAY78vTPuxjKTOn+6fsAGBXU4+swLVg3sVh8iTEJmMjMSrUNiUTCuFVTeP7AgxCvoNeKQ9c8/31NL1a36TGJmNarqnIdfZkpacVyJy06CT01x56mVJt2y0bj89sdstRcsW40uish11xJDY8rVdyGihx+OR8N1cTxIoeL50RqTJJSTjz77TaJoTGkRCZg1diGHkvGYFG3KidnbFGUubrpJP633clOl1Onc1P6r52Ejr4uD366oHLfBm8Q78vrJGFRJN5eK8cR+tALr4uqh7n5XXOl7ZS+NBnsiEdBDnf+X/553bCUOaxjboyGliaZxfJEHp2IQf3qpdqGKlWGOmLkUJt7fUp335w60oI8zigWX0Z0Ekb1VB/vujLTl8rLoxPRLVInj50O0OrrqQx6vIPcrGzycvN4uHAPMXc9FWWCfr1NWkgM6REJmDaxoanTGIzqVuXO1C0lxmxQ8L6/dCyVcB7WM1eXE4mY11V9vOqZGeL46VBcj15RG0vT0d3w/O3OS41edV7Ut1xF/amr738bLXMjJFqaZEUnKC3PiklAr17pcrqm0wQyI+OVG0TlyKzgsyA+RnlYXnx0PGZWpf+cmLFqBm733Qh8XjiMc/2s9Sz9fiknn54kOysbebqctR+tJbyEezb/tf6jPSQVpdI1Zpo1a0aPHj1o2rQpffr0oXfv3owYMQIdHR18fX2ZOnUqH31UOM42OzsbE5PCk6yjoyMLFixg7dq1LF68mE6dOpW4vw0bNrB69WqlZR1M7Oho2rTE9VoM6ciw9dMUz/dP+aosL/P/PbuhHei7fori+c+Tv3kr+6nXsyW2HZqU+oZ+dZoN6cjg9VMVzw+9g/dbS6qNw5AOXN32q9JynxtPOb/+KIO/mMrwzbPJyczi6vZfqdWuMbm56u8JKq7D0C5MXl94w+2myeveOOaJaz+iRoOarB3xZvX9NmloadJz5ycgkXBj6U8qyxhUNadGVwcuzdqudjv2QzswoEhOHJv8dXmHqvD4WOGXvqjnwaREJTD+mBNmNa2ID4oC4Ma2M4oyEW6BaOtLcZwxQNGYsRvagf5F4j3xluKt37MltTrYsaf/MrVl/G885fL6o/RbN4Uh384iOzOLm9vOULNdI/LKkMPlTVrNgoZfTOThB+vJLeWX6Het3pTeWLSsx80J35AWEoNl+0a0WD+J9Ih4ogp6M/0PF+ZLkmcw6ZEJdDvlhIGtFamBUYr/NR7agV4bCs/Dpye9nfNwUTqGegz7aQGx3qHc/va0yjJVW9bDon51/vps51uP57+k2pz3sRzSEfcRK8krp/ztPrQ7n2z8RPF81aRVb7zNj9d9TK2GtVgwbIHS8gkLJmBgbMDS0UtJjEvEsY8jS79fysIRCwnwDHjj/QqVV6VrzGhqanLx4kVu377N33//zfbt23FycuKPP/4A4Mcff6Rdu3YvrfNCbm4ut27dQlNTEx+fV8/msXTpUubNm6e07POm09SULuR+6SFBRWYL0dLJv/HNUGZCcpGrKkYyE8LcA165vf9vvC8+IqzIDDOaOvmpamBpTGpUgmK5gaUxke6qr/CnxSeTm52DvqXyFUMDSxNFj0mtDk0ws7Vi3lPlcfvDdv2P4PvPOTq6dF/gPS49JFjp/c6P11BmQkqR99tQZkK4u+obhtPik8nJzsGwWLzFt/GCff92aOtKeXz6xkv/u733L27v/QsjK1PSE1MxqyGj9+Ixii+2pfHo4n18HnspnmsX5LCJpQmJUYVX3UwsTQl093/l9iasmUbzHq1Z98Fy4iNiSx1HcRlx+e+rXrErwXqWJqRHqR4mmBadgH6xm3z1ZcakF6tXDS1Neu76BKMaFvzxwQa1vTINP+iCPD6ZwL/V9+Z5XXxEaJEc1lLksAkpSjlsQkQJOZGrIicMLI1f6vUr6sV+zWpZq33PQ1186fK/YWjqaJGTmY33xUfsUXnMvRxv5CviNVARb2qxY27BU+X704bv+ozg+54cLjjm7u85x/095zC0MiUjMRUTGxnvLRlNQilzODMuidzsHHSK5YlUZoK8yOspC+NmtZHKTGl/cYNimYaWJmaOjbCZ0odLNuOglI0teUEe6xaLT1dmTIaaPM6ITnipvFRmQkbB69HQ1abp0lHcmvItEZddAEj0CMbUzpaGswYoGjPFxT3Kf98Na1srNWZ8Lj4ivGhOSPNzQr/YeVjf0pgoNefh9Dh1OWHy0hBDbQNdhh9cSGZqBmembyE3O0flNh1GdyPyWQCRTwNU/l+VF/UtLaH+/u2y45LJy85Bu1jPqLalKZkqPiOKqjpzCNU+HobHqM9J83j9SSuKu3vxLp4uhb1+Lz4nzCzNiC/yOWEmM8PXTfWscUXNWjuLtj3asnDEQmIiYgrjt63K4MmDmdFjBkEFvfr+Hv7Yt7Vn4ISB7Fj29m8XEP69Kl1jBvK7IDt27EjHjh1ZuXIltra23Lp1i2rVquHn58fYsWPVrvv111/j6enJtWvX6NOnD/v372fy5Mlqy0ulUqRS5VmXSjPETJ6agTw1Q2lZUlQ89TvYK77MSg31sGlelzuHL75ye//fZKZmkFms/lKiEqjV0U7xoaljqEe15nV5dPiyqk2Qm5VDxFN/anW0K5xmWSLBtqMdDw/k1/mdnX/gcvyq0nofXdzI5TWH8b78mNLKTM0grli8yVHx1O1gp/iiKjXUo0bzutw/fEnlNnKycgh75k+dDnZ4FEy/LZFIqNPBjnsH/36pfKtR3fC89JC0OPVjn5MLPqQdBncgITSGsGevbnS8kJGaQUaq8jTSCVHx2HV0IKigAa5rqEed5vW5fPi8ii0UmrBmGq36tGP9qJVEB5e+QaVKblYO0U/9qd7JjoALhe9r9U52uP2k+liKeuhD9U52PN1bOKSqemd7Ih8WNkBfNGRMalnzxwfrkZdwT0/DD7rgdeqm2i9boDqHk6Piqd3RTtEY0DHUo3rzujxUkxO5WTmEF+Tw8yI5XLujPQ8OvJwTL1jb5Q/BTSnhS1qVJrakJ6SQU3Bjs+pjLp5aKuJ9VIp4vYrEW6ujPc4F8d5WccxNv/glF9ccxvvyy43DF6/BbrAjiaExRJQyh/Oyckh29ceisz3RL27Olkgw72xP0D7VQ+teJe76M253Vb5abLdlFqk+YQTs+K3UDZkX8cW7+mPVyY6w84V1ZdXJHp/9qt/bWGcfrDrZ4V1kemDrLvbEFuSxhpYWGjpaL83KmJebCxrqb5E1tc/Pl4yCachfyErNIEHFedi2ox3RRc7DVZvXxeWQ+vNw5FN/ana0w6dITtTsaMfjA4XHq46hHiMOLSInM5tfp2xWOzmFtr6UhgPbcePLn9W+HlXysnJIdPVH1tmucOpkiQRZJzv896k/lv5N8rKySXX1xaSTA/HnC+4Vkkgw7uRA5E9/qV2v6uyhVP90OJ4friXV9dUNirJIT00nPVX5ok9cZBzNOzXHzz1/lkd9Q30aNm/I2UNnS9zWrLWz6NC3A4tHLiYyWHmq7xezmhXvmc3NzUWjhNz+t8rLU//ZIZRdpWvM3Lt3j8uXL9O7d2+srKy4d+8e0dHRNG7cmNWrV/Ppp59iYmJC3759kcvlODs7Ex8fz7x583j8+DErV67k1KlTdOzYkc2bN/O///2Prl27UqdOnbce+81953jvk6HEBEQQFxxF7/kjSYqMV/rdmI+OOOF24QG3C7686uhLsahVRfF/cxsZVQu+hCSEvf7V7deVlpZOUEjhXPGhYZF4evliYmxE1SpWb3XfD/aep8MnQ4nzjyQxOIou80eQHJWg9NsUY44uxeuCs6Kxcn/POQZumkGEqz9hT3xpM6Uv2vpSXE9eA1DM6lRcYlgsicGFM5eZ2VqjbSDFQGaClq4OVk3y5+yP8Q4lN0v1Sen2vvN0++R9YgMiiA+Opsf8kSRHJigaKgCTjyzD/YKzorFya89fDN80k7CnfoS4+NJhaj909HV5WBDvC+a21ti2bcShyaqHs3WaPhDva0/Iy82lSd+2dJ41mBNztr3xEJ3ze/9kyCcjiPAPJzo4khHzx5AQFcfDvwtvwl1y9HOcL9zj0oH83+eY+MV0HAd3ZstHG8hITcfkxbj7pDSy5JmvFcfT3efo9u0Mop/4E+XiS9NpfdHWk/L8RH49dd8yg9SIeO5vzP/C83TvBQadcsJhej+CLrtQd4gjMoc6XC/4XQ0NLU16/fAplk1rcW7iJiSaGoqeH3lCitJ7XL2jHca2Vngeu1rmuO/vPU+nT4YS5x9BQnA03QpyuOgUyeOOLsXzgjPOBTl8d885hmyaQXhBDrctyOEnBTlhVtMK+6Ed8P7HhfSEFKwb1aTXynEE3vUgyjMYgPo9WmAgMyH0kQ/Z8izqdLan48eDubtb/RegF/F2LBJv14J4nxeJ98OCY+5FvPf2nGOwinhfdcwlhcUoHXPtZwzA96orebm5NOrXhg6zBnP647LlcMCus9hvm0WSix+Jj32oOb0/mvpSwo7nx2K/fTYZEXH4rDsO5N8kbtggf5pjiY4mulXMMbKzJTs1g/SASHJSM0jxDFHaR06anKz45JeWl4bXD+dou3UG8U/8iXPxpf5HfdHSlxJQEF+bbTNJj4jn2foTAHjvOU+308tpMKM/4ZcfYzPEEfNmdXi4cC8A2SnpRN12x2HFGHLSM0kNiUHm2JhaIzrj8vlhAAxsrag5rAPhl13IjEvBpElNmq8eR/QdDxI9gl8Z86O952n/6VDiAyJJDIqi44IRpEQlFDZUgJHHluJz3lnRWHHec45+m2YQ+dSfcBdfWk3Nz4lnP+e/Th1DPUYcXoy2ng5nP9uJjpEeOkZ6AKTHJim95w0HtUeipYn7r2X/bRGfH/6i5daZJDzxI/6xL3U/6oemvi5BBfXdcvss0sPj8Ciob4m2JkYF+aChrYVuVXOM7WzJSc0gteB3dTT1pRjULvyM1q8pw9jOlqyEFNJDy/8zOnz3H9Td8gkpT3xIeexN1Y8GoakvJfr4PwDU3fopmRGxBG/I/12pah+/T40Fo/H5+FvkwVGKXp2c1Axy0zLU7eaNnNl7htGfjCbUP5TI4EjGLxhPbGQsty/cVpTZcGwDt8/f5o8D+aNqPl73Md2GdGPNtDWkp6Yr7r1JTU4lMyOTYJ9gQv1D+WTjJ+z5Yg/J8ck49nGkRecWfD7p87fyOoTKo9I1ZoyNjbl+/TpbtmwhKSkJW1tbNm3aRL9+/QDQ19fn66+/ZuHChRgYGNC0aVM+++wzMjIyGDduHJMmTWLQoEEATJ8+nbNnzzJ+/HiuX7+uNBztbbi66w909KQM3zANXWN9Ah48Z+/EjUo3MFrYWmNgbqR4XsOhDjOPr1Q8H7Qifxpp51PX+HnBrrcaryrPPL2Z8slixfOvtucPzxrSryfrls9/q/u+u+tPtPWl9NswBV1jfYKdvfh5wldKV/BMa1qhZ1ZYfx5/3kPfwpjO84ZjIDMhyj2Qnyd89dINrK/S78tp2Do2Vjyfem49AN93/IzEkBiV69woeL+HFLzfQQ+8OFDs/TYv9n4/+/MuBubG9Jg7AkOZKeEegRyYuPGliQ9afdCNpPA4fK4rz1D0QoNuzeg6ZwhaOtpEeARyZPomvK8+UVm2LM7u+hWpvpQpG2aib2yAl7MHX09YS1aR12RVswpGZoVDunqO7wuA089fKG1r9/zt3Dil/gbfkvj+cQ9dC2NaLxiOvsyEGPdA/hr/FekF9WRY3VLpC1DkQ2/+mfM9bRaNpO3iD0j0j+DCtG+Jf57/BVS/ihm1+uRPLTvy4nqlff0+ch3hdzwUzxuO6UrEAy8SfMt+0+ntghwesGFqfk44e3F0wpdKOWxW0xr9Ijns/udd9C2M6DpvRP6PULoHcnTCl4qcyMnKpnZHe9pO6YuOnpTE8Dg8zz3gxvYzim3kZufQZkIveq8Yh0QiIS4gkotrj/DoWMn1f6cg3v4F8QY7e3FcRbzKx9xdDAriNSiI93iReEurbrdmdPx4CJpSbaLcgzj50WZ8y5jDkb/dQcfCmLqLRiK1MiXZLZBHYzYqJgXQLZYn0irmOP7zpeJ5rY8HUevjQcTdcsd52Joy7bs0Qn6/i9TCCLtFI/J/NNMtkBsffom8oK70q1so9fbEOntzb/Z32C8eif3SD0jxj+DW5M0kPS9sSN2duYOmy0bR7rvZ6Jgakhoaw9Mvf1b8aGZuVjbWne2pPy2/4ZQWFkfI2Qd4bDlTqpjv7/wTbT0pvTdMQWqsT6izF7+MV3EeLnJee/7HPfTNjek4L/94jXYP5NT4wvOwtX0txcxmH93YrLS/3R0+I6nIObbpqK54n3ugdpbBkoT9dhephTGNFo1AKjMlyS2Qu2M2Kupbr7pFfi9WAd0qZnS/XDiksP7sgdSfPZCY2+7cGpZ/PjNtXodOp1cUxrdmPABBJ67x+H8/lDnGV4n9/RZaFsbYLByT/6OZbv54jl1LVsEEC9Lqlko3l1tP6IOGVJsGexYpbSdk0wlCNp0o9/gATu48ia6+Lp9u/BRDY0PcHrixYvwKpc+JqrZVMTYv/JwYOGEgAF+dVL5At2neJi6dvEROdg4rJ6xk8tLJfL7vc/QM9AgLCGPT3E08uPLgrbyOt0pMAFCuJHmqfrFMKNGiWmMqOoQyWef85jduv0vftFr56kL/MqmSynViCsx7O1fk3pZOOfoVHUKZRGlWvtNqZRuo0Sajcg3TSNR4uxfL3oZAbUlFh1Am9TMr13nYWqNynYdXa5but4j+Tc4Fn6voEFRKv1pxP4Su123KqwtVMpWuZ0YQBEEQBEEQKq28ytXw/rerbBfjBEEQBEEQBEEQANGYEQRBEARBEARBje+++45atWqhq6tLu3btuH//fonlt2zZQsOGDdHT08PGxoa5c+eSkfH2hlWKYWaCIAiCIAiC8K5UogkATpw4wbx589i1axft2rVjy5Yt9OnTh+fPn2Nl9fIstkePHmXJkiXs27ePDh064OXlxaRJk5BIJGzevFnFHt6c6JkRBEEQBEEQBOElmzdv5qOPPmLy5Mk0adKEXbt2oa+vz759qicxuH37Nh07duTDDz+kVq1a9O7dmzFjxryyN+dNiMaMIAiCIAiCILwrebkV9pDL5SQlJSk95HK5yjAzMzN5+PAhPXv2VCzT0NCgZ8+e3LlzR+U6HTp04OHDh4rGi5+fH3/99Rf9+/cv/3p8EdNb27IgCIIgCIIgCP8aGzZswMTEROmxYcMGlWVjYmLIycnB2tpaabm1tTUREREq1/nwww9Zs2YNnTp1Qltbm7p169KtWzeWLVtW7q/lBdGYEQRBEARBEIT/B5YuXUpiYqLSY+nSpeW2/atXr7J+/Xq+//57Hj16xOnTpzl79ixr164tt30UJyYAEARBEARBEIR3pQInAJBKpUil0lKVtbS0RFNTk8jISKXlkZGRVKlSReU6K1asYPz48UybNg2Apk2bkpqayvTp03FyckJDo/z7UUTPjCAIgiAIgiAISnR0dGjVqhWXL19WLMvNzeXy5cs4OjqqXCctLe2lBoumpiYAeXl5byVO0TMjCIIgCIIgCO9KXuWZmnnevHlMnDiR1q1b07ZtW7Zs2UJqaiqTJ08GYMKECVSvXl1x382gQYPYvHkzLVq0oF27dvj4+LBixQoGDRqkaNSUN9GYEQRBEARBEAThJaNGjSI6OpqVK1cSERFB8+bNOX/+vGJSgKCgIKWemOXLlyORSFi+fDmhoaHIZDIGDRrEunXr3lqMojEjCIIgCIIgCO9KJfrRTIA5c+YwZ84clf+7evWq0nMtLS1WrVrFqlWr3kFk+cQ9M4IgCIIgCIIgVEqiMSMIgiAIgiAIQqUkhpkJgiAIgiAIwrtSyYaZ/duJxsxr0K1kHVrftFpZ0SGUyYKHayo6hDI72Lxy1TFauhUdQZmY5ryd6RzfFp08SUWHUGbdLCNfXehfZGBEUkWHUCaOUpuKDqHMhqVXrq8Ip/SyKzqEMtHk7czs9LYcbZNe0SEIgkqV60wlCIIgCIIgCJVZJZqauTKoXF0MgiAIgiAIgiAIBURjRhAEQRAEQRCESkkMMxMEQRAEQRCEd0VMAFCuRM+MIAiCIAiCIAiVkuiZEQRBEARBEIR3RUwAUK5Ez4wgCIIgCIIgCJWSaMwIgiAIgiAIglApiWFmgiAIgiAIgvCuiAkAypXomREEQRAEQRAEoVISPTOCIAiCIAiC8K6ICQDKleiZEQRBEARBEAShUhI9M4IgCIIgCILwroh7ZsqV6JkRBEEQBEEQBKFSEo0ZQRAEQRAEQRAqJTHMTBAEQRAEQRDeFTHMrFyJxkw5em/ucFqN6Y6usQFBzl78sXwfcQGRJa7TdnwvOs4YgKHMhEiPIM6uOkDoEz8ATGtYMu/mVpXrnZi9Fbe/7mPduCadZw3CtnVD9M2NSAiJ5sGRy9zdf6FUMXeeN5zmY7ojNdYnxNmLC077iX9FzC0n9KTd9PyYozyC+HvVQcILYi7ugwMLqdutGac++hbvvx8qlvf6fDzVWzdA1qAGsT5h7OvvVKp4X4ezy1P2Hz2Fu6cP0bFxbN2wgh5dOry1/b3QeGJPms4cgJ7MhDiPIO6sOEiMi+p6Aqg1oC2tFo7AsIYlSQGRPFh/nJB/nij+32LeMOoMbo9BNXNyM3OIeerPw69OEv3YV1HGuHYV2i4fg3WbBmhoaxHnEcSjb04RftujVDH3mDuC1kVy+Pfl+4gNiChxnXbje9FpxkAMZSZEeATx56oDhD4pjMlQZkLfpR9St3NTpAa6xPiFc3XHGdzPPwDy87z7J+9Tp4MdhjJTkiPjcTlzk2s7zpCTlaN2v/Um9aLR7AHoykxIcA/ikdMB4kqo3xoD29J08UgMaliS7B+J6xfHCC9Sv6PCj6hcz2XNUZ7vPAuAWdNaODiNxrx5HfJycgn56wEuqw6TnSYvsY5eaDSxJ/az8nMi3j2Iu6/KiYFtaVGQE8n+kTgXy4miHDdOptH4HtxbdQj3PS8f/xo6Wgz8czUWdrb81nsZcW5BpYq5KKNRgzGZOBJNS3MyvXyJ3fgdmc+eqyyr36MTplPHoGVTDYm2JlmBYSQdOkXKn5eUyhiPHIhO4/pomhoT+sFMMp/7qtxeeZqzaDojxg3ByNiQxw9cWbPoK4L8g0u17rRPJjB3+ccc2n2cjSu+fSvxDZk7is5jeqJvrI+P83MOL99NVAnHYf22jek7fQi2Tetgam3Ojulf4vL3A6UyewJOqVz35PqDXNj9+2vHaju5N7VnD0JqZUKyexBuy/aT+Fj1e2jYsAYNFo3E2KEO+jVluK84QMDuc0plak7sRc1JPdGzkQGQ8jwEn02nif7H5bVjVGXo3FF0KVLHB19Rxw0K6rhWQR1vn/4lj4vVsVRflxGLx9Kid1sMzQyJCY7i0k/nuHrk7zeOd/DcUXQe0wN9YwN8nD05svzHV+ZEn+mDFTnx3fSvXsoJgCp1qzN8yTgatGuCppYG4d4h7Jy1ibiwmNeOVdpnKNLBo9EwNScn0Ie0fdvI8fF85XraHd7DcO5KMu/fJPXr5YrluiMnodPxPTQsZORlZ5Pj50X6sT3k+JTuc0347/vPDTPLzc3lq6++ol69ekilUmrWrMm6desICAhAIpFw/PhxOnTogK6uLvb29ly7dq1c9ttp5kDaTe7DH0772T10JZnpciYcXIKWVFvtOvYD29N3+Viubj3NrgHLiXAPYsLBJRhYGAOQGBbLV21mKz3+2XwKeUo63lfzv9BUs69NamwSv8z9nh29FnFtx2/0XDSKthN6vTLm9jMH0npSb84v28eBIavISpMz6tBiNEuIufHAdvRYPpabW39l38DlRHoEMerQYvQLYi6qzdS+kJendluuP1/D48+7r4zzTaWnZ9CwXh2c5s9+6/t6ofagdrRbOZbH3/7Kb/2WE+ceRN/Di9FVUU8AVq3q0/27j/E6fo0zfZcTeP4hPffMxaxhDUWZRL9w7iw/wK89l/LnsDWkhMTQ98hidM2NFGV6H5iPhpYmf41az2/98/fb66f56MlMXhlz55mDaD+5D7857WPX0BVkpmcwsRQ53G/5OK5sPc33A5yIcA9iUpEcBhixaRaWdapxeNomtvdZgvv5B4z+7n9UtbMFQFa3GhINDX5btpdtvRbx19pDtP2wJ70WjlK7X5vB7Wn++VjcNp3m7z7LSXAPouuxJUjV1K9F6/o47pyD39GrXOjtROh5Zzrun4dJkfr9zWG20uP+Zz+Ql5tLyNn7AOham9L1xFJSAiK5NGAV1z/8CpMGNWi7deYr6xag9uB2tF01FpfNv/J73/z3pveREnKidX26fvcx3seu8Xuf5QReeMh7e+diWiTmF2r2bY2sZT1Sw+PU7r+N0xjSI+JLFasqBn26YrFgBgk/HCZs9Cwyn/tRZecGNMxNVZbPTUwiYc9Rwif8j9ARM0j57QKWqxeg16G1ooyGni4Zj58Rt2XPa8dVVlPnjGfstA9YvehLxvSfSnpaBrtPbEVHqvPKde2bN2bkhPd57ub91uLrO3MoPSb357DTbtYPXYY8Xc7cgytKPA6l+roEewRwZKX6epzXZprSY//C78jNzeXhudc/B1cd4kij1ePx2XSKW72WkuQWSNvjS9GxVJ3Tmno6pAVG8XzdUTIiVediRngsz784xq1ey7jd24nYm260OrAAQxV5/7r6zRxKz8n9Oei0my8K6nh+Kev4cAl1PHr5ROy7NufHudtw6vkZF/edZezqqTTv2VrtOqXRd+YQekzuV5ATS8lMl/PZweWviFdKiEcgR1fuVVtGVtOaxafWEuEbyjdjVrG67wL+3P4LWfLM145Vu0N39CbOJuPkTyQt/oicQF8Mnb5GYmxa4noasiroT5hFlvvLF2tywoNJ27uVpPlTSF7xCbnRERit+BqJ8as/1/618vIq7vEf9J9rzCxdupSNGzeyYsUK3N3dOXr0KNbW1or/L1y4kPnz5/P48WMcHR0ZNGgQsbGxb7xfxyl9ub79DJ4XHxLpGczpeTsxsjalUe9WatfpMK0fD49f4fHJ60T7hPKH0z6y0uW0/KArAHm5eaREJyo9GvdpzbOz98gsuBL8+OQ1zq0+RMA9T+KDo3E9c4vHJ6/TpG+bV8bcZmpfbu34De+Lj4j2DObPebswsjKlQQkxt53WjyfHr/D05HVivcM4v2w/2elyHApifsGqSU3aftSfswt/VLmdi58f4tHBSyQERb8yzjfV2bENn06fSM+uHd/6vl6wn96P58eu4P3zdRK8w7i1ZD/ZGXIajO6qsrzd1D6EXHXl6a6zJPqE8eibU8Q+C6DxpMJGqd+ZO4TddCM5KJoEr1DurT6CjrE+Zo1rAiA1M8SkTlWefPcH8R7BJPlH4rzhBNr6ukqNInU6TOnL1SI5fKoghxv3Vv9B3HFaf5yPX+HRyWtE+4Tyu9NestLltCqSDzatGnD3wAVCn/gSHxzF1R1nyEhKpZp9bQC8r7lyeuEP+Nx4SnxwFJ6XHnHzx7M06dtW7X4bzuiH35Er+J+4TpJXKM6L9pGdLqf2GNX122BaXyKuuPJ851mSvcN49tUpEp4GUG9Kb0WZjOhEpUe1vq2IuuVOakGOVuvVgrzsHB4u/Ylk33DinvjhvHgfNgPbYljLWuV+i7L7qB9eR6/g8/N1Er3DuL0k/9ipryYnmkztQ+hVV54V5MTjrwtyYrLyhQr9Kma0/2IC1+d8T2626p6s6t0dqNbVnvtrj74yTnWMxw8n+fQ5Un67QJZfELFfbCUvQ47R0D4qy2c4u5L2zy2y/IPIDgkn6eivZHr7IW1hpyiT8uclEn44TMa9R68dV1mNnz6aH77dz5Xz1/Fy92HpnM+xsrakRz/V78ML+vp6fPn9GlbNX09iQtJbi6/nlAH8uf0XXC4+IMQzkH3ztmNqbUaL3uqPh2dXH3Nm03EeX7ivtkxSdILSo3mvNjy/40ZMcNRrx1p75gCCD/9DyPFrpHiF8mzhHnLSM6kxppvK8okufniuOUL4mTvkyrNVlon6+xHRl11I848g1S8crw0nyE7NwLRV/deOs7heUwbwR5E63lNQxy1LqOOnVx/z66bjPCqhjuu2asjtX67x/K4bsSHRXDt2iWCPAGo3q/dG8faYMoCz23/hyUVnQj2D2DdvR0FOqP+cf3bV5ZU5MXThGJ5eecwvGw8T7BZAdFAkTy45kxz7+vmtO3Ak8stnybx6ntyQQNJ2b4bMDHTe669+JQ0NDD51Iv3n/eRGhb/076ybl8l++pDcqHByQwJIO/AdEn1DNGvWfe04hf+W/1RjJjk5ma1bt/LVV18xceJE6tatS6dOnZg2bZqizJw5cxg+fDiNGzdm586dmJiYsHev+isXpWFmI8PIygzfW26KZfLkdEJdfLFpqfoErKmtSVX72vjeeqZYlpeXh++tZ9RQs05V+1pUtavFoxNXS4xH10iP9ITUEsuY2sgwtDIl4Gbh/uXJ6YS5+FJdzf41tDWp0rQ2/jcLXyd5eQTcdKN6y8KTtZauDkO2fczfK34iNTqxxDj+izS0NbFsWpuwG8r1FHbDDauWqj/UrFrVI+zGM6VlIddcsWqluryGtiYNx3ZHnphKnHsgAPL4FBJ8wqg/ohNaelIkmho0HPce6dGJxDz1LzFmMxurghxWzoeQV+RwNTU5XHSd4Ide2A9sj56JARKJhKaDHNGSauN/V/0QgfwcTlH72s0cahNZtL7y8oi88QxLNV94LFrXUy4PhF91xVJN/UotjanWozl+xwp7bjV1tMnNzFa6spWTkX8F07JtQ7Wv5UXMFg4v50T4TTe177FMRU6EXi2WExIJXbbN5NnOsyR4harcjq6lMR2/nsb1T3eRk/6aV1y1tJA2bkD63SKNjrw80u8+QurQpFSb0G3bAu1aNch4+PT1YigHNWyrIbO25O71wi94KcmpuD5yo1nrpiWuu3zjQq5fusXd6y8P1SkvljZWmFqZ4XHLVbEsPTkNPxdv6rZsUG77MbY0oWn3ltw4cfm1tyHR1sTYoTaxN4q8n3l5xFx/ilnrcopVQ0LVoY5o6ktJcPYql03KCurY/S3Use/D5zTv2RpTa3MAGjnaUaV2NdxuqB4aWhqFOVFYz/nx+lCnZcnnnZJIJBIcurck0j+Mzw46scl5D0vPrKd5CQ2kV9LSQrNOQ7JdC4eUk5dHlutDtBqoP0/ojphAblICmf/8Vap9SHsOIjc1hZzAtz8kVagc/lP3zHh4eCCXy+nRo4faMo6Ojoq/tbS0aN26NR4e6r9UyeVy5HLl8fDZeTloSTQVzw1lpgCkFPvinhKdqPhfcfpmRmhqaZIao7xOanQSsrrVVK7TalQ3orxDCX6kfoiDTcv62A9sz+Ep36gtA2BglR9XaozyFZjUmCQM1AxJ0jczQkNLk7TiMcckYlG3quJ5z5XjCHnojffFd3e19d9E1zy/ntKL5UN6TCIm9aqqXEdPZkp6sfciIzoJ/WL5Y9OjOd2/n4OWng5pUQmc//BL5PGFX/rPjdlIzz2fMeH5j+Tl5pEek8SFcV+RmZhWYsyGBe+5qhw2KiEfNLU0SYl5eR3LIjl8fM42Ru34FKcnP5KTlU1WeiZHZ3xLXKDqe7PMba1pP7EP59ervodFp6B+M4rFmhGdhHE91ceOrsz0pfLy6ER0C46D4mp/0IWslAxC/ir84hp5043mn4+l4awBeO85j6a+FAen0QDoWavezgvSFzlRrK7SoxMxqVtCTkQXy4mYJPSK5ETTjweSm52L+17198h1/nYGzw9dJtbVH8MaliXGqY6mmQkSLU1yYpWHBuXExqNd20btehJDfWpePI5EW5u83Fxi128j427FnRcsZRYAxEQrD8eLjY7D0spc7Xr9hvaisUNDRvWZ/FbjM5GZAfm9KEUlRSdiouaz5HV0GN4NeWo6jy7ce+1t6Jgbo6GliVzFcWVYv/obxWfU2AbHs2vRkGqTk5rBo8mbSFHTWC8r47dYx0c+38vEDTPZfG832VnZ5OXmcWDpLrzuv/69HS9iKh5vcnTCG8VrZGmCrqEe/WYN5cym4/yy8Qh2XZsza9cCNo1Zjdc99zJvU2JkgkRTk9xE5eMrLzEezeo1Va6j2agp0vcGkLRwmsr/v6Dd0hGDuStBR0peQiwpa+eTl1yJL5aKCQDK1X+qMaOnp1fu29ywYQOrV69WWrZm2mIWbflc8fzIlK/Lfb/FaUm1aTqkA9e2nVFbxqpBDT78cR5Xt/6K7w3lq592QzvQd/0UxfOfJ5fc2Hld9Xq2xLZDk7d6Q///Z+G3Pfi1jxO65oY0/LA77+2cw++DPiejYFhAhy8mkhGbxJ/D1pKTkUXDMd3o9dN8fhuwkvSoBMV2mg3pyOD1UxXPD0356q3F3GPeSHSN9dn34TrS4pNp3Ls1o777lD0j1xD5XPmmayNrMyYeWMyzv+7hfPzKW4vpVWqP6UrQ6VvkyrMUy5K8Qrn3vx9o/vlYHJaNIi8nF++9F0iPSiCvAj6YLJrWosnUPvzed7naMo2n9EbbUBfX7a9/g/ebyEtNJ/SDmWjo66HbrgXm82eSHRJOhrPrq1cuBwOG9+Hzr5cons8aO6/M26hSzYolX8zjow8+IfMN7iVQpd2QzoxfP13xfNuUDeW6fXU6fvAed8/cILtIfv+bpPiEcfO9xWgZ61N1UDscts3m3vurX6tB035IZyYUqeMtb7GOe0zsT93m9dk6dQOxoTE0aNuYcWumkRAZh/ut0vVIthvSiXHrZyieb39L8UokEgBcLjpzaW/+BCfB7gHUbdmQrmN7vVZjpsx09TD4ZBmpu75+ZcMky+0xSQunITEyQdpzAAbzPid56SzykhLefpzCv95/qjFTv3599PT0uHz5stLQsqLu3r1Lly5dAMjOzubhw4fMmTNH7TaXLl3KvHnKH4Cb23/Kzv7LFM81dfKr0VBmQkqRqyeGMhPCC4YAFZcWn0xOdg4GlspXvQ1kxiSrGJpl178d2rpSXE7fULk9Wb3qTDqyDOdj/3Btx5mX/u998RFhRWaYeRGzgaUxqUW+5BpYGhPprnqWo7T4ZHKzc9AvHrOlieKKfq0OTTCztWLe091KZYbt+h/B959zdPQ6ldv+L8mIy6+n4jfd61makB6l+oSdHp2AXrGbZnVlxqQVuxqXnS4nOSCS5IBIoh/5MuLGNzQY3RXX7/6gakc7bHq24LDdDLJS0gG47fQT1brYU39kZ1y/+0OxHY9LDwl28VE813qDHDYslg9Ft2Fe0wrHSX3Y1mshUd75X0QiPIKo1aYR7Sb04nenfYr1jKxMmXpsOUEPvfltqfqbbDML6le3WP3qyozJUFO/GdEJL5WXykzIKJL7L1i2a4hxvWrcmbH9pf8F/XqboF9vI7U0JidNTl4eNJjRn5TAku87kL/IiWJ1pSczeakH74X06AT0ZMVywtKY9IK6tW7XED1LYz64XzjjoYaWJm1WjqXJtL6caj+Xqh2bIGtVnwn+PyltZ9Bfa/H79TY3PvuhxLhfyIlPJC87B00LM6XlmhZm5MSUMKlAXh7ZwWEAZD73Rad2TUymjnlnjZkr52/w9GHh0D7tghumLWXmxEQV3itpITPHU81N/U2aNcJSZs7JiwcUy7S0tGjt2IIxU0bQwqYzua/ZmHW59AB/l8L9vjgOjWWmJBY5Do1lJgS7B7zWPoqr36YxVetW54c5m99oO5lxSeRm5yBVcVzJVRxXZZGXlUNawayaSa7+mDSvS62P+vFsYdkninC59AC/UtZx0BvUsbZUh+ELx7Bjxte4XsnvfQzxDKRmk1r0mT641I0Zl0vO+BU5N2uriddIZvpGOZESn0x2Vjbh3soXlCJ8Q6jXutFrbTMvOZG8nBw0TMwpeveexMSM3ISXJyfRrFIdTauqGC4p0mAraGSZHr9M0v/GkxuZf/5AnkFuRChEhJLm7Y7xtsNI3+tPxpnXvw+wQomemXL1n2rM6OrqsnjxYhYtWoSOjg4dO3YkOjoaNzc3xdCz7777jvr169O4cWO+/fZb4uPjmTJlitptSqVSpFKp0rLctKyXhsgkR8VTp4MdEQVf/KSGelRvXpf7hy+hSk5WDuHP/KnTwQ7PgimLJRIJdTrYc//gy9M4thzVleeXHpEWl/zS/2T1qzP5qBMuv9zg8jcnVe4vMzWDzNQMpWUpUQnU6mhHVEHjRcdQj2rN6/LosOpx1LlZOUQ89adWR7vCaZYlEmw72vHwwEUA7uz8A5fjV5XW++jiRi6vOYz35ccqt/tfk5uVP21y1U52BF4orKdqnexw/+miynWiHvpQrZMdbkWGC1XvbE/UQx+V5V+QSCSK2ee09PJnYyreS5CXm6e4CvdCZmoGccXyITkqnrrFcrjGK3I4rCCHPf52VsRTp4Md9wpyWFtPqoihqNzcXCSSwlv2jKzNmHpsOWHP/Dm9cBd5Jcy4kpuVQ7yrP9ad7Ag9X1i/1p3s8d6vegrUWGcfrDrZ4fXjecWyKl3siVFRv3XGdCPuiR8Jahr1APKCIYG1R3clV55J5PVnasu+iDnWNT8ngorkRNVOdnjsV50T0Q99qNrJTmma5epdCnPC95dbyvfgAL2PLML3l1t4/3wdgHsrDvHoq8IpefWtTelzbAlXZ+1QmtL7lbKzkXt4oduuBWlXbivi12vXgqTjv5V+OxoSJNrqZ2Aqb2mpaQSlKg+xjI6MoV3nNorGi4GhAQ4t7Thx4LTKbdy97syQrmOUlq3bsgI/n0D27jj42g0ZAHlqBlGpytPrJkTF07hDU8UXVV1DPeo0r8/Vw28+vS9Ap1HvEeDqS4iH6osUpZWXlUOSqz8Wne2JPJd//CORYNHZnsB9pftpgFLTkKCh83p5k5GaQYaKOm6ioo6vvEEda2proqWj/dK5q/i57lXkqRlEq4i3UQf7YvHW49rh16/nnKxsAlx9sa6jPCTQunY1YkNfc1rm7Gxy/J6j1bQlWQ9u5i+TSNBu2oqM87++HENoEInzlIdu6o2eikRPj7T9O8iNLeEikUQC2q+egVD4/+E/1ZgBWLFiBVpaWqxcuZKwsDCqVq3KzJmFU6du3LiRjRs34uLiQr169fj999+xtHy9ceRF3dl3nq6fDCU2IIL44Gh6zB9BcmSCoqECMOnIUtwvOHP/YP6Xl9t7zvH+phmEPfUnxMUXx6l90dGX8uik8nTR5rbW2LZtxOHJLw9ns2pQg0lHl+Fz/Sm39/6luPchNydXZcOnqAd7z9Phk6HE+UeSGBxFl/kjSI5KwKtIzGOOLsXrgrOisXJ/zzkGbppBhKs/YU98aTOlL9r6UlwLYk6NTlR5039iWCyJwYUzl5nZWqNtIMVAZoKWrg5WTfLH08Z4l8+46KLS0tIJCglTPA8Ni8TTyxcTYyOqVrEq9/0BPNt9ji7fziDmiT/RLr7YT+uLlp4UrxP59dRlywzSIuJx3vgzAG57LzDglBP20/sRfNmFOkMcsXSow63F+T0XWnpSmn06hKCLD0mPTEBqbkSTib3Qr2KG/5/5496jHnqTmZhKly0zcPn2DNkZmTQc2x0jGxnBl11eGfPtfefp9sn7RXJ4JMmRCYqGCsDkI8twv+CsaKzc2vMXwzfNJOypHyEuvnSY2g8dfV0eFuRDtG8YMf4RDFk/lXPrj5JeMMysbid7xX1dRtZmTD2+gsTQGM6tO6I0rXPxe3heeP7DOdptnUHcE39iXXxp+FFftPSl+B/P32+7bTNJi4jn6foTAHjtOc97p5fTcEZ/wi4/puYQR8ya1cF5ofLkH1qGetgMaovLatVX++pN7kWsszdZqRlU6dKUZivH4LruBFlJJd+TBOD24zk6fTuDWFd/oh/7YvdRfk54F+RE560zSAuP52FBTrjvvUC/U07YzehHyCUXag9xxMKhDrcW5eeEPD5F6X4pgNzsHNKjE0jyzZ8RKDVMeabG7IIGbHJgJGklTOOsStKhX7Bcu4hMNy/kz55jPO59JHq6JJ/J/0Jl+cUicqJiiN+WH5/JlNHI3b3IDg5DoqODXue2GA7oScy6bYptahgboVXVCs2Ce1m0a+XPupcTE/fS/Tnl5dDu48yYO5kg/2BCgsL4ZPEMoiJjuHyu8Ly799QOLv91laP7TpGWmoaPp/JvAaWlpZMYn/jS8vJwad9ZBnwynMiAcGKCoxg6fzQJkfE8/rtw0oL5R1bx6MI9rhzMb5xL9XWxqlVF8X+ZjTU2TWqRmpCi9HshuoZ6tO7vyM/rDpZLrP67zuKwbRaJLn4kPPah9vT+aOlLCSk4Dh22z0YeEcfzdceB/EkDDBvkv8caOproVjHHyM6WnNQMRU9MQ6fRRF12ISM0Fi1DXaoN64hFhyY8GFV+w60u7jvLwII6jg6O4v2COn5UpI4XFNTxP2rq2LJYHWekpON5142RS8eTmZFJbEg0Dds3ocOwrhz/4sBLMZTF5YKciAqIICY4iiHzRxXkROE9ffOOrOTxhftqc8LSxuqlnPh79+9M3z4X7/vueN5xw75rcxx6tOKb0Z+/dqwZf57E4OOl5Pg+J9vHA90BI0CqS+aV/N8T0p+zlNy4GDKO/ghZmeQGK09Ok5eWf05TLJfqojtsHFnOt8mLj0VibIK0z1A0zGVk3rn62nFWuDzRM1Oe/nONGQ0NDZycnHByUr5nIyAgAIDGjRtz797r3/Sozs1df6KjJ2XwhqnoGusT9MCLQxO/VBqTbGZrjUGR3wR59udd9M2NeG/uiIIfHAzk0MQvX7opv+UHXUkKj8P3+svd1Hb922JoaULzYZ1oPqyTYnl8SDTfdvqsxJjv7voTbX0p/TZMQddYn2BnL36e8BU5RWI2rWmFnllhzB5/3kPfwpjO84ZjIDMhyj2Qnyd8RVpM2aZy7PflNGwdGyueTz23HoDvO5Yc8+t45unNlE8WK55/tT1/CNyQfj1Zt3x+ue8PwP+Pe+haGNNqwXD0ZCbEugdyYfxXZBTUk2F1S6XeiqiH3lyZ8z2tFo2k9eIPSPKP4NK0b4l/HgLk97aY1qtK/ZH/Q9fMiIz4FGKe+HF2+BeKWazk8SlcGPcVrRaNpN/PS9HQ0iLBK4RLUzcT5/HqH0i8sesPdPSkDNkwTZHDByZuVMphcxU5bGBuTI+5IzCUmRLuEciBiRsVOZybncOhyV/Re/Foxu9ZgI6BlNjASE7P34XXVRcA6nVuimXtKljWrsLie98pxbS81ocqYw3+/S5SCyPsF43I/9FMt0CuffilosdEv7qFUv3GOntzZ/Z3NF08kqZLPyDFP4JbkzeTWFC/L9Qc2h4kEoJ+va1yvxYt6mK/YDhaBrok+4ThvGgfgaduvrJuAfx/v4euuTEtCnIizi2Qv8cV5oRBtWI54ezNtTnf03LRSFoV5MQ/U78loVjM70rqhWtomJliNnsimpZmyJ/7Ejl7GblxCQBoVbGCIvFr6OliuexTNK0tyZPLyfIPJtppI6kXChsN+t0cka1dqHhu9VX+/T/xOw+SsOvQW3kde3ccQk9fj8+/WYqRsSGP7j9hxuj/Kd0PY2NbHVM1v5/ztp3fdQapnpQJG2agb2yA9wNPtkz8Quk4lNlaY2Re2Oiv5VCXhccL7+0ctWISALdOXWH/gsJjqu2gjiCRcP/30uXsq4T/dgcdC2MaLBqJjpUpyW6B3B+zkcyCixB61S2VckK3ijmd//lS8bzOx4Oo8/EgYm+5c2/YGgB0LE1otv1jpNamZCenkewexINRG4hR8fn3us4V1PHEInW8uVgdW6mo48VF6nhMQR3fPHWFfQV1vOuTbxmx6EOmb/kUA1NDYkNjOP31sTfuVTu/6zd09HQZv2EG+sb6eD/wZOvEdS/lhGGRc7OtQx2VOXH71FVFTjy+cJ/DTrvpN/t9Rn8+hUi/MHbO+gYf51f/wKU6WbevkG5siu6oyfk/mhngQ8q6ReQl5l+c0LC0LttvneTmolm9JtJufZAYmZCXnES2ryfJKz8hNyTgteMU/lskeSWN5/gPCQgIoHbt2jx+/JjmzZu/0bZW1hpbPkG9I3p5klcX+hdZ8HBNRYdQZgebr6zoEMrEX6tyXRVqKq9cOZymUbniBehmqXp2uX+rgRFv77de3gZHPfWzvv1bDUuvXNc7T+mp/u2afytNKtd54qs2b/934cqb2cmrFR2CSumHK26SJL1x/717lyvXmUoQBEEQBEEQKjMxAUC5+n/TmKlVq1aJNxULgiAIgiAIglC5/L9pzAiCIAiCIAhChRMX18tV6ecLFARBEARBEARB+BcRjRlBEARBEARBEColMcxMEARBEARBEN4VMQFAuRI9M4IgCIIgCIIgVEqiZ0YQBEEQBEEQ3hXRM1OuRM+MIAiCIAiCIAiVkuiZEQRBEARBEIR3JU/0zJQn0TMjCIIgCIIgCEKlJBozgiAIgiAIgiBUSmKYmSAIgiAIgiC8I3m5eRUdwn+K6JkRBEEQBEEQBKFSEj0zgiAIgiAIgvCuiKmZy5XomREEQRAEQRAEoVISPTOv4UOd+IoOoUwOZ5pWdAhlcrD5yooOocwmuKyp6BDK5KLdsooOoUxMJNkVHUKZnNKufKfWyATrig6hTJZqVq54a2dkVHQIZXZKr6IjKJvBGToVHUKZpGhUruvJKx5UrmMOYEdFByC8E5XvE1cQBEEQBEEQKivxOzPlqnJdFhAEQRAEQRAEQSggemYEQRAEQRAE4V0RUzOXK9EzIwiCIAiCIAhCpSR6ZgRBEARBEAThXRFTM5cr0TMjCIIgCIIgCEKlJBozgiAIgiAIgiBUSmKYmSAIgiAIgiC8K2KYWbkSPTOCIAiCIAiCIFRKomdGEARBEARBEN6VPDE1c3kSPTOCIAiCIAiCIFRKojEjCIIgCIIgCEKlJIaZCYIgCIIgCMK7IiYAKFeiZ0YQBEEQBEEQhEqp0vTMTJo0iYSEBM6cOVPRoQiCIAiCIAjC68kVEwCUpzL1zHTr1o3PPvvsLYWSLyAgAIlEgouLy1vdjyAIgiAIgiAIlVu59szk5eWRk5ODllal6fB5a0zHDsRi6nA0ZWbIPf2JXLuTDFcvlWVNPuiDydAeSOvbApDh5kP05gNK5Rt5/aVy3agv9xK395fXjrPH3BG0HtMdXWMDgpy9+H35PmIDIkpcp934XnSaMRBDmQkRHkH8ueoAoU98ATCtYcmCm9tUrnds9lbc/roHQJ0OdvScPxLrhjZkpst5/Mt1Ln39M7k56seRNp7Yk6YzB6AnMyHOI4g7Kw4S4+KntnytAW1ptXAEhjUsSQqI5MH644T880Tx/xbzhlFncHsMqpmTm5lDzFN/Hn51kujHvooyxrWr0Hb5GKzbNEBDW4s4jyAefXOK8NseJdbRm3B2ecr+o6dw9/QhOjaOrRtW0KNLh7e2v5LYTu5N7dmDkFqZkOwehNuy/SQWqZ+iDBvWoMGikRg71EG/pgz3FQcI2H1OqUzNib2oOaknejYyAFKeh+Cz6TTR/7iUS7xVJvel+uzB6MhMSXUPxM9pLymPfVSW1WtYg5oLR2PYrA66Nlb4rdhP+I9nlQtpaFBzwQfIRnRGW2ZKZmQ8USeuEvLtqXKJF6Dv3JE4jnkPXWMDApyfc3L5XmJKOAbrtG3Ee9MHUaNpbUyszdk7/Rue/e1cGLKWJv0XjKJxt+ZY1LQiIzkNr5vP+PPLYyRFxZc5vs7zhtNsTHekxvqEOntxwWk/8QGRJa7TckJP2k0fgIHMhCiPIC6uOkj4k8Jjtc/6KdTqZIehtRlZqRmEPvTmysbjxPmGK8rYdrSj8/zhyBrakJUm59kvN7j29UnySjhHNJjUkyaz8s8R8e5BPFh+kNgSzhE1B7al2aKCc4R/JI/XHSesyDkCwLheNVouH41V+0ZoaGmQ6BXGtY+2khYaC0C9sd2p/X4HzJrWQsdIjxONppOVlFZi/ZSkvHNY00CXmotHY96/HdoWxqQ+C8B/xT5SXFQfx6/r357HJak9uRf1Zw9EKjMh0T0IV6cDJKg5zxk1rE7jhSMxbVYbfRsZT1ccxPfH8+UWS3nnsOO306k7qovSOmFXXPln7FeK5+ZNa9HCaRQWzeqQl5NL0F8PePj5EbLT5K/9OgbMHUmHMT3QMzbAz/k5J5bvIbqEfKjbtjE9pw+iZkE+7J7+Na5F8qG40eum0WlsL06tOcDVfaq/H/2r5Yl7ZspTqXtmJk2axLVr19i6dSsSiQSJRMJPP/2ERCLh3LlztGrVCqlUys2bN8nNzWXDhg3Url0bPT09mjVrxqlThR/+8fHxjB07FplMhp6eHvXr12f//v0A1K5dG4AWLVogkUjo1q2bUhyrV69GJpNhbGzMzJkzyczMVPyvW7duzJkzhzlz5mBiYoKlpSUrVqwgr8h83t9//z3169dHV1cXa2trRowY8VoVVxKj/l2wWvoRMTuOEjD0E+SeftjsXYumuYnK8vptHUj68xpBE5YSOGo+WeEx2Oz7Ai1rC0UZ7w5jlR7hS74lLzeX5L9vvXacnWcOov3kPvzmtI9dQ1eQmZ7BxINL0JJqq13HfmB7+i0fx5Wtp/l+gBMR7kFMOrgEAwtjABLDYtnYZpbS4/Lmk8hT0vG+6gJAlcY1mbB/Ed7XnvDdgGWcmLONRj1b0XvxaLX7rT2oHe1WjuXxt7/yW7/lxLkH0ffwYnQL9lucVav6dP/uY7yOX+NM3+UEnn9Izz1zMWtYQ1Em0S+cO8sP8GvPpfw5bA0pITH0PbIYXXMjRZneB+ajoaXJX6PW81v//P32+mk+ejLV72V5SE/PoGG9OjjNn/3W9lEaVYc40mj1eHw2neJWr6UkuQXS9vhSdCxV17mmng5pgVE8X3eUjEjVXzYywmN5/sUxbvVaxu3eTsTedKPVgQUYFnlfXpflkA7U/nwiwZtO4tJ7EaluAdgdW4622nilyIMiCfziCJlq4q0xZyhVJvbGb9leHnf5jMAvDlPj4yFUndr/jeMFeG/mYLpM7stJpz1sGbocebqcmQeXlngM6ujrEuoRyC8r96v+v54ONexqcXH7aTYNXMr+mZuxqluNaXsWlDm+djMH0mpSby4s28fBIavISpMz6tBiNEuIr9HAdry3fCw3t/7K/oHLifIIYtShxegXOVYjnvrz14Ld7OmxiBMTvgKJhFGHFiPRkABg1bgmI/cvwP+qK/v7L+e3OTuo16sl3ZaMUrtf28HtaLVqLK6bf+WvPsuJdw/ivaOLkao5R1i2rk+n7z/G99g1zvZeTsj5h3TdNxeTIrloaGtFnzMrSPQJ4+KIdfzZYxlPt5whJyNLUUZLT4ewq664bf+91PWqztvI4XqbZ2HatRnec7bh0n0+CdeeYPfzSnSqmL9xvC/82/O4JNWHtMf+83F4bjrN1d5OJLkF0eHYkhLOc1JSg6Jw++K42vPc63obOQwQ+s8TTjX7WPG4OXuH4n961qb0OL6EZP9Izg/8nH/Gfo1Jwxo4bpnx2q+j58zBdJ3cj+NOe/hmqBOZ6Rl8fHBZifkg1ZcS6hHIiZX7Xrl9hz5tqNWiPgkRca8do/DfUurGzNatW3F0dOSjjz4iPDyc8PBwbGxsAFiyZAkbN27Ew8MDBwcHNmzYwMGDB9m1axdubm7MnTuXcePGce3aNQBWrFiBu7s7586dw8PDg507d2JpaQnA/fv3Abh06RLh4eGcPn1aEcPly5fx8PDg6tWrHDt2jNOnT7N69WqlOA8cOICWlhb3799n69atbN68mT179gDg7OzMp59+ypo1a3j+/Dnnz5+nSxflKxblwXzy+yT+fJ7E0xfJ9A0mYuUOcjPkmIzorbJ8+IKvSTh6FrmHH5l+IUQ4bQUNDfQdmynK5MTEKz0Me7Yn7Z4rWcEl96KUpMOUvlzdfgbPiw+J9Azm1LydGFmb0rh3a7XrdJzWH+fjV3h08hrRPqH87rSXrHQ5rT7oCkBebh4p0YlKj8Z92vDs7F0yC67yNB3oSIRnEFe2/UpcYCQB9zy5sOEY7Sb0RsdAV+V+7af34/mxK3j/fJ0E7zBuLdlPdoacBqO7qixvN7UPIVddebrrLIk+YTz65hSxzwJoPKmXoozfmTuE3XQjOSiaBK9Q7q0+go6xPmaNawIgNTPEpE5Vnnz3B/EewST5R+K84QTa+rpKjaLy1tmxDZ9On0jPrh3f2j5Ko/bMAQQf/oeQ49dI8Qrl2cI95KRnUmNMN5XlE1388FxzhPAzd8iVZ6ssE/X3I6Ivu5DmH0GqXzheG06QnZqBaav6bxxvtRmDiDxyiajjV0j3CsF30W5y0uVYjX5PZfkUF18C1hwi5rdb5GZmqSxj1KYhcRceEH/pEfLgaGL/vEv81ScYtqj3xvECdJ3Sj7+3/8qziw8J9wzi6LzvMLY2o2kJx6DnVRfObfqZpxceqPx/RnI6u8avx+XsXaL9wgl87MMvK/dh41AX02oWKtdRp83Uvtze8RveFx8R7RnMn/N2YWhlSoPerdSu03ZaP54cv8LTk9eJ9Q7j/LL9ZKXLcfig8Fh9cuwKwfefkxgSQ+SzAK5/cxKT6paY1MjvsWs0sD3RnsHc2naGhMBIgu95cnX9cVpO6KX2HNF4ej98jl7B78R1Er3DuLd4PznpcuqNUX2OaDStD2FXXHHfeZYknzCefH2KuKcBNJxceI5ovmQkof884fEXx4l/FkhKYBQhfz9CHpukKOO55wJuO/4g5qHq3pOyKO8c1tDVwWJAewLWHiLprgcZAREEf/MzGf4RVJmo+vPodfzb87gkdWf0J/DIFYKOXyPZKxSXRXvJSZdjq+azJcHFD7c1Rwn97Q65marPc6/rbeQwQG5mFhnRiYpHZmJhz2H1ni3Izc7h/rIDJPmGE/vEj/uL92E7sC2Gtaxf63V0n9KfC9tP8/SiM2GeQRyc9x0m1mY0691G7TruV134c9MJXNXkwwsm1maM/HwyP/1vOznZ5Vv/QuVV6saMiYkJOjo66OvrU6VKFapUqYKmpiYAa9asoVevXtStWxcDAwPWr1/Pvn376NOnD3Xq1GHSpEmMGzeOH374AYCgoCBatGhB69atqVWrFj179mTQoEEAyGT5H2YWFhZUqVIFc/PCq0c6Ojrs27cPOzs7BgwYwJo1a9i2bRu5Raa4s7Gx4dtvv6Vhw4aMHTuWTz75hG+//VaxXwMDAwYOHIitrS0tWrTg008/fcMqLEZbC127eqTedilclpdH2m0X9Jo3KtUmNPSkSLQ0yUlIUfl/TQtTDLu2IfHk368dppmNFUZWZvjeeqZYJk9OJ8TFF5uWqr9YamprUs2+ttI6eXl5+N56pnadava1qWZXC+cTVwu3o6NFtlz5gzc7IxNtXR2qN6390jY0tDWxbFqbsBtuhQvz8gi74YZVS9VfKq1a1SPsxjOlZSHXXLFqpbq8hrYmDcd2R56YSpx7IADy+BQSfMKoP6ITWnpSJJoaNBz3HunRicQ89Ve5nf8KibYmxg61ib3xtHBhXh4x159i1rpB+exEQ0LVoY5o6ktJcFY9BLO0JNpaGDrUIeG6a+HCvDwSbzzFqHXD195u8oPnmHRuim6dqgDoN7HFuF0jEv55/EbxAljYWGFsZYbXrcI6zkhOJ9DFh1oty6mOC+gZ6ZObm0t6GYY/mdjIMLQyJeCm8jkizMWX6mqOdw1tTao0rU3ATeVjNeCmG9XVHKvaelIcRnYhISiKpPD8oVta0pfPEVkF54gqas4R5g61CS92jgi/4YalmmNe1qoeEcXOEeHXXJG9KC+RUL1Hc5L9Injv6CJGuH5H3z8/p0Zf9Q25N/E2cliiqYFES5PcDOW6zM3IxLhd4zcJV+HfnsclkWhrYupQm+jrRfIgL4/oG88wb/3mF1jK4q3kcAFrx8aMcP2OwTe+pu2GSeiYGSr+pynVIjcrW+kX6bML8sWqbdnfPwsbK0yszPAslg8BLj7UUnPeKC2JRMKEb+dwefcfRHiHvNG2KlxuXsU9XsN3331HrVq10NXVpV27doqOB3USEhL4+OOPqVq1KlKplAYNGvDXX29vOGC53NzSunXh1RcfHx/S0tLo1Uv5ykBmZiYtWrQAYNasWQwfPpxHjx7Ru3dvhg4dSocOr74noFmzZujr6yueOzo6kpKSQnBwMLa2+febtG/fHolEolRm06ZN5OTk0KtXL2xtbalTpw59+/alb9++vP/++0rbLE4ulyOXK48bzczNQUdDU2V5LTNjJFqaZMcodz9nxySgX8fmla8RQLZgMtlRcaTdVv2FyeT9nuSmpr/REDPDgmFSKdGJSstTohMxUjOESt/MCE0tTVJiXl7Hsm41leu0GtWNKO8Qgh95K5b5XHelw5R+OAx25OmfdzGUmdL90/cBMLIyJbnYNnTNjdDQ0iS9WKzpMYmY1Kuqcr96MlPSY5KUlmVEJ6EvM1VaZtOjOd2/n4OWng5pUQmc//BL5PGFjchzYzbSc89nTHj+I3m5eaTHJHFh3FdKV7b+i3TMjdHQ0kRerM7l0YkY1q/+Rts2amyD49m1aEi1yUnN4NHkTaR4hb7RNrXNjZBoaZJVLN7M6ARM6r1+vCHbf0XTSI+WN7eSl5OLRFODwA3HiD59443iBTAqyEXVx6DpG2//BS2pNgOXfMjj328jT0kv9XqGVvkxpBY7jlJjkjAo4RyhoaVJarFzRGpMIhZ1lY/VFuN70n3paHQMdIn1CeP42I3kZuUA4HfNldZT+tJ4sCOef97FQGZKp//lnyMMCuIqSlpwjsgoVpcZJZwjdGWmZKg4R+gWbF/X0hhtQz3s5gzE5ctTPF53nGrdm/0fe3cdHcX1NnD8G924KxqCE9wdWiwULU4pUNxL8UKw0iKlP1ootNAWaKE4FCvurgmEhCQQd3f3vH9k2WST3ZBAAqTv/Zyz52Q3d2aeuXvnzs5cGbrtnMvlYeuIfPBC4XrfVEWU4ZyUdBIfv6T6/GGkeQWTGZWA+aed0G9dj3S/N2/VL+xDL8clUVZuMqIS0Kuj+JxWUSqiDAOE3nAh6LwjyYGR6NlY0vzrEXy8bxEXB6wmLzeP8DvutFo1hkYz+vFi5wXUdSS0WJbfnVNbwbH2OgbS7zypyH4kRSXI/vemes0YRG52Djf+PP/6xEK5OXz4MPPnz2fHjh20a9eOzZs306dPH16+fImFhUWx9JmZmfTq1QsLCwuOHTtG1apVCQgIwMjIqMJiLJeLGV1dXdnfycn5PwTPnj1L1aryFbBEIgGgb9++BAQEcO7cOS5fvkyPHj2YNWsW//vf/8ojHKX09fV58uQJN27c4NKlS6xcuZLVq1fz+PFjpZm8fv36Yl3ZZpnUYbZpxdy1MZk6HIN+3Qgcu4Q8JV1fDIf1IvHf60r/r0izQZ0YuG6S7P3fEzeWkLp8qEs0aDqoIzd+PiH3ufdtVy6sO8DA7yYx9MeZ5GRmcWPrCWzaNST3HU9XGHbPgxN9HNAy0aP+Zx/x8fbZnB6wmnRpN5KO340nPSaRM0O+JSc9i/qju9PrrwWc6reStMj4dxrrf0Wydyh3Pl6CuoEO1gPa0fTnmTz89Ju3vqCpCGYDO2I+pAueM7aQ+jII3cY21FozgcyIWKKO3CzTuloO6sSIdVNk7/+Y+H15h1uMqroa47fNRUVFhaPLd5WYttHgjtivmyh7f3RCxdbH7ifv4n/bFT0LI9pO7cfgX+fw99A15GRk4X/7OdfXHaTP2gkM+Gk62ZlZ3Pv5FNXbNSDvHT1s7tX4naCLT3ghHeAd5xaIeeu61BvXo9wvZiqK1+yfqbN5Jm2e/UFedg7Jrr5EnbiLXlPbN1rfh16OBXkBpx7I/o5/EUy8eyCDH/yEZcdGhN9xI8EzhHtf/UarVWNovnQEeTm5vNx9ibTIeLnxxsq0HtSZ0YXKw/aJGypkP6o3rkX3CX35vt/XFbL+d+1d1WPl4ccff2TKlClMmDABgB07dnD27Fl2797N118X/z52795NbGws9+7dQ0Mjf5yUjY1NhcZYposZTU1NcnJySkzTqFEjJBIJgYGBdOumuJ8n5HcnGz9+POPHj6dLly4sWrSI//3vf2hqagIo3M6zZ89IS0tDW1sbgAcPHqCnpycbuwPw8OFDuWUePHhA3bp1ZV3i1NXV6dmzJz179mTVqlUYGRlx7do1hgwZojDOpUuXMn/+fLnP/FsOV7pf2XGJ5GXnoG5mLPe5upkR2VElD1YzmTgE06nDCfrCgYyX/grTaLe2Q2JbndCvylZheFxxIsi5oE+3umb+V69nbkhyVLzscz1zQ8Kk3ayKSo1LIic7Bz0z+buyRdfxSuNP2qGhJeGpgrvY93ad496uc+hbGJGWkIJxNXN6LxlNXGAkmkXSpscmkZudU2zQvbaZIWmRCSiSFhWPdpEBnFrmBqQWiTM7LYMk/wiS/COIeuLDsNv/o96obrj88i/Wneyo3rMF++ymkSW9E3jP4S+qdG1M3eFdcPnlX4Xb/i/IjE0kNzsHSZE8l5gbkvGWF3F5WTmkSmfDSnTxw7B5bWym9OX5op1vvM6s2CTysnPQKBKvprkRmW8Rr83KsQRvO0n0qfxW0NQXgUiqmVNtzpAyX8y4XXHif3LHYH4lr2duSGKRYzBUyTFYFqrqaoz/ZS7G1cz5dfS3r72b7X35CbsLzeD0qo7QNTMgpVAe6poZEOkeqHAdqXH5x6pukTpC18yQlKJ3v5PSyEhKI84/gpCn3nzl8hv1+rTG4/R9AB7vPM/jnefRszAiPSEFw+rmdP96JPGBUcW2myGtI7SKfP9aZobFWnRfSY+KR0tBHZEu3deM2CRys7JJKHKRneAVgnnbN++6qExFleH0gAief7oKVR0JanraZEXGU/+3eaQHljwjnTIfejkuC2XlpjzqufKK5W3KsCLJgVGkxySib2NJuLQ7qP+J+/ifuI+WmQHZqRnk5UGDqX1JDoh8bdyuVxzxdy7oefGqPOgXKQ/65oYEu/u/dn3K1G7bED1TA9bc+0X2mZq6GkMcxvLRxL6s6jznjdctKJeZmYmTkxNLly6VfaaqqkrPnj25f/++wmVOnz5Nhw4dmDVrFqdOncLc3JzPPvuMJUuWyH6Ll7cyPWfGxsaGhw8f4u/vT3R0tNxYlVf09fVZuHAh8+bNY8+ePfj4+PDkyRO2bt3Knj17AFi5ciWnTp3C29sbNzc3zpw5Q8OG+f13LSws0NbW5sKFC0RERJCQUHAQZ2ZmMmnSJNzd3Tl37hyrVq1i9uzZqKoW7EZgYCDz58/n5cuXHDx4kK1btzJ37lwAzpw5w88//4yzszMBAQHs3buX3Nxc6tdXfmKSSCQYGBjIvZR1MQMgK5t0N290Cw3eR0UFnQ7NSXNWfifPZPIwTGeNJmjSCtKfeylNZzSsN2muXmS8KNuYjcyUdGIDImSvSK8QkiLjqN3RrmBf9bSp1ry2XJewwnKycgh97odtoWVUVFSw7WincJlWI7vz4ooTqbFFO44VSIqMJzsji6YDOxIfEk3o8+L7lZuVP22ydeeC7aKiQpXOdkQ+UTzoNtLJmyqF0wNVuzQm8jWDdFVUVGQzNalr519WFb2DkpebJ9eV8b8oLyuHRBc/TLs0LvhQRQXTLo2Je8vxLcWoqqCqqXyWm9LIy8om2cUXwy5NCj5UUcGwcxOSHF++eWjaEij6/efkyu7al0VGSjrRARGyV7hXMImRcdTrWJDHEj1tajavg/+Tt8vjVz8AzW2s2T7mO1KVjL8rLDMlnfiACNkr2iuE5Mh4bDoVHEeaetpUaV6bECV1RG5WDuGufnLLoKJCzU52hCg5VvOT5M+Q+eoCqrBkaR3RaGAHEkKiiVBSR8S6+GFVpI6w6myndGB+lJM3Vl3k6wjrro2JkqbPzcoh5pkvBkW6x+nbWpMSHK10X95URZXhV3JTM8iKjEfNUBej7s2JvVDyQGtlPvRyXBZ5WTnEu/hh3kW+3Jh3tiPWUfl5uCJURBlWRMfaBImxnsKeBenRiWSnZmAzqB25GZmE3XpefAVFKCoPCZFx1O9YUI619LSxaV4HfyX1Rmk8Pn6L9faL2fDJEtkrPjyWK7+f5pdx6954vf8fZWRkkJiYKPcqOpzilejoaHJycrC0lJ8MwtLSkvBwxV1VfX19OXbsGDk5OZw7d44VK1awadMmvvvuu3Lfl1fK1DKzcOFCxo8fT6NGjUhLS5NNp1zUt99+i7m5OevXr8fX1xcjIyNatmzJsmXLgPwWnqVLl+Lv74+2tjZdunTh0KFD+QGpq/Pzzz+zZs0aVq5cSZcuXbhx4wYAPXr0oG7dunTt2pWMjAxGjx7N6tWr5bY9btw40tLSaNu2LWpqasydO5epU6cCYGRkxPHjx1m9ejXp6enUrVuXgwcPYmcnXxm8rdg/T2D9/XzSnnuR7uKJ8fhBqGpLSPjnMgDWGxeQHRFD1Ka/ADCZMgyzuWMJm7+RrJBI1KStOrmpaeSlpsvWq6qrjb59FyI3vPkd7MLu7b5A9zmfEuMfTlxQFD0WDCcpIh6PQnO7T9i/DPeLjjzcmz/ZwN2d5xi6aTqhrr4EO/vQcVJfNHW0cDoqf5fapKYlNds24O8JiruzdZ7aH6+bz8jLzaWRfVu6zBjI4dk/k5ebBxT/ofj89/N0/Wka0c/8iHL2ofFke9S1JXgezt9u183TSA2Pw3HDEQDcdl2k3zEHGk/tS9BVZ2wHdcCsqS13l+RP+6iuLaHZl4MIvOxEWkQ8EhN9Go3vhY6VMX5n8lv3Ip28yExIoevmaTj/dJLs9Ezqj/kI/ermBF11fqu8L0lqahqBwaGy9yGhEbzw9MHQQB9rq+L9UyuK346zNP15BgnOvsQ/9abW1E9Q15EQfCg/z5tunUlGeCwv1+YfuyoaaujVy5/lTVVTDS0rE/TtapKTki5rianvMIrIq86kh8SgrqdFlSGdMO3YiMcj1791vKG//UvdLbNJfuZD8lNvqkzph5qOhMhD1wGou3UOmWExBKw7II1XHZ1X8WqoI7E2QdfOhpyUdNKlz0OIvexItblDyQiJlnYzq0XV6f2JOHj9reMFuLn7PL3mfEqUfzixQZH0XTCCxIg4XAsdgzP2L8f14mPu7L0IgKaOBDMbK9n/TatbUKVRTVLjk4kPjUFVXY0vts+jml0tdk76HlU1Vdk4uNT4ZHKySm5dL+zxrgt0nDOYWL8IEoIi6bJgGMmR8XhecpKlGXVgKZ4XHXmyJ79+e7TzPP03TSPMxY+wZz60nmiPpo4EF2kdYVjdnIYD2uN3y5W02CT0rU1oP2MA2emZ+FwveD5G22n98LvxjLzcPOr1bUP7GQM4OWurtI4ozuP383TcPI3YZ35EP/Wh4RR71HUk+EjLa8ct+XWE8/r8OuLFzov0/seBhtP6EnLVGZtBHTBpasuDRQVTw7r/eo7OO2YT+eAF4fc8qPJRU6r1asHlYWtlabTMDdG2MES/Vv7J3qhBdbJT0kgJiSEzPqXUeQ0VU4aNujcDFRXSfELRsrHCZuVY0rxDZOssDx96OS6Jz2/naLllOnHPfIl76kPtKX1R09EiUFpuWm6dQXpYLO7rDgPSyVGkea6ioY6WtQmGdjXJTkkn5TXPX3qd8i7D6joSmi4YQuDZR6RFJqBvY0mL5aNI8osg9EbBRBP1JvQi2tGLrJR0rLs2puWK0Txdd/iNn5d0ffc57Od8SpR/GDFBkfRbMJKEiDieXSq4gJ6zfznPLj7mVqHyYF6kPFSVloe40BhS4pNJKXIxm5OdTWJUApG+YVQ677hLfWGKhk+sWrWq2O/pN5Wbm4uFhQW///47ampqtGrVipCQEH744QdWrVpVLtsoqkwXM/Xq1SvWrPTFF18US6eiosLcuXNlLSJFLV++nOXLlyvdzuTJk5k8ebLcZ3/99Zfs76JfQmEaGhps3ryZ7du3F/tf586dZRdGFSnp3C3UTAww/3Js/kMzPXwJmrSSnJj4/BitzeXu9hqP7oeqpgZVtznIrSd6636it+6Xvdfv3w1UIPFM+ezD7R3/oqktYdD6yWgZ6BD42JM94zfIzSJkUtMS3ULPXXl+5gG6Jgb0mDcMPXMjwjwC2DN+Q7FBwq1GdCcxLBbvW64oUq97M7rNHoS6pgbhHgHsn7oJrxvPFKYF8Pv3IVqmBrRaOBRtc0Ni3AO4OHajbPCjXlUzuR85kU5eXJ/9K60WD6f1khEk+oVzZfJPxL3MnwElLzcXozrW1B0+Fy1jfdLjkol+5svZod8RL+1WkhGXzMXPN9Jq8XD6HlmKqro68Z7BXJn0I7EeirvZlIfnL7yYOGeJ7P3Grb8DMKhvT9YuX1Bh2y0q7NR9NE0NqLd4OJoWRiS5BfBo9AYypV0etKuayVXIWlYmdLlW0H/edtYAbGcNIOauOw+HrAFA08yQZltnIbE0IjsplST3QB6PXE+0knJSFtGn7qFuakCNxaPyHzjo5o/b6LVkSQejS6qaybWyaVoZ0/xqwbiQqjMHUXXmIBLuufF8SH6F67dsFzWWjMJ2wxQ0TA3IjIgjfO9lgn4sn4dmXttxGk1tCSPWT0HbQAe/xy/5rcgxaFbkGKzetDazD62UvR+8YhwAj47d5ODC7RhamdCkV/6kLIvOy99M2DZqDT4P3Esd38MdZ9DUkWC/fiJaBjoEO3pyeNxGcgrFZ1zDAh3jgvhenHmIjqkBXeYPzX9opnsAh8dtJFV6rOZkZFG9bX3aTLRHy1CXlOgEgh694O8ha0gtNOVx7e5N6ThrIGoSDSLdA/lnyo/4FvoBVlTA6YdITA1ouii/johzC+DamII6QrdIHRHt6MWdWb/SfMlwmn89giS/cG5O/ImElwWzJAVdcOTR17uxmz2Q1t+OI9E3jFtTthD1qKDFod64HjRdUNBNuc/JFQDc++o3fI+UbaKIiijDagY61Fw2Bom1KdnxycScfUDA+oPkZZfPxQB8+OW4JCGnHqBpakDDxcOQmBuR4BbA/dEbyJCWG52qpnLna20rYz66WnDzpe7M/tSd2Z/oe+7cGfJ2d57Luwzn5eZi1LA6tsM7o2GgS1pEHGE3XXm28ZjctNJmzW1ptmAI6rpaJHqH8nDxbvz+efMJhq7sOI1EW8Lo9VPRNtDB5/FLfh2/vlh50CtUHmo2rc3cQwU/dIeuGA/Ag2M32Lew+O854c0pGj7xakx7UWZmZqipqRERIX+hHhERgZWVlcJlrK2t0dDQkOtS1rBhQ8LDw8nMzJQNJylPKnmlGeFVSXTv3p3mzZuzefPmCt3Oi3rl88C8d2VfptH7DqFMamWXqffjB2Gc85r3HUKZXLZb9r5DKBNDlcr1PIFjWuUyt8o7ZZlXuWKuVvr5Tz4ItXLTX5/oA1PZynG39Mp17khWrVzxPtCsZAcdsM3/8PsOQaGU7z5/b9vWXb6vTOnbtWtH27Zt2bp1K5Df8lKjRg1mz56tcAKAZcuWceDAAXx9fWXDQLZs2cL3339PaGhosfTloXIdSYIgCIIgCIIgvBPz58/njz/+YM+ePXh4eDBjxgxSUlJks5uNGzdOboKAGTNmEBsby9y5c/H09OTs2bOsW7eOWbNmVViMleu2y2u8iy5kgiAIgiAIgvDG3uOYmbIaOXIkUVFRrFy5kvDwcJo3b86FCxdkkwIEBgbKTcRVvXp1Ll68yLx582jatClVq1Zl7ty5LFmyRNkm3tp/6mJGEARBEARBEITyM3v2bGbPnq3wf4oaEjp06MCDBw+KJ64gopuZIAiCIAiCIAiVkmiZEQRBEARBEIR3RcFzGoU3J1pmBEEQBEEQBEGolETLjCAIgiAIgiC8K5VoAoDKQLTMCIIgCIIgCIJQKYmLGUEQBEEQBEEQKiXRzUwQBEEQBEEQ3pU8MQFAeRItM4IgCIIgCIIgVEqiZUYQBEEQBEEQ3hUxAUC5Ei0zgiAIgiAIgiBUSuJiRhAEQRAEQRCESkl0MxMEQRAEQRCEdyQvV0wAUJ5Ey4wgCIIgCIIgCJWSaJl5A6lpGu87hDIJUE1/3yGUjbrW+46gzC7bLXvfIZRJL7d17zuEMtndfOX7DqFMMsh83yGUmXolG4+q8r4DKCN/1cpXr9WoZDeP01QrVyHWqWR353XF/e/yIyYAKFeiZAqCIAiCIAiCUCmJlhlBEARBEARBeFdEy0y5Ei0zgiAIgiAIgiBUSuJiRhAEQRAEQRCESkl0MxMEQRAEQRCEdyWvck3+8KETLTOCIAiCIAiCIFRKomVGEARBEARBEN4VMQFAuRItM4IgCIIgCIIgVEriYkYQBEEQBEEQhEpJdDMTBEEQBEEQhHckT3QzK1eiZUYQBEEQBEEQhEpJtMwIgiAIgiAIwrsiWmbKlWiZEQRBEARBEAShUhItM4IgCIIgCILwruSKh2aWJ9EyIwiCIAiCIAhCpVRpL2b8/f1RUVHB2dn5rdZjY2PD5s2byyUmQRAEQRAEQRDeHdHNrIKYjf8Ey2mD0TA3Js3Dn6CVv5Pq7KUwrenoXpgO+witejUBSHX1IXTj3wXp1dWosmgMhh+3QrOGFTlJqSTdfkbohr1kRcRW6H4MmT+Kj0b3QsdAB0/HF/zl8DsR/mFK0w+YOYTW9u2xrl2VrPRMvJxecGjD34T7hpZLPD3mDaP16I/QMtAl0NGT08t3E+MfXuIy7cb2ovO0/uiZGxLuEciZVXsIeeYj+7+euSH2Sz+jdpcmSHS1iPYN48a2k7hfeAyAUTUzPprzKbYd7dAzNyIpIg7nk3e4ue0kOVk5pY695oTe1Jo5AImFIUnugbgt+5OEpz4K0+rVr0a9xcMxaGqLTg1z3Ffswf/383JpaozvRY0veqJd3RyA5JfBeG86TtQ151LHVB4cnV3588Ax3F94ExUTy5b1K+jRtWOFb9dufE+aTe+HtrkhMR6B3F2xlyhnX6Xpbfu1pfWiYehXMyPBP4KH6w4RdO0ZAKrqarRZPIzqHzfHoIY5mYlphNx5zsP1h0mNiAfAukNDBh51ULju4/1WEvVM+bZL0n/eCDqN7oG2gS6+ji84uHwnUSWU6TptG9Jr6kCqN6mFkaUJv039gWeXHsulGfu/mXQY1l3uM7ebzvwyfl2Z4+s0fyhNPvsIiYEOoY6eXF72J/H+ESUu03xcT9pM64euuSFRHoFcXbmXcGn+aBnq0nH+UGy6NkG/qilpMYl4X3Lizv+OkZmUBoB5wxq0nTmAqm3qoW2iT2JQFM/2X+PJ7oslbrfeFz1pOCO/TMS5B+K4fC8xJZSJGv3b0nTxMPSqmZHkF8HTtYcIlZaJVwzqVKHF8lFYtG+AqroqCZ6h3JqyhdSQGHSrmTH40WaF67499WcCzzwqMd73ETNAz2MOWHZsKLeM196rPPr6z9fGC9ChSJm4Wooy0WxcT1oVKhPXV+4lotAx0+Szj6g/qCMWjW2Q6Gvza+OpZCSmKlyXmqY6o059g4VdTfbZLyPKPVDpdut+0YsGhfLXafkeYkvI3+r929J08XB0pfnrvPYgYYXyd3TofoXLPf32AC+2n5X7TFVTnd5n12BsV5PzvZYR7xagdLtlYTuhF3Vn9kfL3JAE90CeOewhTsm5RL9+VRotGo5Rs1roVjfn2Yq9+PxxoVziKKte84bRdvTHaBvo4u/4khOvOX/XatuArlP7U62JLQaWxuyZugn3S47vMOIKJCYAKFeVtmXmQ2Y8oDPVVkwkbPNhXnwynzR3P+r8vRp1U0OF6fU7NCH21G28Ri7n5eDFZIVFU2ffajSsTABQ1Zag07g2YVuO8KLvfHynrEerdlVsdyv+YVVe+k3/lN5f9OPPZTtYPehrMlIzWPz3CjQkGkqXadDOjit7z/PN4K/5/vNvUNNQZ8nfq5BoS946ni7TB9B+Qh9OOexmx+AVZKalM37v16iXEE/j/u3pu/xzrm85zq/9HAh3D+SLvV+ja2ogSzNs0wzMbKuwb/Imtvb5GvcLjxn1y1ys7fIvLs1rV0FFVZVTy3bxc6/FnPv2b9p+1pNei0aWOnbrQR1o8M1YvDcd426vpSS6BdD20FI0zQwUplfT1iQ1IJKXaw+QHhGnME16WAwvvzvI3V7LuNfbgZg7brTasxC9+tVKHVd5SEtLp34dWxwWzHxn26w9oB0dVo7B6acT/NN3ObHugfTbtwQtU8X5admqLj1+mcXLQzf5x345/hec6LNzHsbSvFLX1sSssQ1PNp/kH/sVXJq6GcPa1tjvni9bR4SjJ3tbzJJ7eRy4TmJA5BtfyPSaPojuE/py0OEPfhi8jIy0DObsdSixTGvqSAj28Ofwyl0lrtvtxlO+bjNF9to9Z0uZ42s7oz8tJvTm8tLd7B+4iqzUDIbtW4JaCfHVH9CO7ivGcH/zCf7ut5xIj0CG7VuCjvS70bM0Rs/SiBtrD/BXr685v+B3bLo1xf6HKbJ1WDaxITUmkXNzt/NXzyU82HaaLktG0GJ8L6XbrTmwHS1XjcH1xxOc67OcOPdAPjqwBImSMmHWui6dfp2Fz8GbnOu9nKALTnTdPQ/DQsePXk0Lep9cQaJ3KFeGreVsj2W4bj5JTnoWAKmhMfzTbJbc69kPx8hKTit2gfGhxPyK175rcnE/+e7Qa+MFaD2jP80n9ObK0t0clJaJIa8pE/UGtKPrijE82HyC/f2WE+0RyJB9S9AutJ/q2poE3HTh8S+nXxtDl2WjSVFSLxZWY2B7Wqwaw/Mfj3Ohz3Li3QP56MDXJeZvx19n43PwBhd6OxB8wZEuu+fL5e+JZjPlXg/m/UZebi5BZ4tfuDZfPpq08NfHWRZVB7WnyerPebHpONd6O5DgFking18jUXIuUdeWkBIYidt3h5SeS96FbtMH0GmCPSccdrFt8Aoy0zKY9Jrzt6aOhDCPQE6u3P0OIxUqow/+YiY3N5eNGzdSp04dJBIJNWrUYO3atbL/+/r68tFHH6Gjo0OzZs24f/++3PL//PMPdnZ2SCQSbGxs2LRpU4XHbDFlENEHLxF75CrpXkEELt1ObnoGpiN7Kkzv/+WPRO89T5q7Hxk+IQQs2oaKqir6nZoBkJuUiveYVcSfuUuGbwipTz0JWvEbuk3roFHFrML2w35Sf05vO8aTy48JehHAb/N/xsjChFa92ypd5ofx33L72HVCvIII9PDn9wVbMatmjk2T2m8dT8eJ9tzYepIXl52IeBHEsfnb0bc0omHv1kqX6TT5ExwPXefJ0ZtEeYdw2mEXWWkZtBrRTZameqt6PNhzkZBnPsQFRXJj20nSE1Oo0rgWAF43XTi+6De8b7sSFxTJiytPuPPHWRrZK8+HompN70fQvmsEH7pJsmcIzxftJCctk2qjuytMn+Dsy4s1+wk7eZ/cjGyFaSIvPSHqqjOpfuGk+Ibhuf4w2SnpGLWqW+q4ykOXDm34cup4enbr9M622WRqXzwOXuflkVvEe4Vy6+s/yU7PoMGoborTT+pD0A0Xnu04S7x3KI7/O0b0c38af5H/4zgzKY2zn32P75mHJPiGEfnEh7vL92LezBa9KqYA5GblkBaVIHtlxCVj07slL4/ceuP9+HjiJ1zYehyXy46EvAhkz/xtGFoa06x3G6XLuN9w5t9Nh3l28bHSNADZmdkkRiXIXmmJKWWOr+Ukex5sPYXP5SdEvwji3Lwd6FkYUad3K6XLtJ7cF9eD13l+9BYxXqFcXvonWWkZNB6Z/91EewZzevrP+F55SkJAJEH33Lnzw1Fse7RARS3/lPT8yC2ur/6b4IcvSAiMwuPEXZ4fuUVde+XHeoOpffE+cB3fw7dI9Arl0ZI/yUnLoPZoxWWiweQ+hF13wWP7WRK9Q3H54Rhxrv7Un1BwwdTs6+GEXnvG0+8OEfc8gOSASEIuPSEjJhHIf/BdelSC3Kt639YE/PuQ7NSM1+bv+4j5lZy0TLm4s5PTXhsv5JeJR1tP4SstExfm7UDXwojaJZSJlpP78vzgddyP3iLWK5QrS/8ku1CZAHi66yKPf/2XsCfeJW7fpntTanRpzK21B14ba/2pffE5cB2/w7dI9Arh8ZLdZKdlYKskf+tNtifsugsvpPnrKs3fuhN6y9IU/b6r9WlFxF13UgKj5NZl/VEzrLo14ema18dZFnWnfYL//usEHLpJkmcITxfvIictg5pK6r44Z1+erzlA8Kn75GQqPpe8C50n9uXa1hO4X3Yi/EUgR+b/ioGlMXYlnL9f3njGpU1HcLv4H2mNKSw37/29/oM++IuZpUuXsmHDBlasWIG7uzsHDhzA0tJS9n8HBwcWLlyIs7Mz9erVY/To0WRn5x+wTk5OjBgxglGjRuHq6srq1atZsWIFf/31V4XFq6Khjk6T2iTdKXRXLi+PpNvP0G1Vv1TrUNWWoKKhRnZ8ktI0avq65OXmkvMGP1BKw7y6JUYWxjwvtB9pSan4OntRp2Xp9gNAW18HgJT45LeKx7i6BfoWxvjcfS77LCMpjWBnH6q3VPzjXU1DjSqNa8ktk5eXh8/d53LLBDl50rh/e7QNdVFRUaHJgA6oSzTwe+ChNB4tfW3SSrlPKhpqGDStRcxt14IP8/KIvuWKcet6pVrHa6mqYD24A2o6EuIdPctnnR8oVQ01zJvUIuS2W8GHeXkE33bDsmUdhctYtKpDyO3ncp8F33TBspXi9ACa+trk5eYq7epSs3dLJMb6b3wxY1rdAkMLY17cdZF9lp6Uhr+zN7Yt375c1G3fiO8d/2DV1c2M+m4yukZ6ZVresIY5ehZGBNwpyLfMpDTCnH2oouSCWVVDDcsmtQi4I//dBN5xo4qS7wZAoq9DZnIaeTnKZ/iR6OuQnqC4vlPVUMOkaS3Ci5SJ8NtumCn5js1a1SGsSJkIvelSkF5Fhao9mpPoG85HBxYz1OUX+pxZTTV75T/aTZrYYNLYBp+DN5Wm+VBithnSkaHPt9Pv2nqaLx2Bmrbma2M2rGGOroURgUXKRHgpykSggjJhXUKZUETHzICe30/m4rwdZKdllpi2IH8L5VdeHhG3n2OmJFazVnWIKJK/YYXztwgtMwOq9GiO76GbxT5v+8NkHszZTk7a6y9qS0tFQw2jprWIvCW/T5G3n2PS+t3exCoLk+oWGFgY41XoXJyelEaQsw81lJy/BaEsPugxM0lJSWzZsoVt27Yxfvx4AGrXrk3nzp3x9/cHYOHChfTr1w+Ab775Bjs7O7y9vWnQoAE//vgjPXr0YMWKFQDUq1cPd3d3fvjhB7744otSxZCRkUFGhnxllJmXg6aKmsL06iYGqKirkR0VL/d5dnQ8WnVK1/2n6rJxZEXEyl8QFaIi0aDq0nHEnbpNbinvppWVkYURAAnRCXKfJ0THY2huXKp1qKio8Pmqibx87EGwp/I+zaWhZ57fRS85Sj6e5KgE9M0Vd9/TMdZHTV2N5Ojiy5jVriJ7f2j2z4zc9iUOz/4gJyubrLRMDkz7idgAxX3ATWpa0n58Hy6sU9x3uihNEwNU1dXIKBJ7RlQCenWrlmodyug3rE6Hs9+iKtEgJyWdJxM2kewZ8lbr/NBpmeijqq5GWpH8TItOwKiOtcJldMyNSI2WvzOdGpWItrmRwvRqEg3aLRuF96n7ZCk5xhqM6kbwTRdSwt5s3JqhdNuJRfYjMSoBAyVxlZb7TWecLzwkJigS85pWDFw0mll/LeOHIQ7klfLOnK40hmL5Fp2IrpJjTlv63aQUOeZSohMwqa34u9E21qPDl4NxOXBdaSxVWtWl/oB2HP/ifwr/L5FuN71IXqZHJ2CgpExomRuRXmTf0qMS0ZLWfVpmBmjoaWM3uz/Pvj+G89pDWH/UjK4753Jl2DoiH7wots7ao7uT4BlCtKPi8ZEfSsz+J+6REhxNWkQcRg1r0MJhFPq1rbk9ueSuiDollAmd15SJ1CJlIjU6AWMlZUKZ3pum4bLvKhEufhhUK7lXgvL8TUS/ThWFy+Tnb5H0UQloS/O3qFojupKVnE7QOflW0nabp+P991ViXfzQfU2cZfFqnxSdS5Tt04dAv8Tzt9F7iEj4r/mgL2Y8PDzIyMigR48eStM0bdpU9re1dX7FGBkZSYMGDfDw8GDQoEFy6Tt16sTmzZvJyclBTU3xBUlh69ev55tvvpH7bKp+PaYZNijLrpSa5cyhGA/sgtdwB/IysoonUFej1vbFoKJC4LLt5bbdjoO7MmHdNNn7TRPWlpC6dMZ/O4Vq9Wrw7bCyj+1pNqgTA9dNkr3/e+LGt45HmR7zh6NloMPuz9aSGpdEw96tGfnLl+wcvoaIl0FyafUtjRm/ZwnPzz3E8ZDyH1/vSrJ3KHc+XoK6gQ7WA9rR9OeZPPz0m//8BU1FUlVXo+f2OaCiwu2lfylMo2ttQrVuTbkyY2up19tmUGdGr5sqe7994vq3DVUpp3/vyf4OfRlEsEcA397eRr32dry891zhMg0Hd6TX+omy98ouHMqTpp42Q/5aSIxXCPd+Oq4wjVm9agzeOY/7m08QcFtx7BVBRVUFgOCLT3ghHTAd5xaIeeu61B3Xo9jFjJqWBjafdsB188l3FmNRpY3Ze39B3RX/Ipi0yHh6Hl2GXk0LkgMiZf9rMLgjPQqViZPvoEwo03xCbzT1tEo1puZdsR3VjYATd8ktdK6uN6kPGnpauG899R4je7+aD+rEkHWTZe//rMDzd2WVl/ff7O71vnzQFzPa2tqvTaOhUTB4TEUlvyLPLceHES1dupT58+fLfebe6DOl6bNjE8nLzkG9yN0GdTMjsqJKHnxnMW0wljOH4P3ZKtJeKJj1RF0N2+2L0axqjtfIFeXaKvPk8iO8nxZ0T9LQzM9XQzNDEiIL4jY0MyLA3e+16xu3ZjLNe7Rm7YjlxIXHlDkejytOBDkX9J1W18wvqnrmhiQXavXSMzckzF3xDDGpcUnkZOegZyZ/x7DwOkxqWNDhiz783GsRkV75FwDhHoHYtGlAu3G9OO1QMPBQ38KISQeXE+jkxamlO0u9L5mxieRm5yApcudSYm5IRmS84oVKKS8rh1TpLEKJLn4YNq+NzZS+PF9U+vgqm/TYJHKzc9Aukp/aZoakRSYoXCY1Kh6dIgNkdcwNSCvSgqqqrkbPHXPQr2bKvyPWK22VqT+iKxlxSQRcelLquF2uOOJfaEZDdekxZmBuSGKhOAzMDQl29y/1eksjJiiSpJhEzG2slF7MeF9+QlihGZHUJPnHnI6ZASmFyqmOmQGRSmaPSpN+N7pFjjldM0NSityV1dDVYujeRWSmpHNy6mZys4vPDGhatwrDDy7F5cB1HpTw4zBDul2tImVCy8ywWAveK+lR8WgVKRNa5gakS/c1IzaJ3KxsEorcGEjwCsGibfGutjX6tUVNW4Lf0TtK4/zQYn4l+kn+965vYyl3MeNTpEyol1AmlM0o9qpM6BQpEzpmhqQq2U9FqndshHXLunzp/Zfc55+d+ZYXJ+9xcf5vcp8rz1+DYq01r+Tnb5H05oakKainzdvWx6BOFe5Ol7+hYdmpEaat6jLCf4/c533Of0vA8bs8+Eo+zrJ4tU+KziXpb3kuKU/uxc7f+XWdnrkhSUXO36HlXNcJ/z990GNm6tati7a2NlevXn2j5Rs2bMjdu3flPrt79y716tUrVasMgEQiwcDAQO6lrIsZQF5WNqmuPuh3KmgxQkUF/c5NSXF6qXQ5y+mfYv3lCLzHfkOqi4IBkNILGUkta7xHrySnhPE0byI9JZ3IgHDZK8QriPjIOOwK7YeWnja2zevi/UT5fkD+hUyrPu1YP3oVUUGRJaZVJjMlndiACNkr0iuEpMg4ane0k6WR6GlTrXltgp4o7tKRk5VD6HM/bAsto6Kigm1HO9kyGtJZ1op2vcnNzUVFpeDw0Lc0ZtKhFYQ+9+P4oh1luquSl5VDoosfpl0aF3yoooJpl8bElff4FlUVVDWVzw7zX5CblUOUqx9VOxd8r6ioULWzHRFKBg9HOnnLpweqdmlMhFNB+lcXMoY2lpwZtYGMEsZE1R/RFc9jdxT+AFcmIyWdqIAI2SvMK5iEyDjqd2wiS6Olp41N8zr4PinfcmFkZYKusZ7cjYmislLSiQ+IkL1iPENIjoynZqeCfNPU08a6eW1CnRQfc7lZOUS4+lGjk/x3U6OTHaGFvhtNPW2G71tCblYOJyb+SI6CVmjTelUZccgBt39uc+eHoyXuX25WDrEuflgVKRNWne2IdlJcJqKdvLHqIl8mrLs2lqXPzcoh5pkvBkW6QhnYWpMSHF1sfbVHd88faB9burr5Q4j5FZPGNQCK/WjPSkknISBC9orxDCElMp7qRcqEVSnKRPUiZaJ6J7vXDvYv7Maqv9nXZxn77B3YZ+/AifE/AHB21jbubixePpTlr2XnxkQriTXayRvLIvlrVSh/C7Md3Z2YZ77EF7mIc1qxlws9l3Kh1zIu9FrGzbH5cd6dvpVn35dcjl8nLyuHeBc/LLrI75NFZztiS9G18V3JTEknJiBC9orwCiYxMo46HQvOgRI9bao3r02gkvP3f56YAKBcfdAtM1paWixZsoTFixejqalJp06diIqKws3NrcSuZ68sWLCANm3a8O233zJy5Eju37/Ptm3b+PXXXys07sg/TlHzx7mkuniT6uyF+aQBqGprEXPkCgA1f/qKrPAYQr//GwDLGUOwXvAZ/nM2kRkcKWvVyU1JJzc1Pf9C5rcl6DSujc8X34KaqixNTnwyeVkVM0PJhV1nGDRnGOF+YUQFRTBswWjiI2NxulQwBeXXB1bjePEhV/bkPwNl/HdT6TCwC5unrCc9JU02LiA1MZWsjJIHbL7Ovd0X6D7nU2L8w4kLiqLHguEkRcTjUWje+Qn7l+F+0ZGHey8BcHfnOYZumk6oqy/Bzj50nNQXTR0tnI7mD9iM8gkl2i+cQesmcX7dAdKk3cxqd27Mvon5XSpeXcgkhERzfu1+uWmdi/YBVsZvx1ma/jyDBGdf4p96U2vqJ6jrSAiWDhxtunUmGeGxvFybPz2qioYaevXyx1ipaqqhZWWCvl1NclLSZS0x9R1GEXnVmfSQGNT1tKgypBOmHRvxeGTFdV9SJDU1jcDggucIhYRG8MLTB0MDfaytLCpkm66/n6f7T9OIeuZHpLMPTSbbo6Et4eXh/Pz8aPM0UsLjeLThSH76XRcZcMyBplP7EnjVmdqDOmDe1JZbS/Jb3lTV1ej125eYNbHh/PhNqKipylp+MuKTyS30PKGqnewwqGnBi4M33no/ru0+R985Q4j0DyMmKJIBC0aREBEn99yYL/ev4NnFR9zcm/+MFYmOBHMbK9n/TatbUK1RTVLik4kLjUGiI+GTucN5euEhiVHxmNew5NOlnxPlH47HrddPF1zYk10XaP/lYOL8I0gIjKTTwmEkR8bjfclJlmb4waV4X3Dk6Z7LADjuPE/fTdOIcPUjzNmHVpPs0dCR8PxI/nejqafNsH1L0NDW5OxX29HU10ZTP78VPi0mkbzcPMzqVWPEoaX43XLF8Y/zsvEYeTm5pCm5WHjx+3k6bJ5GzDM/Yp760GCKPWo6Etng7A5bppEWHofz+vwy8WLnRXr940CDaX0JvepMzUEdMGlqy8NFBa2x7r+eo/OO2UQ8eEHEPQ+qfNSUqr1acGWYfDdcPRtLLNrX5/rnZeuG9T5i1qtpgc2nHQm96kxGXDJGjWrQavUYIu57EO8RVDzIIp7sukC7LwcTLy0THRcOIyUyHp9CZWKotEw8k5aJJzvP02fTNCJd/Qh39qGFtEy4HSkYOK9jboiuuSFGNvkT/Jg1qE5mchqJITFkJKSQFCrfwp+Vmg5AQkAEyeGKx629/P087TdPI1aav/Wn2KOuI8FPmr/tt0wnLTyOZ+sPA+C58wI9/llOg2mfEHL1qSx/Hy+SnwZdXU+bGgPa8vSb4jOVvXqWzyvZKflxJgdEkvaG4+sK8/rtHK23TCfumS9xT32oM6UvajpaBEj3qdXWGaSHxeK2Ln+fVDTUMHh1LtFQR9vaBEO7mmSnpJPymmcDlac7u8/z8ZzBRPuHExcUSe8Fw0mMiMOt0Pl7yn4Hnl98zH3p+VtTR4JpobrOpLo51o1qkhafTHxo2Xt8CP9dH/TFDMCKFStQV1dn5cqVhIaGYm1tzfTp00u1bMuWLTly5AgrV67k22+/xdramjVr1pR68P+bivv3DuomBlgv+Cz/oZnufniP/YZs6cBCzapmkFfQFc5srD2qEg1sf/9abj1hPx4k7KdDaFqZYtS7HQANL8kP0PQc7kDyg4rpR352xwkkOhImrp+OjoEuno4e/DDuW7IK3UW1qGGFvnHBj/ueY+0BcDjyndy6fl+wldvH3m6Mye0d/6KpLWHQ+sloGegQ+NiTPeM3kF0oHpOaluia6MvePz/zAF0TA3rMG4aeuRFhHgHsGb+BFOkA1tzsHP6esJHeS0YxdudCNHUlxAREcHzBDjxvOANQp0sTzGpZYVbLiiUPf5GLabmN8i6HhYWduo+mqQH1Fg9H08KIJLcAHo3eQKb0Yki7qpncHRMtKxO6XPte9t521gBsZw0g5q47D4esAUDTzJBmW2chsTQiOymVJPdAHo9cT/QtV96l5y+8mDhniez9xq2/AzCob0/WLl9QIdv0+fchWqYGtF44FB1zQ6LdAzg3diNp0u9Vr6qZXGtbhJMX12b/SpvFw2m7ZAQJfuFcnPwTcS+DAdCxMsamT/6MT8Mvyz9Y8vTwtYTdL5jZrv7oboQ/9iTeR/nDY0vr8o5TSLQlfLZ+GjoGOvg8fsG28evkyrR5TUv0TAqOsRpNazPv0GrZ+2Er8idHuX/sBn8v/JXcnFyqNqxB+6Hd0DbQJSEyFo9bLvz742Gyyzg166PtZ9DQltB7/UQkBjqEOHryz9iNci0pRjUs0C50zL389yE6JgZ0mp//3US5B3Bs7EbZoHHLxjaymc2m3P5Rbnu/d/yKxOBo6vVri46ZIXZDOmM3pLPs/wlBUfzRaZ7CWANOP0RiakCzRUPRMjckzi2A62M2ygbM6xYpE9GOXtyd9SvNlgyn+dcjSPIL59bEn0iQlgmA4AuOPPp6N3azB9L623Ek+oZxe8oWoh7Jt5zVHtWN1LBYwm6W7dh7HzHnZmVj1cWOBpP7oK4jISU0lqBzj3HdXLoxHo7SMtFTWiZCHT05XqRMGBYpE57/PkTbxIAOhcrEiUJlAqDp5z3oMG+I7P2IY/kT91yc/xvux26XJVtlAk8/QGKqT5NFw2T5e2PM97L81alqWix/7836haZLhtNUmr+3J/4ol78ANQe1BxUVAk7e410LOfUAiakBjRYPQ2JuRIJbAHdHbyCj0D5RqKu9tpUxPa4W3OCqN7M/9Wb2J+qeO7eHfFds/RXlpvT8PVR6/vZ//JLdrzl/V2tqy7RDK2XvB6wYB4DjsZscXbjjncVeIf6jLSTvi0qeGIVUZk+qD3p9og/IT6ql61L3oaipovW+QyizjmnlN07rXejlVvYnwb9Pu5uvfH2iD8gz9bdrhXwfbHNfPzXvh8T6/T0y4/+NyA/+dqc8q+zK9XNGUsl+0D7UqlzxAnzvf/B9h6BQ4iTlDwCuaAa7Lr+3bVeUD3rMjCAIgiAIgiAIgjKV7L6LIAiCIAiCIFRepX3el1A6omVGEARBEARBEIRKSbTMCIIgCIIgCMK7IlpmypVomREEQRAEQRAEoVISFzOCIAiCIAiCIFRKopuZIAiCIAiCILwrletpDh880TIjCIIgCIIgCEKlJFpmBEEQBEEQBOEdEVMzly/RMiMIgiAIgiAIQqUkWmYEQRAEQRAE4V0RLTPlSrTMCIIgCIIgCIJQKYmLGUEQBEEQBEEQKiXRzUwQBEEQBEEQ3hUxNXO5Ei0zgiAIgiAIgiBUSqJlRhAEQRAEQRDeETE1c/kSFzNvICxT532HUCadNdTedwhlYpRT+Q5yQ5Xs9x1CmexuvvJ9h1AmE53XvO8QysShtcP7DqHMNN53AGWUpfK+Iyib1ErYDyJJpXLVxQ1zct53CGXyVKty/QQzqlzFQfh/pBJWr4IgCIIgCIIgCKJlRhAEQRAEQRDeHTEBQLkSLTOCIAiCIAiCIFRKomVGEARBEARBEN4RMQFA+RItM4IgCIIgCIIgVEqiZUYQBEEQBEEQ3hUxZqZciZYZQRAEQRAEQRAqJXExIwiCIAiCIAhCpSS6mQmCIAiCIAjCO5InupmVK9EyIwiCIAiCIAhCpSQuZgRBEARBEAThXcl9j6838Msvv2BjY4OWlhbt2rXj0aNHpVru0KFDqKioMHjw4DfbcCmJixlBEARBEARBEIo5fPgw8+fPZ9WqVTx58oRmzZrRp08fIiMjS1zO39+fhQsX0qVLlwqPUVzMCIIgCIIgCIJQzI8//siUKVOYMGECjRo1YseOHejo6LB7926ly+Tk5DBmzBi++eYbbG1tKzxGcTEjCIIgCIIgCO9IXu77e2VkZJCYmCj3ysjIUBhnZmYmTk5O9OzZU/aZqqoqPXv25P79+0r3b82aNVhYWDBp0qRyzztFxMWMIAiCIAiCIPw/sH79egwNDeVe69evV5g2OjqanJwcLC0t5T63tLQkPDxc4TJ37txh165d/PHHH+UeuzKV+mImLy+PqVOnYmJigoqKCkZGRnz11VfvOyxBEARBEARBUOw9TgCwdOlSEhIS5F5Lly4tl91KSkpi7Nix/PHHH5iZmZXLOkujUj9n5sKFC/z111/cuHEDW1tbhg0b9r5Dkqk5oRe2MwcgsTAk0T0Qt2V/kfDUR2FavfrVqLd4GIZNbdGpYY7bir34/35eLk3tLwdh9Ukb9OpWISc9k7jHnrz49iApPmFvFJ/d+J40m94PbXNDYjwCubtiL1HOvkrT2/ZrS+tFw9CvZkaCfwQP1x0i6NozAFTV1WizeBjVP26OQQ1zMhPTCLnznIfrD5MaEQ+AdYeGDDzqoHDdx/utJOqZ8m2/UueLXjSY2Q8tc0Pi3QN54rCH2BJirta/LU2WDEe3mhlJfhG4fHeQMGnMACPD9itcznnNAV5uPwuAcRMbmjqMwqS5LXk5uQSfe4zzqn1kpypuki2J1QR7qs4ciKa5ESnuAfg67CL5qbfCtNr1q1Fj0Sj0mtmiVd0C3xV/EvbHWflEqqrUWDgC82Fd0DA3IjMijsjDNwj+6ViZY4PKWSbehKOzK38eOIb7C2+iYmLZsn4FPbp2rJBtvane84bRdvTHaBvo4u/4khPLdxPtr/guGECttg3oNrU/1ZrYYmBpzJ6pm3C75PhG224/fyiNP/sIiYEOoY6eXF/2J/H+ESUu03RcT1pN64eOuSHRHoHcWLmXiELfn5pEgy7LP6PewPaoaWoQeNOF68v/IjU6UZbGsqktnZaOxKKxDXlAhLMPd9YdItojUJambv92tJk1ECNbKzJikvD48zJuOwqOiwbje9J4Rn4ZjnUP5OGKvUSXUIZr9m9Ly0XD0KtmRqJfBI7rDhFSqI4orMOGCdQf24NHq/7GfedF2ecmjW1o7TASs2a25ObmEnD2MY+/2V+qOqLx+J40l+ZbjEcgt1fuJbKEeGv3a0vbhQXH3P11hwi8XhCvrX1r7Mb2wLyJDVrG+hzus4wY90C5dTT67CPqDu6IeWMbNPW12Wk3lczE1NfGWlj3+UNpMfojtAx0CXL05JzDbmJfU0Zaj+tFx6n90DM3JMIjkPOr9hBa5Biv1rIOHy0aQdXmtcnLySPcPYD9YzeQnZGFYTUzun75KTYdG6FnbkRSRByuJ+5ye9tJcrNyyhR/jQm9qTVzAJoWhiS5B+Kx7M8Sz891Fg/HsKkt2jXM8Vixh4Ai5+fCas0ZSP3ln+H/+zlerNhbprgK6zJ/KM1H5x+HwY6eXHT4k7jX5HHLcT1pJ83jSI9ALq3aS5iSenTEnkXU7t6MY1N+wuuSEwAWDWvQYcYAqrWph7aJPgnBUTzddw3HPy8qXMf7jheg1+qxVG1dD/N61YjxDmX3J4rPKUIBiUSCRCIpVVozMzPU1NSIiJD/LiMiIrCysiqW3sfHB39/fwYMGCD7LDc3fwo1dXV1Xr58Se3atd8iesUqdcuMj48P1tbWdOzYESsrK9TVP4xrM+tB7Wn4zVi8Nv3DnV7LSHILoN2hr9E0M1CYXk1bk9SASF6sPUh6RJzCNCYdGhLw5yXufrKSh8PXoaquTtvDS1HTKV2BLKz2gHZ0WDkGp59O8E/f5cS6B9Jv3xK0TBXHZ9mqLj1+mcXLQzf5x345/hec6LNzHsb1qwGgrq2JWWMbnmw+yT/2K7g0dTOGta2x3z1fto4IR0/2tpgl9/I4cJ3EgMhS/WitPrA9zVePwW3TcS71WU68eyDdDn6NREnMpq3r0mH7bHwP3OBibwdCLjjS6c/5GEpjBjjVdKbc69FXv5GXm0vw2fwpB7Usjeh2eCnJ/hFc6beKW59txLBeNdpumV7qvH7FbFBHaq0eT9Cmozj3XkyKmz92B5ejobRMSMgIjCDgu/1kKikT1WYPxmp8b3yX7eJp168I+G4f1WYNwnrSJ2WOrzKWiTeVlpZO/Tq2OCyYWWHbeBvdpw+g0wR7jjvsYuvgFWSmZTBp79eoSzSULqOpIyHMI5ATK5UPyCyNVjP603xCb64t3c3hgavISs1g8L4lqJWw7boD2tFlxRgebj7BwX7LifIIZPC+JWgXKjtdV47BtmcLzs3Yyj8jvkPX0ph+v38l+7+GjoRBfy8iKSSGQ4NWc3ToGjJT0hn892JU1dUAqNm9KX22zMB1/1X29fqaB8v+wm6KPQ2+6AWAzcB2tFk1BucfT3DaPr8M99qvvAybt65Lt19m4XnwJqf7LCfwohMf75qHUaE64pUa9q0xb1mHlLBYuc+1LY3oc+hrEv0jODNgNZfH/IBR/Wp03jzttXldZ0A7Oq0Yg+PmExz9ZDnR7oH0/1s+3wqzalWXXttm4XHoJkf7LsfvohN9d87DpFC86joSwh695P66w0q3q66tSeANF5y2nX5tjIp0nN6ftl/04eyyP9k1aCVZqRmM+fvrEstIo/7t6b18DDe3HOf3/ssJ9whkzN9fo1NoX6u1rMNne5bge8uVXQNXsnPgCh7vuUReXh4AZrWroKKiwtmlu9neczGX1uyj1Zge9Fg8skzxWw3qQINvxuK96Rj3ei0lyS2A1oeWKj0/q2prkhYQycu1B5Sen18xaG5L9XE9SXQLKFNMRbWf3p/WX/TmwrLd7BmUfxyO/Lvk47Bh/3b0WD6GO1tOsLv/ciI8Ahn59xK5PH6lzSR7kOZrYVZNbEiJSeT0V9vZ2XMJ97adpvuSEbQa3+uDjPcVlyM38TjzoMQYPzTvc8xMWWhqatKqVSuuXr0q+yw3N5erV6/SoUOHYukbNGiAq6srzs7OstfAgQP56KOPcHZ2pnr16m+bdQpV2ouZL774gjlz5hAYGIiKigo2NjYAZGdnM3v2bAwNDTEzM2PFihWyyhDg119/pW7dumhpaWFpaVkhrTm1pvcjaN81gg/dJNkzBNdFu8hJy6T66O4K0yc4+/JizQHCTt4nNyNbYZrHozcQfPgWyS+DSXIP5Nnc7ehUN8ewaa0yx9dkal88Dl7n5ZFbxHuFcuvrP8lOz6DBqG6K00/qQ9ANF57tOEu8dyiO/ztG9HN/Gkt/RGQmpXH2s+/xPfOQBN8wIp/4cHf5Xsyb2aJXxRSA3Kwc0qISZK+MuGRserfk5ZFbpYq5/rS++O6/jt/hWyR6huC4eDfZaRnUGq045nqT7Qm/7sLL7WdJ8grl+cZjxLv6U2dib1ma9KgEuVcV+1ZE3nUnJTAKgCq9WpCXnYPT0r9I8gkj9pkvjkt2U71/W/RsLBVuV5kq0wYQsf8KkYeuk+YZjM/i38lJy8Bi1McK0yc7++C/5m+iT90lNzNLYRr9NvWJvfiYuCtPyAiKIubMA+JuPEOvRZ0yxQaVs0y8qS4d2vDl1PH07NapQrfzpjpP7MvVrSdwv+xE+ItADs//FQNLY+x6t1a6zMsbz7i46QhuF9+sNeaVFpPsebT1FL6XnxD9IohL83aga2FE7d6tlC7TcnJf3A5ex/3oLWK9Qrm29E+y0zKwG5lfdjT1tbEb2Z1b3+4n+J47ka7+XF74O1Va18OqRf4dOuM6VdA21uf+pmPE+4YR6xnCw5+Oo2thhH7V/K4KDYd0xveSE677rpEYGEXwVWdctp2myaz+ANhN6Yvnget4H7lFglco97/Oj6OukjLcaFIfQm644LbjLAneoTz94Rixz/1pOEH+h5uOlTHtvhvHrdm/kpct3wJQvWcLcrNzeLBsD4k+YcQ88+X+17ux6dcW/dfUEc2m9MX94HVeHLlFnFcoN5dKj7mRiuNtOqkPgTdccP7tLHHeoTz63zGinvvTpNAPTc/jd3HccpLgO8+Vbtdl10We/vovEU8Utwq/TrtJ9tzedhLPy05Evgji5Pzt6FsY0aCEMtJhcl+eHLrOs6O3iPYK4eyy3WSlZdBiRMG+9l4xlkd/XeTu9n+J8gohxjcM97MPycnMPyf63HTh9KLf8b3tSnxQFJ5XnnD/j7M0sG9TpvhtpOfnkEM3SfEMwW3RTnLSMqmq5Pyc6OzLyzX7CT95nzwl52cANR0JzX6dg9uC38mOTylTTEW1mWTP3W2n8Lr8hKgXQZyZvwN9CyPqlZDHbSf35dmh67gevUWMVygXluWX/6Yj5MuTRaMatJ3yCWcXFR/P4HLkFle++Zughy+ID4rC7cRdXI7eop698rrnfcYLcHn13zzZe4V46XlbKH/z58/njz/+YM+ePXh4eDBjxgxSUlKYMGECAOPGjZN1U9PS0qJx48ZyLyMjI/T19WncuDGampoVEmOlvZjZsmULa9asoVq1aoSFhfH48WMA9uzZg7q6Oo8ePWLLli38+OOP7Ny5EwBHR0e+/PJL1qxZw8uXL7lw4QJdu3Yt17hUNNQwbFqL6NuFTiZ5eUTfeo5R67rlth11fR0AMuOTy7ScqoYa5k1qEXLbTS6+4NtuWLZU/CPYolUdQm7LnxyDb7pg2Ur5j2ZNfW3ycnPJUNJ9oWbvlkiM9Uv1w1VVQw3jprWIKJKnEbefY9ZKcZ6atq4jnx4Iu+GCmZKYJWYGVOnRHN+DN2WfqWlqkJuZLXdHKCc9EwCztvVfG/crKhrq6DW1Jf6Wi1z8Cbdd0W9d+vUUlfT4JYZdmqBlaw2ATqOaGLRrQPy1p2VaT2UsE/9VJtUtMLAwxutuQd6mJ6UR5OxDzZblV38oYlDDHF0LIwIL/RDOTEoj3NkHKyXHmaqGGhZNahF4R77sBN5xw0padiya1EJNU10uTZxPGInB0VhL9ynOJ4y02CTsRnVHVUMNNYkGdqO6E+MVQmJw/o8UNU11sjPkL+xz0rPQrWKKvo0lpk1rEVakDIfdccNcSZk0b1WHsCJlOOSGi3x6FRW6/Dyd59vPEu8ZUnz/NdXJzSpaR+THaNm2nsLtQsExF3yn+DFnpSRey5Z1il2kBL3mmCtvRtXN0bcwxrdQ3BlJaYQ4+1BNSflU1VDDukkt/O7I199+d57LltExNaBayzqkxCQy4fgq5jv+yvjDy6neWnkeAmjp65BWhnOgioYaBk1rEXPbVS6WmFuuGL1mW6/TaMNEoq48JeaW8gvJ0jCqbo6ehRH+hfIrIymNUGcfqpaQx1ZNauFXpDz533GjaqE6XF1Lk0E/z+LSir9IiUooVTwSfR3SS7g4+9DiFcrfyJEj+d///sfKlStp3rw5zs7OXLhwQTYpQGBgIGFhbzbkobx8GP2y3oChoSH6+vqoqanJ9durXr06P/30EyoqKtSvXx9XV1d++uknpkyZQmBgILq6uvTv3x99fX1q1qxJixYtStxORkZGsSnrsvJy0FBRU5he08QAVXU1MooceBlRCejWrfKGe1uEigqNvhtH7MMXJL8ILtOiWib6qKqrkVYkvrToBIzqWCtcRsfcSK5vO0BqVCLa5kYK06tJNGi3bBTep+6TlZymME2DUd0IvulSrNuGIprSmNOLxJwelYhBHcV5qmVuVCx9RlQCWhaKY641oitZyekEn3ss+yzijhvNV4+h/ox+eO28gJqOhKYOo4D87iWlpWGij4q6GllF4smMisewTtVSr6eo4K0nUNPXpuWdLeTl5KKipkrA+oNEHb9dpvVUxjLxX6VvbghAcpHvIikqAX0leVtedKXrL/a9RieiK42rKG1p2UmNTiiyTAImta2l6zUkOyOr2LiM1OgEdCzy15uVks4/I9bSf+c82n45GIB4v3BOjv2evJz8fhEBt1zpunIMHp3sCLrnjoGtJXbT+gJgWLdKfhkuEkdaVAKGtRWXYW1zI9Ki5Pc1LVq+DDeZ1Z/c7Fw8dikeMxB+1522q8ZgN70fHrsuoK4jodWy/G5P2krqGig45lIVHHPGZTnmohPRqeByUZiedJ9SiuRzcnQCekri0DHO39eiy6REJ2JWO7/+Nq5hAUC3r4Zwee0BItwDaDqkC2MPLGNH7yUKx+MY17SkzfjeXF57oNTxvzo/Zyo8P795XWw1uAMGTWtxv8/bj9fQleWx/HedUsJx+CqPix6HKdEJmBYq/z1Xfk6wkxdel5+UKpaqrerSsH87jk74X6WItzIpa3ev92327NnMnj1b4f9u3LhR4rJ//fVX+QdURKW9mFGmffv2qKioyN536NCBTZs2kZOTQ69evahZsya2trbY29tjb2/Pp59+io6OjtL1rV+/nm+++Ubus9E6dozRa1Jh+/A6jTdMQL9+de4PXP3eYlBGVV2NntvngIoKt5f+pTCNrrUJ1bo15cqMre82uBLUGt2NwON3yS105zfRM4SHc3+j+eoxNF02krycXLx2XSQtMp683PdfE5kN7Ij5kC54zthC6ssgdBvbUGvNBDIjYok6cvP1K3hHKmuZeBdaDOrEkHWTZe//nLjxvW373y+U/2CpaGoSDXr+MJlQR08uzP4FFTUVWk7rx8C/FnKo/0pyMrJ4fuA6hjUtGPjnAlTV1chKSsN910VaLBxKXq7y/vRvyrSJDY0m9eG0/XKlaeI9Q7j91W+0XTWGVktHkJeTi8fuS9I6ovxjetcaD+5I/3UFz4k4OOGHCtmOimr+OfvJ/ms8O5rfMhvuFkCtTnY0H9GdaxvlxwDpWxozZu9i3M895Omh6xUSU2lpVTGl4XfjeTxindz5o7TsBnfEft1E2fsjJVw4vI06PVtSs2OjUg+QN6tXjWF/zOPOlhP4FWrB/FDjFf5/+89dzJREX1+fJ0+ecOPGDS5dusTKlStZvXo1jx8/xsjISOEyS5cuZf78+XKfXaszWWFagMzYRHKzc5AUuSMhMTckIzL+bXcBu3VfYNGrJfcHf0P6G9zBTo9NIjc7B+0i8WmbGZIWqbgZNzUqHp0igyN1zA1Ii4qX+0xVXY2eO+agX82Uf0esV3oHvv6IrmTEJRFwqXR3WzKlMWsViVnL3IB0JTGnR8UXSy8xNyRdwXdg1q4+BnWqcH9a8R/SgSfuEXjiHhIzA3JSM8jLg3rTPiE5ILJUsQNkxSaRl52DRpF4NM2NyHyLMmGzcizB204SfeouAKkvApFUM6fanCFlupipjGXiv8L9ihOBzgVjF9Q18wfM6pkbklQoL/XNDQl196/QbVfRyJ9MRMfMgNRC5VLHzICoIjNivZImLTs6ZvJlR8fMUNYtJCUqAXWJBpoGOnKtMzpmhqRKy1eDwR0xqGbO4cHfyLpsXZjzC9Ndf6N271Z4/ps/uPfu+sPc+/4IOuZGaEYlYt3ZDoBYV//8MlwkDm1zw2ItjrLYo+LRNpcvw9pmBWXYsl19tMwMGP5oi+z/qupqtF45hkaT7TnWfh4Afifv43fyPlpmBvkzmOVBo6l9SQpUXke8OuZ0FBxzRVtrXlF4zJkZkFrkmCtPnpef8FuhWb7UNfN/MuiaGZJcqIzomRkS7q540HtqXP6+6hb5bnTNDGQtkK/WFeUt35Uv2jsUw6qmcp/pWRgx7pADQU5enPl6V5n259X5WbMcz88GzWohMTei4+WC53Soqqth3KEBNSb24VL1z6GEC1uvy08ILZTHarI8NiClUEy6ZgZEKDkOX+Vx0eNQ18xQlsc2HRthXNOC+a6/y6UZsmMuQY9ecmDUWtlnpnWr8NmBpTw9eJ17W0998PFWRpWtZeZDV2nHzCjz8OFDufcPHjygbt26qKnldwtTV1enZ8+ebNy4ERcXF/z9/bl27ZrS9UkkEgwMDOReyrqYAeRl5ZDg4odZl8YFH6qoYNrFjnhHr7faN7t1X2D1SRseDP2OtDcc7JablUOUqx9VpT8CXsVXtbOd0gGhkU7e8umBql0aE+FUkP7Vj1ZDG0vOjNpARgn9mOuP6IrnsTvkZpduOs3crBziXPywLBKzZefGRDspztMYR28sisRs1bUx0U7F99F2dHdin/kSr6TiBciITiQ7NYMag9qTm5FJRBn6RedlZZPs4othl0KteSoqGHZuQpLjy1KvpyhVbQkUaSHKy8mV3eUsrcpYJv4rMlLSiQmIkL0ivIJJjIyjbseC+kOip0315rUJePJ29cfrth3rGUJKZDzVOxV8r5p62lg1r024kuMsNyuHSFc/uWVQUaF6JzvCpWUn0tWPnMxsahRKY2RrjUE1M8Kk+6SurZk/UUuhsSd5uXnk5VGsPOfl5pESEUduVg61Bncg0tGTtMh4Ylz8ZBc3r+Kw7mxHlIJjHiDKyVs+PVCla2NZep9/7nKq5zJO93aQvVLCYnHbfpZLY4q3oKVL6wibge3IycgkrIQ6QnbMFcm3ap3tCFcSb8QTb6p1ko+3epFjrrxlpqQTFxAhe0V5hZAUGUetImWkavPaBCspn7lZOYS5+sktg4oKtTo1li0THxRFYngsprbyXexMbK1ICI6Wvde3NGb84eWEufpxeuFvJc5wpUheVg6JLn6YFjs/Nybe0bNM63ol5tZz7nRbyL0eS2SvhKc+hP5zl3s9lpR4IQPF8zjaK4TkyHhsiuRxlea1CSkhj8Nd/eSWQUWFmp3sCJEeh/e3/8vOPsvY1ddB9gK4umYfZxcVXDCY1a3KmIMOuP5zm1s/HP3g4xUE+A+2zAQGBjJ//nymTZvGkydP2Lp1K5s2bQLgzJkz+Pr60rVrV4yNjTl37hy5ubnUr//mg7AV8dtxlmY/zyDe2ZeEp97YTO2Luo6EoEP5d8ubbZ1BengcL9ceAvIHJerXy59eU1VTHS0rYwzsapKdkk6qtK9w4w0TqTKkI47jN5GTnCZr+clKSiU3vWxN266/n6f7T9OIeuZHpLMPTSbbo6Et4eXh/Pg+2jyNlPA4Hm04kp9+10UGHHOg6dS+BF51pvagDpg3teXWkvxpYFXV1ej125eYNbHh/PhNqKipyu7yZ8Qnyz0DoGonOwxqWvDi4I0yxfzyt/O02zKN2Gd+xDj7UH+KPeo6Evykedru5+mkhsfhKp2S1HPnBT4+vpz60z4h9OpTagzqgHEzWxwXyd/JU9fTpvqAtjh/o7jfdZ0JvYhx9CIrJR2rrk1otnI0LmsPk1XG5zKE/vYvdbfMJvmZD8lPvakypR9qOhIipV0k6m6dQ2ZYDAHr8uNQ0VBH51WZ0FBHYm2Crp0NOSnppEufNxJ72ZFqc4eSERIt7WZWi6rT+xNxsOzdLipjmXhTqalpBAaHyt6HhEbwwtMHQwN9rK0s3kkMJbmz+zwfzxlMtH84sUGR9F4wnMSIOLnnxkzZ74Dbxcfc23sJyJ+a2dSmYOygSXVzrBvVJC0+mfjQmFJv++muC7T9cjDx/hEkBkbSYeEwUiLj8Sn0XIchB5fifcERlz2XAXiy8zy9N00j0tWPcGcfWkyyR0NHgru0dTAzKQ23wzfosmIM6fHJZCan0e2bcYQ6ehIuvcMbePs5nZeN5qPvvsD5r0uoqKrQeuYA8rJzCLrvAYCWsR51+7Ul+L4HahINWgzrhk2/dlwY9h0Abn+cp8tP04h28SP6qQ+Nptijri3BS1qGO2+ZRmpYHE+kZdh910X6HnPAblpfgq84U2tQB0yb2nJvcX4ZzohLJiNO/gI8LzuHtKh4Egs936vBF72IdPQiOzWdKl0a03rFaJzWHX7ts1ue/XGej3+cRpRL/jHXdFJ+vC+k+dbjp/xj7sH3+fG67LrIoKMONJval4CrztQdmH/M3fi6YDpuiZEuelVM0bU0BsBYOv4gVTpjIOS3VumYG2IonW3NtEF1MpPTSA6NIaMUs3A93HWBLnMGE+sXTnxQFN0XDCMpMp4XhcrI2ANLeXHRkcfSMnJ/53kGb5pGqIsfoc98aDcxv4w4Hy1oQb7/21m6zRtKhEcg4W4BNBvWBbPaVTg2Pb9lTN/SmHGHl5MQEs3ltQfkpvAty+Bw/x1nafLzDBJk5+dPUNORECI9lzTZOpOM8Fg8C52f9aR1sYqmGlpWJujb1SRHen7OSUkvNnY1JzWDrLikMo9pfeXxrgt0nDOYWL8IEoIi6SrNY89CeTz6wFI8LzriJM3jRzvP03/TNMKledxGmscu0jxOiUpQmE8JoTEkBOXfHDWrV43PDi7F75Yrj3ael415yc3JJS026YOLF/LHTmnoStA1N0RdSxOLRjUAiPYKKfPzh4TK6z93MTNu3DjS0tJo27YtampqzJ07l6lTpwJgZGTE8ePHWb16Nenp6dStW5eDBw9iZ2f3mrWWTdipB2iaGlBv8TAkFkYkugXwaPQG2aBD7apmcv2ptayM6XJtg+x97VkDqD1rADF33Xkw5Fsg/yGcAB1OrpTb1rMvtxN8uGyzP/n8+xAtUwNaLxya/5A79wDOjd1ImnQAn16R+CKcvLg2+1faLB5O2yUjSPAL5+Lkn4h7mV9R61gZY9MnfwrG4ZfXyW3r9PC1hEl/jADUH92N8MeexJfxYZ9Bpx8gMdWn8eJh+Q/NdAvg5mffkyGNWaeqqVzMMY5e3J/5C02WDKfJ0hEk+4Vzd8KPJLyUP7nUGNweVFQIPHFP4XZNW9Sm8cKhqOtqkeQdiuPi3QQcu1Om2AGiT91D3dSAGotH5T80080ft9FryZIOgJRUNZMbh6NpZUzzqwV9kavOHETVmYNIuOfG8yGrAPBbtosaS0Zhu2EKGqYGZEbEEb73MkE/lv2hmZWxTLyp5y+8mDhniez9xq35d/kG9e3J2uUL3kkMJbmx4180tSUMXT8ZLQMd/B+/ZNf4DXIzeZnWtETXRF/2vlpTW6YfKqgbBqwYB4DjsZscWbij1Nt22n4GDW0JPdZPlD008+TYjeQU2rZhDQu0C23b69+HaJsY0H5+Qdk5OXaj3GD1W2v2k5ebR7/f5qKmqU7ATVeuL/9L9v84nzD+nfQj7b76lJEnVpGXl0eUWwAnx22U6/LWcGgXOjt8hopKfsvKheFrZQ/F9D/9EC0TA1osHJr/0Ey3AC5/vpH0V2W4ipncXfIoRy9uzv6VlouH03LJCBL9wrk26SfiX5btB6hZC1uaLxyCho4WCT6h3FuyG99/7r52Oe9/8+Ntu6Ag384UPeYKtTyEO3lxZc6vtF00nPaLRxDvH875yT8RWyhem14t6fFjwTNuev86B4DHPx7n8U/HAWj8eQ/azB8iS/PpPysAuDr/N14eff3kIfd2nEFTR0L/9ZPQMtAh0NGT/eO+lysjxjUs0TEuKCPuZx6ga6pP9/nD8h+a6R7AgXHfyw0af7j7AuoSDXqv+BxtI10iPALZN2Y9cdLuerZdmmBaywrTWlbMe7RNLqY1Nce8Nu5Xwk/dR9PUgLqLh8vOz45Fzs/InZ9N6HTte9n7WrMGUGvWAGLvuvNoyJpSb7csHuw4g4aOhL7rJ6JloEOQoydHxskfh0Y1LNAulMceZx6iY2pAl/lD0TU3JNI9gCPjNhabNKIkDT5pi66ZIY2HdKbxkM6yz+ODotjeed4HFy9A3+8nU7NDQ9n7Sefzzze/dvpKrlXvg5NXth4UQslU8vLK2E4rcNZy9PsOoUyCNZR3i/sQGeVUviJZLe/1T/v+kDxX13rfIZTJROeK+dFQURxaV75Bq1VzK1c9YVjJbrqmVsJO3dGqlasubpteuQrFU63/3P3kD87SgH3vOwSFIrp3f2/btnzN7GOVkTiSBEEQBEEQBOEdERMAlK9KeK9IEARBEARBEARBXMwIgiAIgiAIglBJiW5mgiAIgiAIgvCO5OWKCQDKk2iZEQRBEARBEAShUhItM4IgCIIgCILwjogJAMqXaJkRBEEQBEEQBKFSEi0zgiAIgiAIgvCO5ImHZpYr0TIjCIIgCIIgCEKlJC5mBEEQBEEQBEGolEQ3M0EQBEEQBEF4R8QEAOVLtMwIgiAIgiAIglApiZYZQRAEQRAEQXhHxEMzy5domREEQRAEQRAEoVISFzOCIAiCIAiCIFRKopuZIAiCIAiCILwjeXnvO4L/FnEx8wYualeuaSjM8ypXA5xmJXyY1DGNynUoZZD5vkMoE4fWDu87hDJZ67j2fYdQZvubrXzfIZSJv3rl+jWg8b4DeAMNK1c1wR3tynWuM65cPyWwy8h+3yEIgkKV6xeYIAiCIAiCIFRiYgKA8lW5bmMIgiAIgiAIgiBIiZYZQRAEQRAEQXhHRMtM+RItM4IgCIIgCIIgVEriYkYQBEEQBEEQhEpJdDMTBEEQBEEQhHdETM1cvkTLjCAIgiAIgiAIlZJomREEQRAEQRCEd0RMAFC+RMuMIAiCIAiCIAiVkriYEQRBEARBEAShUhLdzARBEARBEAThHcnLE93MypNomREEQRAEQRAEoVISLTOCIAiCIAiC8I7k5b7vCP5bRMuMIAiCIAiCIAiVkmiZEQRBEARBEIR3JFeMmSlXH2TLzBdffMHgwYPfdxiCIAiCIAiCIHzAKqRlJjMzE01NzYpYdaXzybzhdBjdA20DXfwcX3Jk+U6i/MOVpq/dtiE9pg6gepNaGFqa8MfUH3C95CiXpu9Xw2g5oCNG1qbkZGUT5OrHmf8dIsDZu8zxdZs/lBajP0LLQJcgR0/OO+wm1j+ixGVaj+tFh6n90DM3JMIjkAur9hD6zFf2/7GHHLDp0EhuGad9VznnsFv2fkXA/mLrPT57K27/PlC63Qbje9J4Rj+0zQ2Jcw/kwYq9RDv7Kk1v078tLRYNQ6+aGUl+ETiuO0TwtWcK03bYMIEGY3vwcNXfuO+8WOz/qprq9D/zDaZ2NTnVexmxboFKt/s69vOG02H0x2gZ6OLv+JKjy3cRXUKZsG3bgI+nDqCatEzsmvo/nhcqE6rqanyycCQNuzfHtIYF6UmpeN55zpnvD5IYGffGcb7Sf94IOknLsK/jCw6+pgzXaduQXlMHUr1JLYwsTfht6g88u/RYLs3Y/82kw7Ducp+53XTml/Hr3jreonrPG0bb0R+jLc3vE8t3l5jftdo2oNvU/lRrYouBpTF7pm7Crcgx+K45Orvy54FjuL/wJiomli3rV9Cja8cK327hYy7WPZCHrznmavZvS0vpMZcoPeZCSjjm6o/twaMix5yBrRWtl4/Gok09VDXUifMI5OkPxwi/51HquD+aP5SWheq1M6Wo19qM60Unab0W7hHI+VV7CHkmv6/VWtahx6IRVG1em7ycPMLdA/h77AayM7Jkaep+3JxuX36KZcMaZGdkEfDAg0NTfyp17ABdpfWyxECXYGm9HPea+FuN60X7QvXypSL18ueHHKhZpF5+su8q5wvVy6VR+4te1J/ZDy1zQ+LdA3nqsIe4EspEtf5tsVsyHN1qZiT7ReDy3UHCC5UJNR0JTR1GUcW+NRJjPVKCovDadRHfvVfl1mPSqg5Nvh6BScv8vI93C+DW6A3kpmcV3WQxPeYNo7W0PAQ6enJ6+W5iSqgDANqN7UXnaf1l5eHMqj2EPPMBwKiaGQvv/KxwuYMzt+B27iEAVZva0nvJKKo0qQV5EPzMh4vrDxDu8frzR8f5Q2ny2UdIDHQIdfTkyrI/iX9NGWg+rietp/VD19yQKI9Arq3cS7i0DGgZ6tJx/lBqdm2CflVT0mIS8b7kxN3/HSMzKU22jo++GUvV1vUwrVeNWO9Q/u7r8NpYi6oxoTe1Zg5A08KQJPdAPJb9ScJTH4Vp9epXo87i4Rg2tUW7hjkeK/YQ8Pt5uTTVx/eixhc90a5uDkDyy2C8Nx0n+ppzmWMT/pvKpWWme/fuzJ49m6+++gozMzP69OnD8+fP6du3L3p6elhaWjJ27Fiio6Nlyxw7dowmTZqgra2NqakpPXv2JCUlhdWrV7Nnzx5OnTqFiooKKioq3LhxA4CgoCBGjBiBkZERJiYmDBo0CH9/f7lYdu/ejZ2dHRKJBGtra2bPni3734sXL+jcuTNaWlo0atSIK1euoKKiwsmTJ8sjG4rpOX0gXSf05YjDTn4c7EBmWjoz9i5DXaKhdBlNHQkhHgEcXan8BBPpG8bRlX+yoc8iNg9bRWxwFDP3OqBnol+m+DpO70/bL/pwbtmf7B60kqzUDD77+2vUSoivUf/29Fo+hltbjvNH/+VEeATy2d9fo2NqIJfuyYFr/Nh6pux1Zf3BYus6teA3uTQvLjkp3W6tge1ou2oMzj+e4LT9cmLdA+m9fwlaRbb7ikXrunT7ZRZeB29yus9yAi468fGueRjVr1YsbQ371pi3rENKWKzS7bdxGE1a+NtfGHw8fSBdJ9hz1GEnmwcvJyMtg+l7l76mTGgR4hHAPyv/VPx/bU2q2dlweetxNvVfyp/Tf8SidhUm71z41vH2mj6I7hP6ctDhD34YvIyMtAzm7HV4bRkO9vDn8MpdJa7b7cZTvm4zRfbaPWfLW8dbVPfpA+g0wZ7jDrvYOngFmWkZTNr79WvjD/MI5EQJx+C7lpaWTv06tjgsmPnOtmkzsB1tihxzvUo45sylx5yn9JgLfMNjrseeBaioq3FxxDr+7Zu/3R57FqBtbliquDtN70+7L/pwZtmf7By0kszUDMb+XfJ3bte/PX2Wj+HGluP8Jq3XPv/7a3QL7Wu1lnX4fM8SfG658sfAlfw+cAWP9lwiLy9PlqZh3zYM+WkGzkdvscN+KbuHfoPrqXulivuVDtP70+aLPpxf9id/Sevl0a+plxv2b0/P5WO4veU4u/ovJ9IjkFEK6uWnB66xufVM2euqgnq5JNUGtqfZ6jG4bzrO5T7LSXAPpOvBr5EoKROmrevSbvts/A7c4HJvB0IuONLpz/kYFCoTzb/5HKuPmvJo9q9c6LoIzz/O02LteKx7t5SlMWlVh64HlhB+05WrfVdype8KvHdfgtw8RZuV02X6ANpP6MMph93sGLyCzLR0xr+mDmjcvz19l3/O9S3H+bWfA+HugXyxt6A8JITGsKHNDLnX1R+PkpGchtcNZyC/Hhm/ZwkJoTH8NnglfwxbTUZyGuP3fo2qulqJMbeZ0Z8WE3pzZeluDgxcRVZqBkP3LSmxDNQf0I5uK8Zwf/MJ/u63nCiPQIbuW4K2NGZdS2N0LY24ufYAe3p9zYUFv2PTrSl9fphSbF3PD9/k5RnlNxZLYjWoAw2+GYv3pmPc67WUJLcAWh9aiqaZ4jKiqq1JWkAkL9ceID1C8Tk2PSyGl98d5F6vZdzr7UDMHTda7lmInoK6pbLIy1N5b6//onLrZrZnzx40NTW5e/cuGzZs4OOPP6ZFixY4Ojpy4cIFIiIiGDFiBABhYWGMHj2aiRMn4uHhwY0bNxgyZAh5eXksXLiQESNGYG9vT1hYGGFhYXTs2JGsrCz69OmDvr4+t2/f5u7du+jp6WFvb09mZiYA27dvZ9asWUydOhVXV1dOnz5NnTp1AMjJyWHw4MHo6Ojw8OFDfv/9dxwcyn7HoSy6TfyES1uP43rZkdAXgfw9/xcMLY1p2ruN0mU8bjhzdtNhXC4+VprG6fRdPO+6EhMUSbhXMCe+24u2gQ5VGtQsU3xtJ9lze9tJPC87EfkiiFPzt6NvYUSD3q2ULtN+cl+eHrrOs6O3iPYK4eyy3WSlZdB8RDe5dFlpGaREJchemclpxdaVkZgilyYnQ/kdNrspffE8cB3vI7dI8Arl3td/kp2WQd1R3RSmbzSpDyE3XHi+4ywJ3qE8/eEYMc/9aTihl1w6HStj2n83jluzfyU3O0fhuqp+1JQq3Rrz6NsDSuMrrW4T+3Jp6wmeX3Yi7EUgB+b/goGlMU16t1a6zIsbzpzfdARXJWUiPSmNHWPX4Xz2AVG+YQQ89eaflbup3rQ2RlVM3yrejyd+woWtx3G57EjIi0D2zN+GoaUxzUoow+43nPl302GelVCGAbIzs0mMSpC90hJT3ipWRTpP7MvVrSdwv+xE+ItADs//FQNLY+xKyO+XN55xcdMR3C6+39aYwrp0aMOXU8fTs1und7bNosfc/VIec26FjrlYJcdcO+kxl1fkmJMY62Foa43rtn+J8wgiyS8Cp3WH0dDRwqhB6X64tJ9kz61tJ3l52YmIF0GcKEW91mFyX54cuo7z0VtEeYVwRlqvtShUr9mvGMvDvy5yZ/u/RHmFEOMbhtvZh+RkZgOgqqZK31XjuLTuAI77rxLjF06UVwhuZx+WKu5X2k6y506hevm0NP76JcTfbnJfnA9dx0VaL59btpvstAyavUG9XJJ60/rit/86/odvkeQZgtPi3eSkZWAzWnGZqDvZnvDrLnhuP0uSVyhuG48R5+pPnYm9ZWlMW9fF/+htou57kBocjd++6yS4B2LSorYsTfNvxuK16yIvt/1LomcIyT5hBP/7kFxp3pek40R7bmw9yQtpeTg2fzv6lkY0LKEO6DT5ExwPXefJ0ZtEeYdw2mEXWWkZtJLmZ15uHslRCXKvhn3a8PzsAzJTMwAwq10FHWN9rv54lGjfMCK9Qri+5Tj65kYYVTUrMeaWk+x5uPUUPpefEP0iiPPzdqBnYUSdEspAq8l9cT14Hbejt4j1CuXy0j/JSsugycj8mGM8g/l3+s/4XnlKQkAkQffcufvDUWx7tEBFreCn4PVVf+O89woJgVGvzVtFbKb3I2jfNUIO3STFMwS3RTvJScuk6ujuCtMnOvvycs1+wk/eJy9D8fcZdekJ0VedSfULJ9U3DK/1h8lOScewVd03ilH47ym3i5m6deuyceNG6tevz+XLl2nRogXr1q2jQYMGtGjRgt27d3P9+nU8PT0JCwsjOzubIUOGYGNjQ5MmTZg5cyZ6enro6emhra2NRCLBysoKKysrNDU1OXz4MLm5uezcuZMmTZrQsGFD/vzzTwIDA2UtN9999x0LFixg7ty51KtXjzZt2vDVV18BcPnyZXx8fNi7dy/NmjWjc+fOrF27trx2vxjT6hYYWhjz8q6r7LP0pDQCnL2xaVl+B6CahhodR/cgNTGFEI+AUi9nVN0cfQtj/O64yT7LSEojxNmHqkriU9VQw7pJLfzuPC/4MC8PvzvPqVZkmcaDO7Hg6Q6mXdrAx4tHoq5VvNuh/bdfsODpDiaeWlPspFt0u6ZNaxF6uyBW8vIIu+OGRas6Cpcxb1WH0NvP5T4LueEin15Fha4/T+f59rPEe4YoXI+WmQGdfpjMrS93kJOWqTTG0jCtboGBhTGeCstEvbdad1Ha+jrk5uaSlpj6xut4VYZf3HWRfZaelIa/sze25RBv3faN+N7xD1Zd3cyo7yaja6T31usszESa3153C8pBelIaQc4+1CzHY/C/6NUxF6bgmDMv4ZgLU3DMmRc55rqUcMxlxCWT4B1KnWGdUdeWoKKmSv3PPyYtKoEYF7/Xxm0srdd8i9Rrwc4+xeqoV9Q01KjSpBa+heq1vLw8fAvVa7qmBlRrWYeUmEQmHV/FQsdf+eLwcmq0LjgOrBvbYGBtQl5uHtPOrWXB422M2bMYi3qlv3tsVN0cPQtj/CuoXrYb3Il5T3cw5dIGuiupl5VR0VDDuGktIm7Lbyfi9nNMlfyoNG1dh8giZSL8hgumhcpEjKMXVXq3RMvKGADzjo3Qs7Ui4mZ+PSkxNcC0VR0yohP56PQqBrj8SvfjyzFt+/o6yLi6BfoWxvgUqgNelYfqJZWHxrXklsnLy8Pn7nOly1RpXIsqdjY4Hr4h+yzaN4yU2CRajfwINQ011CUatBrZnUivYOKDlV8oGNYwR8/CiIBC32dmUhphzj5UUZLPqhpqWDapReAd+eM18I4b1i0VH68AEn0dMpPTyMspn3mCVTTUMGhai5jbBec48vKIueWKUetyOsepqmA1uAPqOhLiHT3LZ53vQV6uynt7/ReV25iZVq0K7hg8e/aM69evo6dX/MeJj48PvXv3pkePHjRp0oQ+ffrQu3dvhg0bhrGxsdL1P3v2DG9vb/T15btSpaen4+PjQ2RkJKGhofTo0UPh8i9fvqR69epYWVnJPmvbtu1r9ysjI4OMjAy5z3LyclBTKbmZ2MDcCICkqAS5z5OiEmT/ext2H7fki61z0dDWJDEynl8/X0tKXFKpl9ezyI8hJVo+vpToBPSUxKdjrI+quhrJxZZJxKx2Fdn756fukRASTXJEPBYNq9Pj69GY1rbm6LTNsjQ3Nh3F75472WkZ2HZpwifffoGmjhaP/yo+XkVikr/dtCLbTYtKwLC2tcJYtc2NSItKlPssPToR7UL71mRWf3Kzc3HfVXybr3T5aRov/75KjIsfetVKvpv2OvrSbScXKRPJUQmy/5UHdYkG/b/+jKen75FRxjuvhRlKY0osEm9iOZRh95vOOF94SExQJOY1rRi4aDSz/lrGD0McyCtF15HS0Jd2Syqa30nlnN//ReV1zKUpOeY8SjjmLo7awMe7vmKM5x/k5eaRHp3I5TEbyUx4/YX5q3qteB31dvWacQ0LALp/NYRLaw8Q7h5AsyFdGHdgGb/2XkKsf0ShNEO5+N0+4oOi6Di1H18cXs7W7gvITnh9y6PuW9TLxZdJxLRQvewmrZeTpPXyx9J6+Z9C9XJJXpWJ9CLHU3pUIvp1qihcRsvcqFj6jKgEtCwK9uWpwx5a/TCJAU+3kZuVTV5uHk6LdhL94AUAujXz87XRgiG4rDlAvFsANYd3oduRZVz6aAnJfsrHkegpqQPy61zF3RZ1jPVRU1AekqMS5M5zhb26SAl64iX7LDMlnV2jvmXM7/PpPudTAGL8w9kzbgO5JVw86Eq/59Ro+WMpNToRXSUxa5soLgOp0QmYKDtejfVo/+VgXA5cVxpLWWmaGKCqrkamgu9ct27Vt1q3XsPqtD/7LaoSDXJS0nkyYRMpSm5CCv//lNvFjK6uruzv5ORkBgwYwPfff18snbW1NWpqaly+fJl79+5x6dIltm7dioODAw8fPqRWrVoK15+cnEyrVq3Yv7/4wHFzc3NUVStmYrb169fzzTffyH3W1rAR7Yway33WelBnRq4r6Hv628QNFRLPK1733fj+k8XomRjQYdTHTPjlKzYNdiA5JlFh+saDO9Jv3STZ+4MTfqiw2J4eLKgcI18GkRwZz9iDDhjXsCAuMBKA2z+flKUJdwtAQ0dCh2n9FF7MVATTJjY0mtSH0/bLlaZpOLE3GnpauGw9/UbbaDmoEyMKlYk/JhY/Hsqbqroa47fNRUVFhaPLSx6zUlSbQZ0ZvW6q7P32ievLOzwZp38LxhGEvgwi2COAb29vo157O17ee17Cksq1GNSJIesmy97/OXHjW8cplJ/SHHMA7deOJz06kfOffkt2ehb1PutOjz0LOPPJStIi4+XSNhnckQGF6rX9FVSvqajm38102n8N56O3gPx6y7aTHS1GdOfqxsOoSM9Bt7edxON8fhfLkwt/Y/6DrTTq1w6XA9eKrdducEc+KRT/4XdUL0dJ6+XPDzpgVMOCeGm9/D7Umdgb05Z1uDPuf6QGR2PWvgEt1n1BWngckbfdZHnvu+8a/ofz8z7+eQAWne2wGd2d5+sOy9bVbFAnBhbKz7/fQR2gLtGg6aCO3Pj5RLHPP904lUAnT458uQ0VNVU6T+nH2N2L2D5wuWzSiAaDO9Jr/UTZcie++F+Fx6ypp82nfy0kxiuE+z8dr/DtlYcU71DufbwEdQMdrAa0o+nPM3n46TfigkYAKmg2s5YtW/LPP/9gY2ODurriTaioqNCpUyc6derEypUrqVmzJidOnGD+/PloamqSk5NTbJ2HDx/GwsICAwPFA8lsbGy4evUqH330UbH/1a9fn6CgICIiIrC0tATg8eOS+/QDLF26lPnz58t/1mRisXSuVxzxdy64K6OumT9QT9/ckMSoeNnn+uaGBLv7v3a7r5OZlkF0QATRARH4P/Vi+fXNdBj5MZd/PakwveflJ4QUmk1EXTP/e9E1MyS50A8EXTNDwt0Vd1dLjUsiNzsHPTP5u0O6ZgbF7nwV9mq7xjaWsouZYmmcfeg6dwhqmupQpB99Rmz+drWLbFfb3JA0JdtNi4pH21y+nGiZGZAm/S4s29VH28yAEY8KBp2rqqvRZuUYGk2251j7eVh3aoR5q7qM8/tLbj0Dzn2L74l73P7qN6X7DOB2xYn/FZph7lWZ0CtSJvTMDQlVkudloaquxvhf5mJczZxfR39b5lYZFyVl2KBIvAblVIYLiwmKJCkmEXMbqze+mHG/4kSgkvxOKnIMhpZz/P815XXMaRc55rTMDBhe5JhrXfiY62xHtZ4tONhoGlnS8vtg2V9U6dqYOsO74PrLv3Lrf1mkXlOT1mt65VyvJUnXFeUt/8MpyjsUw6qm8mm8CtLkZGYTFxgpS1OU1+Un7FQQv6J6OeI18esqiD+lhHo5VLpdExvLUl3MvCoTWkVaB7TMDUiPVLyd9Kj4Yukl5oakS/dNVUuDJktHcnfiT4RfdQYgwSMII7ua1J/Rj8jbbqRF5KdNLPKjNckrFJ0i+epxxYkguTpAWh7MDUkuUueGlZCfOQrKQ9F1vNL4k3ZoaEl4evy23OfNBnXCuKo5v3+6SjZJxNG523B49gcNe7fG9d/7APhcfkJ44TIgyY9Zx8yAlEJlQMfMgCh3xbOgpcUqLgM6ZobFyoCGrhZD9y4iMyWdU1M3Kx0r+iYyYxPJzc5BU8F3nlHkRkRZ5WXlkCqdzS3RxQ+D5rWxmdIXt0U732q970te+XRAEKQqpDlj1qxZxMbGMnr0aB4/foyPjw8XL15kwoQJ5OTk8PDhQ9atW4ejoyOBgYEcP36cqKgoGjZsCORflLi4uPDy5Uuio6PJyspizJgxmJmZMWjQIG7fvo2fnx83btzgyy+/JDg4GIDVq1ezadMmfv75Z7y8vHjy5Albt24FoFevXtSuXZvx48fj4uLC3bt3Wb48/w6hioryPoQSiQQDAwO5l6IuZhkp6bKLi+iACMK9gkmIjKNexyayNFp62tRsXgf/Qk3R5UVVVUVWcSuSmZJOXECE7BXlFUJSZBy1OtnJ0mjqaVO1eW1ClMSXm5VDmKsfNoWWQUWFWp0aE1zCPlna5U9MkFxCZWbVqCZp8cmywbRFtxvj4od1Z/ntWne2I9JJ8XTUUU7e8umBql0by9L7/HOXkz2Xcaq3g+yVEhbL8+1nuTQm/27ewxV/c6pXQZrLY/Pvmt6YsQ2n748q3ZdXFJWJxMg46nUsaNWTyMrE2/X9fXUhY25jzfYx35Ean1zmdWSkpBMVECF7hUnLcP0iZdimeR183zLeooysTNA11iPhLaaSzkhJJyYgQvaKkOZ33SL5Xb15bQIq4Bj8LynpmIsqwzFXpWtjWXqff+5yqucyTvd2kL1SwmJxK3TMqWnnj+HIy5XvhpOXmweqxevpzJR0YgMiZC9F9ZpET5tqzWsrraNysnIIdfWTW0ZFRQXbQvVafFAUieGxmNrKd9kxtbUiITh/ls4wVz+y0zMxLdStR1VdDaNq5rI0iuIvXC9He4WQHBknV8e+ab1sUw71cmF5WTnEufhhUaRMWHRuTIyT4u3EOHrLpwcsuzYmRlomVNXVUdVUL/bLLi83F6QtXalBUaSFxaJfpLuUnq0VqUXytWh5iJSWh9odi5eHoJLKw3M/bDsWKQ8d7RQu02pkd15ccSI1Vr6bt4a2Jnl5uXKz3eXl5pGXJ/+bIyslnfiACNkrxjOE5Mh4ahQpA9bNaxOqJJ9zs3KIcPWTWwYVFWp0siPsScHxqqmnzbB9S8jJyuHkxB9LnHTnTeRl5ZDo4odpl0I9V1RUMO3SuNzHt6ioqqCqqXx2N+H/lwppmalSpQp3795lyZIl9O7dm4yMDGrWrIm9vT2qqqoYGBhw69YtNm/eTGJiIjVr1mTTpk307dsXgClTpnDjxg1at25NcnIy169fp3v37ty6dYslS5YwZMgQkpKSqFq1Kj169JC11IwfP5709HR++uknFi5ciJmZGcOGDQNATU2NkydPMnnyZNq0aYOtrS0//PADAwYMQEtLqyKygZu7z9FnzqdE+YcRExRJvwUjSYiIw6XQMzdm7V+Oy8XH3N6b371KU0eCuU3BuB7T6hZUbVST1Phk4kJj0NSW0Hv2pzy/4kRCZBx6xvp0GdcHQysTnp4t21SKj3ZdoPOcwcT6hRMfFEX3BcNIioyXmyL58wNLeXHREcc9lwF4sPM8gzZNI8zFj9BnPrSdaI+GjoRnR28C+X3LGw/uiNc1Z9Lik7FsUINeKz8n4IEHkS+CAKjbowW65oaEPPEmOyML2y6N6TRrIA9+P6c0Vrc/ztP5p2nEuPgR9dQHuyn2qGtL8Dqcv90uW6aRGhaH04YjALjvukjfYw7YTetL8BVnag3qgGlTW+4uzp9uNyMumYw4+R/8udk5pEXFk+gTBkBKaIzc/7NT0gFICoggtYRpnEtyc/d5es35lCj/cGKDIum7YASJEXFyzxKasX85rhcfc6dQmTArUiaqSMtEfGgMqupqfLF9HtXsarFz0veoqqnK+oOnxieTk/Xmd96u7T5H3zlDiJSW4QELRpEQESf33Jgv96/g2cVH3JTGK1FQhqs1qkmKtAxLdCR8Mnc4Ty88JDEqHvMalny69HOijqnIDwABAABJREFU/MPxuKX4mSRv6s7u83w8ZzDR0vzuvWA4iRFxcs+NmbLfAbeLj7m39xKQn9+mheI3qW6OtfRiO75ImXhXUlPTCAwOlb0PCY3ghacPhgb6WFtZVMg23f44T5efphHt4kf0Ux8aFTnmOkuPuSevOebulXDM5RU55qIcvchMSKHz5mk823ySnPRM6n32EXrVzQmW3rl/nQe7LtBVWq/FBUXxsYJ6bZy0Xnskrdfu7zzPp5umEeriR8gzH9pL67Wn0noN4N5vZ+k+bygRHoGEuwXQbFgXzGpX4cj0/JamjOQ0HPdf5aN5w0gMjSU+JJpO0/rl52UZZjR7tOsCnQrVy92k8b8sFP9nB5biWahefrjzPAMV1Msu0viNpPWyt7RetlBQL5eG52/nabtlGnHP/Ih19qHuFHvUdST4H8rfTpufp5MWHifr+uW18wLdjy+n3rRPCLv6lOqDOmDSzBanRfldYLOT04i8507TFaPJScskJTga8w4NsRnWBefV+2Tbfbn9LHYLhxLvFki8WwA2I7pgUKcK96e8fjr3e7sv0H3Op8T455eHHguGkxQRj0ehOmDC/mW4X3TkobQOuLvzHEM3TSfU1ZdgZx86TuqLpo4WToXKA4BJTUtqtm3A3xOKd2fzvvOcPss+Y8C3E3jw10VUVFXoOmMguTk5+N53LzHmJ7su0P7LwcT7R5AQGEmnhcNIjozHu1AZGHZwKd4XHHGWlgGnneex3zSNcFc/wp19aDkpvww8P5Ifs6aeNkP3LUFDW5NzX21HU18bTX1tANJiEmVjFY1qWqKhK0HX3BB1LU3MG9UAIMYrBJTMNlaY/46zNPl5BgnOviQ89cZm6ieo6UgIkZaRJltnkhEei+faQ0D+pAF60kkyVDTV0LIyQd+uJjkp6bKWmHoOo4i66kx6SAxqelpUGdIJk46NcBxZcV2hK9p/dSD++1IuFzOvZhMrrG7duhw/rrgvZsOGDblw4YLS9Zmbm3Pp0qVin1tZWbFnz54SY5k2bRrTpk1T+L8GDRpw584d2fu7d+8CyKZvLm9XdpxGU1vCqPVT0TbQwffxS7aPXy/3gDWzmpZyz4ep0bQ2Xx5aJXs/ZMV4AB4eu8H+hdvJzc3FsnZV2g7thp6xPinxSQS6+LBl+GrCvYLLFN+9HWfQ0JHQb/0ktAx0CHT05MC47+Xu1hjXsETHuCA+9zMP0DHVp9v8YfkPZ3MP4MC470mRDlbMycqmVqfGtJ1oj6a2hISwWF6cf8ztrSdl68jNzqHNuF70XvE5KioqxPpHcPnb/Tw5qHwgot/ph2iZGNBi4dD8B/i5BXDp842kS7erW8VMbuB4pKMXN2f/SsvFw2m1ZASJfuFcm/QT8S/Llkfl7Zq0TIxYPwVtAx38Hr/kt/EbipUJ3UJlonrT2sw+tFL2fvCKcQA8OnaTgwu3Y2hlQpNe+dOMLjovf1LdNmoNPg9KPnGW5PKOU0i0JXy2fho6Bjr4PH7BtvHr5OI1r2mJnklB96IaTWsz79Bq2fth0jJ8/9gN/l74K7k5uVRtWIP2Q7uhbaBLQmQsHrdc+PfHw2SXYqrVsrix4180tSUMXT8ZLQMd/B+/ZFeR/DYtkt/VmtoyvVB+D5Dmt+OxmxxZuKNc4yut5y+8mDhniez9xq2/AzCob0/WLl9QIdv0V3DMXS50zOlVMZN7zkdUoWOu5RsecxlxyVwes5GWS4bT58hSVNXVifcM5trEH4lT0sWmqLs7zqCpI2FAoXpt37jv5b5zkyL1mtuZB+ia6vORtF4Ldw9gX6F6DeDB7guoSzTos+JztI10ifAI5O8x6+W6zl5ad5DcnFw+/WkGGlqaBDt7s2f0WtITUyntPeT70nr5E2n8QY6eHFJQL2sXit9DGn+3+cPQldbLh4rUyzadGtNGWi8nSuvlO4Xq5dIIPv0Aiak+douH5T800y2A2599T4Z0OzpVTeXKRIyjFw9n/kLjJcNpvHQEyX7h3J3wI4mFysSD6dtosmwk7X6ZiaaRHikh0bh+f0TuoZlef1xAVaJB828+R9NYl3i3QG6OWk9KwOu7x92W1gGDpHVA4GNP9hSpA0yK1AHPzzxA18SAHvOGoWduRJhHAHvGb5ArDwCtRnQnMSwW71uuFBXtE8q+Sf/j47lDmXriG/Jy8whz82fP+O8Vdlcr7PH2M2hoS+i1fiISAx1CHD05PnajXBkwqmGBdqGYX/77EG0TAzrNH4qOuSFR7gH8M3ajbCIBi8Y2VJHObDb59o9y2/uj41ckSlu5em+cTPUODWX/G3dhnSwNySU/aBQg/NR9NE0NqLt4OBILIxLdAnAcvUE2KYB2Vfl6Q8vKhE7XCsaT1po1gFqzBhB7151HQ9YAoGlmSNOts5BYGpGVlEqSeyCOI9cToyDfhf+fVPLy/v/03Dtx4gR6enrUrVsXb29v5s6di7GxsdwFTml8aTOygiKsGOZ5FdIAV2GqZVe+OxYuGuX7I7yiZVA+U3G+K3qUPHvgh2atY8VN+15R9jdb+fpEHxB/9cp16qqMHWLqvd1s9O/cM0nlKhPGuRUzcVFFsStFy8yHxj7i0PsOQaHntv3f27Yb+555b9uuKJXrV+5bSkpKYsmSJQQGBmJmZkbPnj3ZtGnT+w5LEARBEARBEIQ38P/qYmbcuHGMGzfufYchCIIgCIIgCEI5+H91MSMIgiAIgiAI71NeXuXrTv8hq1wdNgVBEARBEARBEKREy4wgCIIgCIIgvCP/f6beejdEy4wgCIIgCIIgCJWSuJgRBEEQBEEQBKFSEt3MBEEQBEEQBOEdyRUTAJQr0TIjCIIgCIIgCEKlJFpmBEEQBEEQBOEdEVMzly/RMiMIgiAIgiAIQqUkWmYEQRAEQRAE4R0RUzOXL9EyIwiCIAiCIAhCpSQuZgRBEARBEARBqJRENzNBEARBEARBeEfE1MzlS7TMCIIgCIIgCIJQKYmWmTdwIz3wfYdQJiMltu87hDLpbhbxvkMos4h4y/cdQpmoV7LBhxrvO4Ay2t9s5fsOoczGPFvzvkMok9aNP3/fIZSJRLWylWI41/R9R1A2J16YvO8QyqS6qtb7DqFMJnQMe98h/GeIqZnLl2iZEQRBEARBEARBoV9++QUbGxu0tLRo164djx49Upr2jz/+oEuXLhgbG2NsbEzPnj1LTF8exMWMIAiCIAiCIAjFHD58mPnz57Nq1SqePHlCs2bN6NOnD5GRkQrT37hxg9GjR3P9+nXu379P9erV6d27NyEhIRUWo7iYEQRBEARBEIR3JDdP5b29yurHH39kypQpTJgwgUaNGrFjxw50dHTYvXu3wvT79+9n5syZNG/enAYNGrBz505yc3O5evXq22abUuJiRhAEQRAEQRD+H8jIyCAxMVHulZGRoTBtZmYmTk5O9OzZU/aZqqoqPXv25P79+6XaXmpqKllZWZiYVNyYNnExIwiCIAiCIAjvSN57fK1fvx5DQ0O51/r16xXGGR0dTU5ODpaW8pMcWVpaEh4eXqp9XbJkCVWqVJG7ICpvYjYzQRAEQRAEQfh/YOnSpcyfP1/uM4lEUiHb2rBhA4cOHeLGjRtoaVXc7H3iYkYQBEEQBEEQ3pH3+dBMiURS6osXMzMz1NTUiIiQf2RGREQEVlZWJS77v//9jw0bNnDlyhWaNq3Yed5FNzNBEARBEARBEORoamrSqlUrucH7rwbzd+jQQelyGzdu5Ntvv+XChQu0bt26wuMULTOCIAiCIAiCIBQzf/58xo8fT+vWrWnbti2bN28mJSWFCRMmADBu3DiqVq0qG3fz/fffs3LlSg4cOICNjY1sbI2e3v+xd9fRUVwPG8e/8ezGHSe4BHeXIgnu7q6lP9yCFS0tFCgt7i4tVChW3CFACESIu7ttPO8fGzbZsAkJBCh97+ecPSeZvTP77OzszN65d+7oo6+v/1EyisqMIAiCIAiCIHwi2Z+xm1lxDRkyhIiICJYvX05oaCgNGjTg0qVLikEB/P39UVfP7ei1Y8cO0tLSGDhwoNJyVqxYwcqVKz9KRlGZEQRBEARBEARBpZkzZzJz5kyVz928eVPpf19f348fKB9RmREEQRAEQRCETyTrcwf4jxEDAAiCIAiCIAiC8EUSlRlBEARBEARBEL5IopuZIAiCIAiCIHwi2Xw5AwB8CT5Ky8zNmzdRU1MjNjb2g5ZjbW3Nli1bSiQTQIcOHfjf//5XYssTBEEQBEEQBOHzKZGWmQ4dOtCgQYMSrXj8V0xfMIkBI3pjYGiA4xMn1izciL9PYIHlB4/px+Ax/SlTvjQAXq+92bV5P3evP1SUKVexLHNXfE3D5vXQ1tbm3o2HrF+yiejImGLnazdnAA2HdUTHUI9AB3cuLt1PjG9YofM0Ht2FFpN7oG9hRJirP1dWHCL4hbfKskMPLaBKh/qcmbQZ9ytPFdOtW9vQfu5ALGqUJz05Fadf73Dz+9NkZxb9sjiDIb0xGjMIDXNT0ty9iNrwM2mvXqssK+3UBuMJw9AsXwY1LQ3S/YKJP3KWxL/+USpjOKgn2rWqoWFsSNDgqaS99ipyHlXazhlA/WEd0TGUEuTgzuWlB965fhuN7kzzyT3QszAi3NWfqysOE5Jn/dquG491Gxv0rUxIT0oh6KkHNzacJNorRFGmYmsb2s4doFi/r369w63vzxRp/baeM4C6w+WZgx3cubrkALHvyNxgdGeaTpFnjnD159ryw4TmZNY10qPVnAFYt6uLQVkzZFHxeF55yt0fzpKWIAPAolYFmk3vRdmm1ZGYGhAfEMGLY9d5tv+y0uu0mDOAOnmy3ShCtnqjO9N4Sg+kFkZEuvpzc/lhwvKsTw0dLdraD6d67xZoaGvhf8uJG/YHSY6MV5SxqleZ1ouHYFnHmmwgzNGLu+tOEunqryhTrWdzms7ojXHlUqRGJeB64CrOOy8oZak5pjN1pvVAYmFEtIs/j5YdJtJR9XcHoGLPZjSaPxD9cubE+4ThsO4kQddfqCzbcsM4aozqxOMVR3DZm7veDCuXoon9MCybVkddS5MYV3+ef3+W0Puuha63D+Hg+JIDx8/i4uZJRFQ0W9cvo1O7Vh/t9d5l+oKJ9M+zH1678PtC98ODxvRj8Jh+efbDPuzavJ97efbDZhamzFk+kxbtm6KnL8XX0589Ww9x7cLND847ef54+g7vib6hPk4OL/lu0WYCfIIKLD9gdB/6j+5D6fLyO3L7vPZl74+HeHDjkaLMjrNbaNyqodJ8vx3+nQ2LNn9w3vx0e/VFMnAo6qamZHh7kfTLVjJeu71zPu32X2G4ZAWp9++QsMq+xHPlNXDOMDoO64yeoR7uDm7sX7qLUN+QAsv3nt6fpnYtKFOlHGkpaXg8dePEhsOEeAcrynw1rAut+rTDuk5lpAZSJtYdQXJ88nvl6zJ7IM2GfYXEUA9fh9ecs99PlG9oofO0HNWFdlN6YWBhRIirP7+vOEjgi9xjmGkFS3osHYl1kxpoamvifsuJ31ceJDEyTlHGvFIpui8ZgXXjGmhoaRDi5s+VzWfwfuBS5Ow63fqi23co6samZPp6kbR3K5keRfj823yF/twVpD26Q+KGnM9fQwPJ8IloNW6BhlVpspOTSH/xlOQju8iOiSpypn+brOzPneC/RVwz8xGNmzmS4RMGsXrBRkZ0n4AsWcbOk1vQ1tEucJ6w4Ai2rP2FoV3HMsx2HI/vPmXrwY1UqVEJAIlUl12ntpCdnc2kAV8zptcUtLQ0+enID6ipFa/ZsuXUnjQda8vFJQc42Gc56cmpDDuyCA0drQLnqdWzBZ3tR3Bn62/s62lPuKs/Q48sQmpm+FbZZhPsyM5++xtrWasCQw7Mx+umE/u6L+XczJ+o3qURXy0aWuTserbtMZs3hdhdRwkeOo20196U2rEedVNjleWz4uKJ3XuckNHfEDRwCom/X8Z81TwkrXLvTKsu0SXl+Suit+wtco7CNJ/ak8Zju3J5yX4O91lBenIqQ44sLHT91uzZnK/sR3B36zkO5KzfIUcWKq3f0Jc+/D1vN3s7LeDU6I2gpsaQIwtRU5d//pa1KjDowDx8bjpxoLs9v8/cTtUujeiwaMg7Mzeb1pOG47pydfF+jvWWZx54tPDMNXo1p8OyETzYco4jPeSZBx7NzaxvZYK+lTE31x7nYJdFXJy7G+v29bD7fpJiGVZ1rUmOiufvb3ZwsPNCHm7/g7YLB9NwTBdFmcbTetJgXFeuL97PqZxsfd+RrVqv5rRdNoJHW85xooc9Ea7+9D26EEme9dlu+Qgqd27I39N+4tfBa9CzMqHH7v8pnteS6tDnyHwSgqI42WclZwZ8S1pSCn2PLEBdUwOAih3qYbt1Gi+PXeNol0U8XHIQm0l21Bybm9+6d3OarhiB4+Zz/GFnT7SLP12OLURXxXcHwKJJNdr/PAP3E7f4w9Ye/8tP+WrfbIxrlHurbAW7Jlg0qkpSSPRbz3U6NBc1TQ0uD17Hn93kr9vp0FwkFkYFrrcPJZOlUKNqZZbOnf7RXqOoxs0cybAJg1iz4HtGdp+ILDmFHSd/LHQ/HB4czta1OxjWdRzDbcfn7Ie/U+yHAdb+tBzrqhX4ZswCBnQYxbW/b/H97tXUrFP9g/KOnjGMIeP7s2HRJsb3nIosOYVtx38o/LgREsHP63Yxxm4SY7tNxuHeM344sJbK1a2Vyp07+ifd6vdTPH5as/ODsqqi3b4jepNnkHzsELEzJpHp7YXh2h9QMzIudD51q1LoTZpG+kvVlfWS1GtqP2zH9mD/kl0s67OQlORUFh1ZjlZhx77mNlw9fJHlfReyfuRKNLQ0WHRkBToSHUUZbYkOL2495/eff/2gfO2n9qL1ODvOLd3H9r7LSJOlMuHwIjQLyVevZwt62o/i2tZf2dZjCSEufkw4vAi9nP2LlkSHiUeWQHY2e4avYcfAlWhoazB27zyl3w5j9y1AXUOD3cPXsK3XUkJc/Rm3bz76RdxfaLfuiHTcDGSnDhE3dxIZvl4YLC/C529RCumYaaQ7K3/+ajq6aFauTsrpw8TNnUTCd8vQKFsegyXripRH+P/hgyszY8eO5datW2zduhU1NTXU1NQUY0w/ffqUJk2aIJVKadWqFa9f55419/Lyok+fPlhZWaGvr0/Tpk35559/CngVuc2bN1O3bl309PQoX74806dPJzExUanMvXv36NChA1KpFBMTE2xtbYmJyW2xyMrKYsGCBZiamlKqVKmPdgMfgJGThrBny0FuXr6Dh6sXS7/+Fgsrc76ya1fgPLeu3uXutQf4+wTi5x3ATxt2kZwko16jOgA0aFqPMuVLs+yb1Xi4eeHh5oX9rNXY1K9JszZNClyuKs0m2HF3+3ncrz4l3C2AP+bswMDSmBpdGxc4T/OJ3XA8eQOnM7eJ9Aji7yX7yZClUn9we6VyVrUr0nxSD/6av/utZdTu2YJwN3/ubjtHjF8Y/o/cuL7uBI1Hd0FbT7dI2Q1HDSDht4sk/n6ZdG9/otZsJTslFYO+tirLpzg4kXz9Huk+/mQEhhB//BxpHt7oNLRRlEn86x9idx0l5dGzImV4l6YT7Li//Xc8rj4jwi2Av+bsRN/SmOqFrN9mE7vx4uQNXp65TZRHMJeWHCBdlkq9POv3xYkbBDx+TVxgJGGvfLn9wxmMyppjVM4CgJo9WxDhFsC9beeJ9Qsj4JEbN9edpFER1m+jCXY8/Ol3vK4+I9ItgL9nyzNXLSRzk4ndeHniBq9yMl9dLM9cZ4g8c6R7IH9M3Yb3P8+J8wsn4L4Ld78/Q+VODVHTkO+CXp2+zY2VRwh85EacfwSu5+7x6vRtqtnlbtMNJ9jx+Kff8c7JdmX2TvQsjalSSLZGE7vhfOIGLmduE+0RzPXFB8iQpWKTk03bQILNkA7cXn2MwPsuhL/05eq83ZRpUp1SDasAYFK1DBITAx5sOkusdwjR7kE8+vE39CyNMShrDkCt/m3wvvKUl0evE+8fQeA1R5y2/0HdGT0VWWwmdcP9+A08T98mziOYB4vkWaoNbf92cKD2BFuCbjrhvPMCcZ7BPP/+LNGvfKk1rotSOWkpE5qvGc3tmb+QnZGp9JyOiT5GlUvzcvufxLgGkOATxtN1p9CS6mJc8+1KUUlp27IpsyaPoXP71h/tNYpqxKTBSvth+yLth+8p7Ye3K/bDufuL+k3rcGLfWV49dyXIP5g9Ww6SEJdIrXo1Pijv0ImD2L/1CLcv38PT1ZuVs9ZhbmVGe7s2Bc5z9+p97l9/RIBPEP7egez4bi/JSTLqNK6tVC5FlkJURLTikZT4fq0GhZH0H0zKpb9IvXKRTH8/ErdtIjs1BV3b7gXPpK6OwUJ7ko8cIDMkuOByJcRuQk/Obz/D06uPCXDzY8ecrRhbmtKka/MC5/luzGpun71BkEcA/q6+7Jz7ExblLKlUt4qizKX9f/Hnjt/wfK66h0BRtRnfjes/ncPl6lNC3fw5PecXDK1MsOla8DG+7cQePD55HYcztwj3DOLc0n2ky9JoOrgDANZNqmNSzoLT83YS+jqA0NcBnJ67g7L1KlOllXy7lpoYYFG5NDd3/E6omz9RvqFc/O4E2lJdSlUvX6Tsur0Hk3r1L9KuXyQr0I/knZsgNQWdToV//nqz7Uk+eYCsMOXPPzs5iYRVc0m7f4Os4AAy3V1I2rMVzao1UTe3LFIm4b/vgyszW7dupWXLlkyaNImQkBBCQkIoX16+0S9dupRNmzbh4OCApqYm48ePV8yXmJhI9+7duXbtGs+fP8fOzo5evXrh7+9f0Euhrq7Otm3bcHZ25tChQ1y/fp0FCxYonnd0dKRTp07Url2bBw8ecPfuXXr16kVmZu4B/tChQ+jp6fHo0SM2btzIt99+y9WrVz90NbylbIUyWFiZ8/D2k9z3nJDEy+cu1G9Sp0jLUFdXx65PZyRSXV48fQmAtrY22dnZpKWlK8qlpqaRlZVFo+b1ipzPuLwF+pYm+N51zl1OgowgRy/KNqqmOo+WBqXrVsLn7qvcidnZ+Nx9Rbk882jqatNn2wwuLztIUkTcW8vR0NEiIzVdaVp6ShpautqUqlvprfJv0dREp1Z1ZA/zVDqys5E9fIZOvdoFz5eHbrOGaFmXIyVnvZY0o/IW6Fsa45tnXaUmyAh+x/otVbeS0mdCdja+d50p26iqynm0JDrUG9SOWP9w4kPkTe6aOprvtX6NKsgz++XJnJYgI8TRizKNC85sVbcSfvky+991pkwBmQF0DKSkJcoK7famYyAlJS4JAMMKFuhZGuOfL1uooxelCslmWbcS/iqylcrJZlm3EhramkplYrxCiA+MpHTO5xTjFYIsOgGboR1Q19JAQ0cLm6EdiPIIIj4wAgAN7bfXeWZKOnplzNAvZ466lgZm9SoRckc5S8hdZywaq15PFo2rEnLnldK0oJtOyuXV1Gi7bSqvdlwg1v3tbkipMYnEeQZTdWAbNCU6qGmoU2PkV8gi4ohy8lH5uv8lb/bDj247KKa92Q/Xe6/9cO7n8eLJK2z7dMLQ2AA1NTXs+nRGR1cbh/vvfzKkTIXSmFuZ8fhObpfcpIQknJ+7UrexTSFzKuft0ucrJFJdXjo4Kz1n178LV179zonrB5i+eJJSq0KJ0NREs1p10p/l5ic7m/TnT9GsXXB+6YgxZMXGknr575LNo4JleStMLE15dTe3BUCWkIyXowfVGhW9Iio1kAKQGJv4jpLFY1reEkNLEzzu5W5rKQkyAhy9qFDAsUNDS4OydSopzZOdnY3nvVeKeTS1tcjOziYjz2+H9NR0srOysW4qf9/JMQmEewXRuH87tCQ6qGuo02J4JxIi4gh6WYT9haYmGlWqk/4i3+fv9BTNGgV//pLBY8iOiyXtWtE+fzWpHtlZWWQlley6/5SyUPtsj/+iD75mxsjICG1tbaRSKaVKyfvrurnJ+0auXbuW9u3lZx0XLVpEjx49SElJQVdXl/r161O/fn3FclavXs25c+f4448/CrzLaN6L962trVmzZg1Tp07ll19+AWDjxo00adJE8T+AjY3yF6hevXqsWLECgGrVqrF9+3auXbtGly7KZzvfSE1NJTU1VWlaVnYW6mqF1wPNLc0AiIpQ7vYRFRGNWc5zBalWswpHLuxGW0eb5CQZ/xu/CG93XwCcnr1ClpzCbPsZbFu/AzU1Nb5ZOh1NTU3MLc0LXW5eepbGACRFKlc2kiLj0LcwVjmP1MQAdU0NFfPEY1aljOL/LstHEvTUHferT/MvAgDvW040G29H7d4tcf3rIfoWxrT9pj8A+pbG8I6utRomRqhpapAZpXyNUGZUDFqVCj57pKYvpcLVk6hpaZGdlUXUum2kPCyZVpj89BXrN15pelJkPHoFNNcXvH7jMKtSWmlaw1Gd6bh4KNp6ukR5BnNyxAay0uWVdu9bTjQZb0et3i1x++shehbGtPmmH5D7uauil/O5J+fLnFxIZolpwZlN82VWzGOiT8tZfXE6fqPALGUaV6NGr+b8NvaHD86WnC9bcp5sehZGZKSmk5avX3tyZBxSS/ly05NS+HXwWnrunU2zWX0BiPUJ5fyo7xSVMb/bL2m3fASurW0IuO+CYWUrbKZ0k+ewMiYzPQN1TQ1k+bLIIuIwKmg9WRgji1B+v7LIeCR5vp91Z/QkKyML132XKcjloRv4at//GOG+h+ysbFIi47k6YiNpcSV/Vv7fxtzSFFC9H37zXEGq1qystB+ePX6xYj8MMH+yPRt3reaO22XS0zNIkaUwe9xiAnwLvrblXcxyMkXnyxsdEaN4riBValZm358/o62jjSxJxoIJ9vh4+Cmev3zuGqGBoUSERVG1VmVmLp1CxSoVWDhx2XvnzU/d0Ag1DU2yYpX3zVkxMWiVr6ByHk2buujYdid2+sQSy1EYo5x9YFy+72JcZCxGBRz78lNTU2PUigm8fuJKoHvBJ2Dfh0HO/iwx34nAxIg4DAo8NhuioamhdO0LQEJEHBY5x2b/5x6kJ6fSfdFwLm08CWpqdFs4DA1NDQzzHBf2jljH6N1z+dZ5P9lZ2SRFxbN/7AZk8UnvzK5mIP/8s+Pyff6xMWiVLeDzr1UXnU7diZtTxM9fSxvp6Cmk3bkGsv/+Pkwomo86NHO9erktBaVLyw/Y4eHhVKhQgcTERFauXMmFCxcICQkhIyMDmUxWaMvMP//8w/r163FzcyM+Pp6MjAxSUlJITk5GKpXi6OjIoEGDipzpTa7w8PACy69fv55Vq1YpTbPUK4uVvvKP5u79u7L8+4WK/2eMnFdojsL4ePkxqNMY9A316NLzK9ZsW8b4ftPxdvclJiqWeZOWYv/dfIZPHERWVhYXz13F5YUb2dkFn+W26duK7usmKP4/Ne77985XmGqdG2Hdyoa93ZcUWMbnzkuurTtOt7Xj6fPjNDLS0rm77TwVmtck+yNeFZedJCNo8FTUpRJ0mzfEdO5UMgJDSHFw+uBl1+7bCrt1uS2PZ8b98MHLLIzL+Xv43nmJvqUxzSb3oO8vX3NkwLdkpqbje+cVN9adwHbtOHr9OJWMtHTub/ud8s1rkp2Vu43U6tuKLutzM7+pOHxM2voS+h+cR5RHEPd//E1lGfPq5RhweD5kQ5+ca1f++ATZCqKho0Xn7ycS7ODOpZk/o6ahRqMpPeh9cB4ney4nMzWdV8dvYFTRkt4H5qKuqUF6ggyXfZdpOG/AR9umzepaU3uCLX/YFX6hdIu1Y0iJjOdiv9VkpKRTfXgHOh2ay1/dlyMLj/0o2T6X7v27suz73Nb6mR+wH/b18mdwpzHoG+rTpWdHVm+zZ0K/GYoKzYyFkzAw0mfSwK+JjY6jY7d2bNy9mnF9puHpVvCgDnnZ9uvM4o1zFf/PHrXovfP6efkzsstE9A30+Kpne1ZsXcLU/rMUFZrzx/5UlPVy8yYqPIpfzmyhbMUyBPl9/K5dqqhJJBgsWErilh/Ijn+7Fb8ktO7bjgnrpir+3zhu7Qcvc9zqyZSvXoFVAws+zhVVgz6t6b8u94f8gfEbP3iZqiRFJ3B0xhb6rZlAq7G2ZGdl8+KP+wS+9CYrzz6qz+pxJEbFsXPQKtJT0mg29CvG7p3HT73tgRLeTnQl6H2zlKQdP5CdUITPX0MD/XkrATWSdpX8wBWfkhiauWR91MqMllbuxWpvLjDLyvkxNW/ePK5evcoPP/xA1apVkUgkDBw4kLS0NJXL8vX1pWfPnkybNo21a9diamrK3bt3mTBhAmlpaUilUiQSSbEyvcmVlVVwJWDx4sXMmTNHaVqram+34ty8fJeXz3JH+9DOuVDPzMKUyPDcETfMLEx5/cq90IwZ6RkE+MpH2nF1ek2dBrUYMXEIqxd8B8CDW4/p0WIQxqZGZGZkkhCfyHWnvwj8veAdjcfVZ+x9njuqiYa2/KPXMzciMc8PGj1zI8Jc/PLPDsiboLMyMtEzVz4TrmduqOhOZt2qNiYVLZn3co9SmQE7/0fAYzeODpUfSB7vvcjjvRfRtzQmJS4Jo/IWfLVoKLH+BVcs38iMiSM7IxMNMxOl6RpmJmQWNqJbdjYZAfJ1lPbaC+1KFTCaMKxEKjOeV5+xP8/61VSsX0OSlNavIeEuqivsBa9fo7e666UmyEhNkBHjG0bQc0/+57SL6rZNcP3jAQBP9l7kSb7122HREGL9I5Qyh+TdJnTkmaX5MksLySyLLnpmLT1dBhyeT1pSCucnbyEr3/UdAGbVyjDoxGJeHLuB07Hriuk6ebIl58sW8Y5s0nzZpHmyJUXEoamjhbahVKl1RmpuRHK4vEzNvq0wLGfBqb6rIGdAi0tf/8zUl7uo0rUx7n/KR7i6t/4U9787jdTCGO2IeEq3kbcKJ/iFk56QTFZGJpJ8WSQWRshUdMUEkEXEIrFQHhxAYm6ILEL+/q2a10DX3JBBj7cqnlfX1KDJ8hHUnmjH2RazKd3GhnKdG3Ki9hTSE+Ujxz1ccpAy7epQdVBbXv78J/8l8v1wbteqNxfNq94PexS6LPl+WN7K4ur0GpsGtRgxcTCrF2ykXMWyDJswiP7tR+D1Wt79xt3Fk0bN6zN03ADWLCzayaI7V+7h/Dx3VDltbflxw9TClKjw3NYZUwsT3J0935k3MCev20t3ajeoyZCJA9mwcJPK8q+eyV+3vHXZEqvMZMXHkZ2Zgbqx8r5Z3cSErJi3B6dQL10WjVKlMfw2z8XcOb0ezP6+RsyEUWR94DU0T68+xvN57jFXM2cdG5kbERuee7wwMjfGz+XdXanGfjuJhp2a8O3gpUSHfvhoWi7/PCXAMfezfZNP38KIhJzv+pv/g118VS4jOSaezIxM9PPtXwzyLcPjzks2tv8fUhMDsjIzSYlPxv7JDl78KT9uVGllQ62vGrGy/kRSc/YX55ftp1qbOjQe2A4eFj6iWXaC/PNXM8r3+RubkBX79uevUaosGlal0V/y9udvcvYacTNHkRWa8/lraKA/bxXqFlYkrJgtWmUEJSVSmdHW1la6LqUo7t27x9ixY+nXT979JTExUTFwgCpPnz4lKyuLTZs2oa4u39hPnz6tVKZevXpcu3btrZaUD6Gjo4OOjnK/YlVdzJKTkklOUv5yRYRF0rxtE147yw+aevpS6jaszemDqs9IF0RdXU1ROcorNlr+I6hZ68aYmptw8/KdApeRlpRCWlKK0rTE8BisW9soKi/a+hLKNqjCs6OqB2LISs8k5KUP1q1tcodZVlPDunUdHA5dAeD+jj9xPHlTab7JV7/j6rdH8bj2dpeuNxUpm94tiQuKJPSVD6ge3ClXRgapru7oNm9I8o37ihyS5g2JP/n7O2bOQ10NNa231+v7UL1+Y7FubaOoCGjrSyjToArPj15TuYys9ExCc9avR571W7G1Dc8OFXxd15uBN95UoPJnAKids37DXuUerNOTUohVkbliaxtFBUFbX0LpBlVwPFJw5rCXPlRobYNnnswVWtvwPE9mbX0JA48sIDMtg3PjN5OZ7/oSALPqZRl8YgnOv97h9rqTSs9pAUnhsZRvbUNknmylGlThZSHZwl/6UL61Dd55spVvbYNTTrbwlz5kpmXI81+UX99mXLk0huXMCXkm/95qSuTXqZFnZL7srGyys1GMIJd3elJYDJqZUKlvS8Id3EmNTgAgysmH0m1s8L+cm6V0GxvcDqj+bCOeelK6jY3SMMtl2tUh4qn8h4/Xr/cIvqN8TUSXYwvw/vUeHqdvA6Ah0c7JpXzCJjsrG9T/e2cGi7MfPnPwXLGWra6urhjtSjfnWpP8J8KyMrNQUy/6pajJSTKSk5S7pUWGRdG0TSM8ciovevpSbBrW4tfDxdi3IT9OvakcqVK9jvzaq7yVvA+WkUGGhztaDRuT9uCufJqaGloNGpHyx9vrOzPAn5jJY5WmScdOQE0iJWnHT2RFvPvk1rukJKWQkqQ8pHFMeDQ2revhl1M5kOhLqNKgGv8cvVTossZ+O4kmts1ZM2QZEQEfng3kx46ofPvh+PAYqraqQ0jOsVlHX0L5BlV4eFT1viIzPZOgVz5UbVUHlyvy68PU1NSo2sqG+4evvFU+OUa+T6rS0gY9M0Nc/pHvk7RztmtV+4sijZaakUGmlzta9RqT/jjP51+3ESkXVXz+Qf7EfTNWaZpkuPzzT973E1mROev4TUWmTFkSlv2P7IT4t5b1pSn6TSiEoiiRyoy1tTWPHj3C19cXfX39Qls63qhWrRq//fYbvXr1Qk1NjWXLlhU6X9WqVUlPT+enn36iV69e3Lt3j507lYeVXLx4MXXr1mX69OlMnToVbW1tbty4waBBgzA3L/r1JCXl6J5TTP7fWPy9AwjyD2HGwklEhEVy/dJtRZk9Z37i2sVbnNx/FoBZS6Zx7/oDQoJC0dPTo1v/rjRp1YipQ/+nmKfP0B74uPsSHRVL/SZ1WLh6Nkd2n8TXq3h9dx/vu0Trr/sS7RNKbEAE7ecOJCE8ltd57gcz/Phi3C874JDz4+/R3ov03jSFECcfgl940Wy8HVpSHZzO3ALkZ7pVXfQfHxxJXEBuq0CLKT3wuulEdlYWNbs1pdW03vw2Y1uRu+TEH/kV89ULSHN2J/XVawxH9kNNokvCefkPP/M1C8gMjyRm234AjMYPJdXFnYyAYNS0tZG0bYZ+j85Ert2mWKa6oQGapS3RsJBf06RlLR/tKTMy+q3rc4riyb5LtPq6L9E+YcQFhNN27kASw2OV7rczNGf9vqmsPN57kZ456zfkhRdNxtuhnWf9GpW3oFavFvjcfoksOgGD0qa0mNaLjJQ0vG7kXtDabEoPfG6+IDsrm+rdmtJiWi/Oz/jpnev32b5LtJjVlxjfMOL8w2k9T57ZM0/mQScW43nJQVFZcdh7kW6bphD20ocQRy8aT5BvE69OyzNr60sYeHQhWhJtLvxvB9oGErQN5K2osqh4srOyMa9ejsEnF+Nz+yUOey4izek3np2ZhSynMvB83yWazepLrG8Y8f7htJw3kKTwWLzyZOufk+1NZeXZ3ot03TSF8Jc+hDp60TAnm0tOtrQEGc6nbtJ22QhSYhNJS5TRftVogh3cCc1ptfK/84o2S4bRcc1YHA9eQU1djSbTe5GdkUnAA/nZbV0Tfar1aEbgA1c0dLRoOLA91j2ac2ngGkU25z0XafvjFCKdfIh87kXtSXZoSnTwOCXP0mbrFJJDYni2QX6SxmXfZbqdXYrNlG4E/uNIpT4tMatXmfsL5Nt0akwiqTHKF8BmZ2Qii4glPueeQxEOHqTFJdFmyxRebDlPZkoa1Yd3RL+8BYHXHAvdFj5EcrIM/8DcM+pBwWG4uXthZGhA6VKfdgSiY3tOM+l/Y/DzDiDIP5gZCye/tR/efWYb1y/e4uR++ZC6s5ZM5e71h4QGhSLVk9K9f1eatGrItKGzAfD19MPPO4BlGxey+dufiI2O56tu7WjRvilfj5r/QXlP7j3D+G9GE+ATSLB/KFMXjCcyLIpbl+4qyvx8ajM3L93hzAH5D8Tpiyfx4PojQoPCkepLse3XiUatGjBruDxL2YplsO3XmfvXHhIXE0/V2pWZvXImzx444ulatC5xRSX77TQG8xaT4e5Gxms3dPsNRE1XQsqViwDoz19CVmQEyQf2QHoamX7KrSHZOSOU5p9eki7t+4t+Xw8i1CeEiIAwBs0dTmx4NA5Xcu/Ls+T4KhwuP+TKIXnucWsm06p3OzZNWo8sSaa4viY5Ppn0VHmPEiMLY4wtjLGylnerL1+jIilJMiKDIkmKK/rF6nf3X+Srr/sS6RtKTEA4XecOIj4sBucruQNZTDq2lFeXn/Agp7JyZ+8FBm+aRuBLbwIdPWkzoRtaUh0cco4dAE0GtSfcM4jEqHgqNqpOrxWjubvvIpHe8v2F3zMPZHFJDN40jWvbflN0MzMpb4nbjec0K8Jgoyl/nEZv1mIyvNzI8HBDt+dA0JWQek2+HvVmLSErOgLZ0ZzP3z/f559zUb9iuoYG+gu+RaNydRLXLgJ1DdSM5dePZSfGQ0ZGkder8N9VIpWZefPmMWbMGGrXro1MJuPAgQPvnGfz5s2MHz+eVq1aYW5uzsKFC4mPL7i2Xb9+fTZv3sx3333H4sWLadeuHevXr2f06NGKMtWrV+fKlSssWbKEZs2aIZFIaN68OcOGDSuJt1lsB7YfRSKVsPyHRRgY6vP8sRPThs0mLTW3K10567KYmOY2DZuam7Dmp+VYWJqRmJCIu4sXU4f+T2lUNOsqFfhmyTSMjA0JCghhz9aDHNmlfCa7KB7s/AstqQ7d109A11BKgIM7J0d/p3TW3KSCFRITA8X/rn89RM/MgPZzBqJnIe+SdnL0d29d6P4uVTrUp/WMPmjoaBHu4s+ZSZvxuln0+wskXb6FuokxJtPHoGFuQuprL8KmLyErOhYAzVKWSnelUpfoYr5kFhpW5mSnppLuE0DE0g0kXc7d0Us7tMRide4PEcuN8msRYnYcJnbnkWK9P4BHO/9CW6qD3frx6BpKCXRw59TojfnWryXSPOvX7a9HSM0MaTtngPymmS5+nBq9UXHhe2ZqOuWb1aDpeDt0jfRIiowj4LEbR/p/S3JU7mdQpUM9Ws3orVi/v07ajPfNd3ene7zjL7QkOnRdP15xo89fRylnNq5gicQ0N/PrPx8hNTWk9ZwBSC2MiHDx4+yo3MxWdawVI5tNuqPcz3l3q/8RHxhJ9R7NkJobYdO/DTb9c4egjQuIYE9r+Q/IpznZOuVkC3Zw53y+bEb5snn8+QiJqSEtcrJFuvhxPk82gNvfHiM7K5seu75BQ1sTv1svuWF/UPF8jFcIf07YTPP/9WPIuRVkZ2cT4ezH+dEblbq81RrQljZLh6OmJm9VuTRordINMX3/eISuqSEN5w2Q3zTT2Y+rIzeSkpNFv4y50jYb4eDBrZm/0GjBIBotHEy8TyjXJ/xI7OuCb/aYX2pMIldHbKTRwkHYnl6MuqYmse6BXB+/mZgCuueVhFduHoz/Ovcawo0/yYdo79OtM2vt5xY020ch3w/rsvyHhYr98PRhc97aDxvnuUeVfD+8LGc/nIS7iyfThs5W7IczMjKZOWIu3yydxrbD3yPVk+DvE8iyWWu4e+3BB+U9/PMJdKUSlmych76hPi+evOSbEfOV8pa1LoNxvuPGim1LMM/J6+nqxazh83mcM4pbeno6zdo2ZtjEgehKdQkLjuDG37fZv+XwB2VVJe3WDZKMjJGOHo+6iSkZ3p7EL51Pds6gABoWllCEE54f0587z6Ej1WXi+mlIDfVwd3Blw+jVpOfZl1hVKIWBSW43gS6j5AN6LD+9RmlZO+du4/ZZ+WAmnUfYMmB27v3SVpxd91aZori180+0JToMWD8RXUMpvk9es3/MBqURE00rWqGXZ1/n9NdD9EwN6Tp7IAYWxgS7+rF/zAblG2JWLo3dgqFIjPSJCYzgxvbz3NmXO4JYckwC+8ZswG7+YCYdt0dDU4Mwj0AOT/6BEFd/UL7nqkpp926gZmiMZKj888/08STh2/mKQQHULSyhkOt781M3tUC7mfyYYPTjfqXn4u2/IcPZscjLEv671LJV3dVQKFS9Ui0/d4RiGaJT+XNHKJbhxiXTfP8pnYq1+twRikXzC/vWl0xnwE/HqHi9bv8VRrz49nNHKJYmdUZ+7gjFoqP+pW3F8Hfdz52geGa5FT7i279NebWi3Vft32Jhw88zUMSHMD13692FPoMrVkW/SXhJ6xpW/JPf/3YffJ8ZQRAEQRAEQRCEz+GjjmYmCIIgCIIgCEIuMQBAyRItM4IgCIIgCIIgfJFEZUYQBEEQBEEQhC+S6GYmCIIgCIIgCJ+I6GZWskTLjCAIgiAIgiAIXyTRMiMIgiAIgiAIn0g2ap87wn+KaJkRBEEQBEEQBOGLJFpmBEEQBEEQBOETyRINMyVKtMwIgiAIgiAIgvBFEpUZQRAEQRAEQRC+SKKbmSAIgiAIgiB8IlliAIASJVpmBEEQBEEQBEH4IomWGUEQBEEQBEH4RLI/d4D/GNEyIwiCIAiCIAjCF0lUZgRBEARBEARB+CKJbmbvYZla5c8doViMUjI/d4Ri6Rka/7kjFNtiDavPHaFYvrRLD9O/sMC+ml9eJ4ImdUZ+7gjF4vDq6OeOUCyBnaZ87gjFNtZV+3NHKJZJaZLPHaFYrNRTPneEYmly58s7Nnt/7gAFyPrcAf5jRMuMIAiCIAiCIAhfJNEyIwiCIAiCIAifSJbaF9bd4F9OtMwIgiAIgiAIgvBFEi0zgiAIgiAIgvCJfHlXVf67iZYZQRAEQRAEQRC+SKIyIwiCIAiCIAjCF0l0MxMEQRAEQRCET0QMzVyyRMuMIAiCIAiCIAhfJNEyIwiCIAiCIAifSJYYmblEiZYZQRAEQRAEQRC+SKIyIwiCIAiCIAjCF0l0MxMEQRAEQRCETyQL0c+sJImWGUEQBEEQBEEQvkiiZUYQBEEQBEEQPpHszx3gP0a0zAiCIAiCIAiC8EUSLTOCIAiCIAiC8ImIoZlLlqjMlJAqY7tQY3oPdC2MiHXx5/nSQ8Q4ehdYvlzPZtgsHIReOXMSfcJwWnOC0OsvFM9rSHWot3QoZeyaoGOiT1JABB77LuN9+JqijI6FEfWXD8eqXR009XVJ8ArBdevvBF148l7vofy4rlhP74W2pRGJLv64LjlA/HMvlWX1apSj6oJBGNarjKSCBW7LDuG/+2KBy7b+ujfV7Yfjt/tvXi87/F75imrmgskMHNkHA0N9nj9x4tsFG/H3CSjSvBO/Hs1s+xkc2X2SDct+/KAc1cd2pva0HkgsjIhx8eeJ/WGiCtkmKvRsRv0FA9EvZ068TxjP154kOM82AWBYtQyN7Idi2aIm6prqxLkHc2vSVpKDogCoOqIjlfq1wqSuNdoGEk7VnEx6fHKR89bKk9ehCHnr5eRNKCRvw3x5b+fk1StnTt/HW1Qu+87kbfj/9bjQvDXHdKZOTt5oF38eLTtMZCF5K/ZsRqP5uevXYd1JgvLlfaPlhnHUGNWJxyuO4LL3smK6aR1rmiwdgnn9ymRlZeF34QlPVh0jIzm10Kx5dZwzgEbDOqJrqEeAgzt/Ld1PtG9YofM0Hd2F1pN7oG9hRKirPxdXHCLohfJ7LdeoKp3mD6ZsgypkZ2YT6uLHkVEbyEhNV5Sp9lUD2s/qh1WtCmSkpuP30JWTk4u/nU9fMJH+I3pjYGiA4xMn1i78Hn+fwALLDxrTj8Fj+lGmfGkAvF77sGvzfu5df6goY2ZhypzlM2nRvil6+lJ8Pf3Zs/UQ1y7cLHa+4nJwfMmB42dxcfMkIiqareuX0aldq4/+uqoYDOmN0ZhBaJibkubuRdSGn0l79VplWWmnNhhPGIZm+TKoaWmQ7hdM/JGzJP71j1IZw0E90a5VDQ1jQ4IGTyXtter9+ocYMWcktsNt0TPUw9XBlV+W/Eywb3CB5QfNGERLu1aUq1KOtJQ0XJ+6cnD9AYK8gwCwLGfJ/vsHVM67ftp67l24+145K43rQtXpPdGxMCLexR+npYeILeA4Z1CjLDXnD8K4fiWk5S14ueww3nsuKZUxa1GTqtN7YlyvErqlTHg0djOhlxzeK1tRWY21o8y0vmhZGJPs4ouP/V6SHD1VlrUc3hnzQR2Q1qgAQNJLL/zXHyuwfEn536JpDB3VD0NDA54+fsGy+evw9fYv0rxTZ41jwfJZHNh5jNX2P6gss//kdjp0bs2UUbO5evFmCSYXvkSfrJtZVlYW69evp1KlSkgkEurXr8/Zs2fJzs6mc+fO2Nrakp0t70UYHR1NuXLlWL58OQCZmZlMmDBBMW+NGjXYunWr0vLHjh1L3759+eGHHyhdujRmZmbMmDGD9PTcA3lISAg9evRAIpFQqVIljh8/jrW1NVu2bPmg91audwvqrxyBy6bfuGprT5yLP+1OLELHzFBlebMm1Wi+YyY+x29ytetSgi450PrAHAxrlFOUabBqJKU61uPxzF+41G4+7nsu0nDtGEp3baQo0+ynaRhUKc3dMZu40nERQX870HLXLIzrVCz2e7Dq05Iaq0bhteksD7ssJsHZj8YnF6Ntrvo9aEi0kfmF47H2OKlhMYUu27BBZcqP7kyCs1+xcxXXhJmjGDFxMKsWfMew7hOQJaew+9RWtHW03zlvnQa1GDS6H6+dPT44R8XezWm8YgROm8/xt609MS7+fHV8YYHbhHmTarT5ZQZeJ25xoas9gZee0n7/bIzybBP6FS2xPb+MOM9grg5cy1+dlvByy3kyU3K3cU2JNsE3nXD+6Y9i5220YgQv8+Tt+I68rXPy/t3VnoBLT2mnIm/X88uI9wzmn4FruZAvb3JwFL/Wn6H0ePH9WdITZW9VivKz7t2cpitG4Lj5HH/Y2RPt4k+XYwvRLSCvRZNqtP95Bu4nbvGHrT3+l5/y1b7ZGOfJ+0YFuyZYNKpKUki00nSJlTG2JxcR7xvGX71WcnXE9xjXKEebLVMKzZpX66k9aT7Wlr+WHGBvn+WkJacy6sgiNHW0CpzHpmcLbO1HcHPrb+zqaU+Yqz8jjyxCL897LdeoKiMPLcTr9kv29F7O7t7LeHzoimKfClCrW1P6/zgNxzO32Wm3mP0DVvHy9/tFzv7GuJkjGTZhEGsWfM/I7hORJaew4+SPhX7HwoPD2bp2B8O6jmO47Xge333K1oPfUaVGJUWZtT8tx7pqBb4Zs4ABHUZx7e9bfL97NTXrVC92xuKSyVKoUbUyS+dO/+ivVRg92/aYzZtC7K6jBA+dRtprb0rtWI+6qbHK8llx8cTuPU7I6G8IGjiFxN8vY75qHpJWTRRl1CW6pDx/RfSWvR8t94BpA+k1rhc/L/6Zub3nkJKcwrdHV6NVyHZdp3ldLhy6wLy+c1k2wh5NTU1WH12DjkQHgMjgSEY2Hqn0OLrpKMmJyTy98X6VhTJ9WmCzciSvN/3Gra5LiXP2p+WJRYUc53RI8g/HZc1JUgo4zmlIdYhz9sNpseqKV0kz692aiivGEbj5NC9t55Hk4kut48vRNDNSWd6wVR2izt/FZdByXvVeTGpwFLVOrECrlOlHyzjl67GMnTQM+3nr6G87muRkGQdP/1yk43C9hrUZNmYArq/cCywzfuoIyBZXnQi5PlllZv369Rw+fJidO3fi7OzM7NmzGTlyJLdv3+bQoUM8efKEbdu2ATB16lTKli2rqMxkZWVRrlw5zpw5g4uLC8uXL2fJkiWcPn1a6TVu3LiBl5cXN27c4NChQxw8eJCDBw8qnh89ejTBwcHcvHmTX3/9ld27dxMeHv7B7636lG74HLuB76nbJLgH8XTBfjJlqVgPa6+yfLWJdoTecMJ9xwUSPIJx3niWmJe+VB3fVVHGrEk1fM/cIeKBK8mBkfgcvUGciz+mDasoypg3qYbH/ivEOHqT5B+B65bzpMUlYVKvkqqXLZT11B4EHr1O8MlbJLkH4TJ/L5myNMoM66CyfLyjN+7fHiP0/AOyUjMKXK6GVIe6v3yN89zdpMcmFTtXcY2aPJRdPx7gxqXbuLt4snjmSiytzOnUTfVn8YZUKuG7X75lxdx1xMXGf3COWpO74Xn8Bt6nbhPnEcyjhQfIlKVStYBtouZEW4JvOOGy4wLxnsG8+P4s0S99qTGui6JMg0WDCLr+gudrThLzyo9Ev3ACrzwjNSo3r9veyzhv/5PIp8U761YzT954j2Ae5+StUkjekBtOuObkdfpevg3nzVt/0SCC8+UNypM3OyublIg4pUf5bk3w+/PRO1s6bCZ1w/34DTxPy9fvg0UHyJClUm2o6ry1J9gSdNMJ550XiPMM5vn3Z4l+5UutPHkBpKVMaL5mNLdn/kJ2RqbSc+U7NyQrI5OHSw4R7xVC1AtvHizaj3WPZhhYW71zHQO0mGDH7e3neX31KWFuAZybswMDS2Nqdm1c4DwtJ3bj2ckbOJ65TYRHEH8t2U+6LJWGg3Pfq92yUTw6eJm7O/4kwiOIKO8QnC88IjNN/t1U11Cn24rRXFl3HIdj14jyCSXCIwjnC4+KlDuvEZMGs2fLQW5evoOHqxf2X3+LhZU5X9m1K3CeW1fvcffaA/x9AvHzDmD7hl0kJ8mo18hGUaZ+0zqc2HeWV89dCfIPZs+WgyTEJVKrXo1iZyyuti2bMmvyGDq3b/3RX6swhqMGkPDbRRJ/v0y6tz9Ra7aSnZKKQV9bleVTHJxIvn6PdB9/MgJDiD9+jjQPb3Qa5q7XxL/+IXbXUVIePftouftM6MOpn07x6OpDfN182Tx7E6aWprTs2rLAeVaMXs61s//g7+6Pj6sPP87djGU5S6rWrQrIj/uxETFKj5a2Lbn7111SklPeK2fVKd3xO3YD/5O3SHAP4sWCfWTKUqlYwH4j1tEbl2+PE/T7A7LSVB/nwq+/wO27M4Rc/LitMW+UntyL8ONXiTh1HZlHID4Ld5ElS8Vy2Fcqy3vO3ELYoUskO/uS4hmE99xfQF0Nozb1PlrGcVOHs33zHv65eBM3Fw/mTV+GVSkLunbvWOh8Uj0JP+5cx5LZq4mLU30crlWnOhOmj2LBNys/QvJPJ+szPv6LPkllJjU1lXXr1rF//35sbW2pXLkyY8eOZeTIkezatYuyZcuya9cuFi1axOLFi/n77785evQompryXnBaWlqsWrWKJk2aUKlSJUaMGMG4cePeqsyYmJiwfft2atasSc+ePenRowfXrsm7Zbm5ufHPP/+wZ88emjdvTqNGjdi7dy8ymeyD3pualgYm9SoRdudV7sTsbMLuvMKscTWV85g1qUp43vJA6E0nzBpXVfwf5eBBma6N0C1lAoBFq9roVy5F2K2XijKRDh6U790CLWM9UFOjfJ8WaOhqEX7ftdjvwaBeJaLu5C6b7Gyib7/EuMmHnRWttWE8kf88J/r2q3cX/kDlKpbBwsqch7dzuyclJiTh9MyZ+k3qFjqv/Yb53P7nHg9vv18XvbzUtTQwrVeJkDvOuROzswm544x5ns84L4vGVQnNt02E3HLC4k15NTXKdmpAgncoXx1fwECnn7H7ayXl7Ar+EVzcvKH58oYWkte8cVVC8uUNvuWUWz4nb7x3KB2PL2CA08/YviOvaV1rTOtY43Xi1jvzmqlav3edc9dXPhYq8gbddFIur6ZG221TebXjArHuQW+/rrYmWekZSmcE37QyWTV79/fEpLwFBpYmeN/NzZ2aICPQ0YtyjVTvKzS0NChTtxLed3OzZ2dn4333lWIePTNDyjWqSlJUPBN+W8E8h18Ye8qeCnm+u6XrWGNY2pTsrGym/L2WuU+2M+LQAiyrv90yVZiyFeTfsUe3c3+4JSYk8fK5C/Wa1CnSMtTV1bHr0xmJVJcXT3Pf14snr7Dt0wlDYwPU1NSw69MZHV1tHO5/vB/h/yqamujUqo7sYZ73m52N7OEzdOrVLtIidJs1RMu6HClPX767cAmxqlAKU0tTHO86KqYlJyTz2vE1NRvXLPJy9Az0AEiMTVT5fJW6ValSpwpXTl15r5xqWhoY1atExG3lY3XEnVeYNFH9/fu3UdPSRK9eFeLuOOVOzM4m7o4T+o2LVulXl2ijrqlBRmzCR8lYvmJZLK0suHcr90RJQkIijs9e0bBJ4RWoVd8t5sbVO9y7rfoki65Ely271rNi4QYiw6NKNLfwZfsk18x4enqSnJxMly7KZ0HT0tJo2LAhAIMGDeLcuXNs2LCBHTt2UK2a8s7l559/Zv/+/fj7+yOTyUhLS6NBgwZKZWxsbNDQ0FD8X7p0aV6+lO/UX79+jaamJo0a5XbTqlq1KiYmJoVmT01NJTVV+SxxenYmWmry19ExNUBdU4OUiDilMikR8RhULaNymboWxm+VT42IQ9fSWPH/86WHaPz9BHo9305WegbZWdk8nb+XyIduijIPJ2+jxa6v6eu6m6z0DDJladwfv4Wkd/S/z0/b1BB1TQ3SVGTSq1a2WMvKq1TflhjUq8Qj26XvvYziMLcwAyAyQrl7UFRENOaWBTepd+vbhVr1ajDEdlyJ5Chwm4iMw6hqaZXz6FoYkxKpfCYqJSJesU3omhuipS/BZmZPHL87y/O1JynTsT7t937D1YHrCM+zXZRkXsMSyPviu7M4rj1J6Y71abf3G/4pIG+VYR2Icw8i0qHwbn5v8soilfPKIuIwqqI6r8TCGFmEcl5ZZDwSC2PF/3Vn9CQrIwvXfZdRJfSeC81WjMBmag9c911CU6pD4yVD5MvP890tiH5OmcR8uZMi49DPkyMvqYn8vb49TzzmVeT7F5MKlgB0+F9/rqw9TqiLH/X7t2X08SX80nUh0b5hecoM4PKao8QGRNBqcg/GnrLnpw5zkcUVrdX0zfcoqpjfMYCqNStz5MJutHW0SU6SMXv8YrzdfRXPz59sz8Zdq7njdpn09AxSZCnMHreYAN+3K5b/RRomRqhpapAZpdydKTMqBq1K5QucT01fSoWrJ1HT0iI7K4uoddtIefjpKoAmFvJjaGykcu7YyFiMLQo/vr6hpqbGpJWTcX7ijJ+76u7IXYd0xd/DH7enxTtZ98ab/UaqiuNcQcfqfxtNUwPUNDVIj4hVmp4eGYukatGO1RWWjiYtLEa5QlSCLCzNgbePw5HhUVhYmRU4X89+ttSpV5M+XUYWWMZ+zVyePXnBP/+Ba2REJ7mS9UkqM4mJ8jMtFy5coGxZ5S+cjo68f2xycjJPnz5FQ0MDDw/lHzMnT55k3rx5bNq0iZYtW2JgYMD333/Po0fKtXctLeX+uWpqamRlfVij2vr161m1apXStIF6dRhs8PGaaAGqju+KWaOq3B39A8mBkZi3qEnDdWORhcYQnnNG2mbBQLQMpdwatI7U6ATK2jWhxa6vudF3NfFuRbvg/WPRKWNGjTVjeDp4HVl5LkAuST0G2LLy+0WK/6eNmFPsZZQqY8miNXOYNPhr0lLTSjJeiVJTlw99EnD5GW45F6DGOPtj0aQa1Ud3+qDKzMfwJm+girzVVOTV0NXCul9LXm45/6mjAmBW15raE2z5w86+wDKx7kHc+d8umq0YQePFg8nOzMJ1/xVk4bFkZ719aKrbtxW91k1Q/H9s3PcfJfubdf302HUcz9wGINTZj8qtbWg4uAPXNp5CTV3eCH9n+3lcL8pbH8/P28Wchz9Ru0dznh6/rnLZ3ft3Zdn3CxT/zxw5771z+nr5M7jTGPQN9enSsyOrt9kzod8MRYVmxsJJGBjpM2ng18RGx9GxWzs27l7NuD7T8HQreGCH/++yk2QEDZ6KulSCbvOGmM6dSkZgCCkOH+fHaoe+HZixfqbi/1VjV37wMqetmUbF6hVZMGC+yue1dbRp36c9p7ad/ODX+v+szMx+mPdpjcvA5WSX0HG5z8BurPkhd785YfisYi+jdBkrlq+dz+iB0wo8Dneya0+rts3o2XHoe2cV/rs+SWWmdu3a6Ojo4O/vT/v2qvumzp07F3V1dS5evEj37t3p0aMHX30l7wN67949WrVqxfTpuRdnenkVbzSWGjVqkJGRwfPnz2ncWN7VxdPTk5iYwi9eX7x4MXPmKP9I/qv6ZMXfqdEJZGVkomuhfPGdroUhKeHKZ4DeSImIfau8joURKeGxAKjralF38RDujf+R0GuOAMS5BmBsU5Ea03oQfscZvYqWVJtgy+X2C4jP6RIT5+KPefMaVB3XhWcL9xe+QvJIi44nKyMTbRWZUnMyFZdh/UroWBjT4up6xTR1TQ1MWtak/Hhb/ik/ElT8ACyOG5fu8PJpbpedNxebmluYKjVBm1mY4lbARf2169fE3MKUM1cPKaZpamrSpGVDho0fSMPybYtdIS5wmzA3QhZRyDaR7yJU+TYUm7vM9Azi8nV/ivMIwqLZh11T8KnzWqrIW6FHMzQkOvicefcIRW/ySsyV80osCs4ri4hFYqGcV2JuiCznDKdV8xromhsy6HHuwCLqmho0WT6C2hPtONtiNgA+5x/gc/4BuuaG8ut6sqH25G4k+L997d3rq88IyjNKkoa2fHerb25EYp7vlZ65EaEuqs9GJ8fI36t+vveqZ25IYs57TchZVoSn8rqO8AzGqKyZchmP3DKZaRnE+Icryqhy8/JdXj7L/Y69uYDXTMV37PWrwlvUMtIzFK0srk6vsWlQixETB7N6wUbKVSzLsAmD6N9+BF6vfQBwd/GkUfP6DB03gDULP05F8N8kMyaO7IxMNMyUWzM0zEzIjCzkOJWdTUaAfNSwtNdeaFeqgNGEYR+tMvPo6iNeP88dXe3NftfY3ISY8NycxubG+Li8uxI69dupNO3UjEWDFhIVqrrrUOserdGR6HDt12sqny+KN/sNnUKOvf92GdEJZGdkopWvJVfL3Ji0fK01+ZWe2ocyM/rjOmQlya4lNxjPP5du4Zinu6i2du5xOCIsUjHd3NIMl5eqR+WrU78W5pZm/HH9uGKapqYmzVo2YtTEIdQs05xWbZpSwbocjl63leb95eAPPHn4nOF9JpXYexK+PJ+kMmNgYMC8efOYPXs2WVlZtGnThri4OO7du4ehoSHm5ubs37+fBw8e0KhRI+bPn8+YMWNwcnLCxMSEatWqcfjwYS5fvkylSpU4cuQIT548oVKlol/oXrNmTTp37szkyZPZsWMHWlpazJ07F4lEgppawQN+6+joKFqP3njTxQwgOz2TGCcfLNvYEHzpqXyimhqWbergeUB1394oB08s29jgkWeIR6t2dYjKuWhbXVMTdW3Nt0bryM7KgpwzrBo5I75kqyjz5kxtUWWnZ5Lg5INZ2zpEvLmIUU0N07Z18N+vusvNu0TffsX99spncW22TCPJMxjf7b9/cEUGIDkpGf8k5WGHI8Iiad62qaLyoqevR71GNpw69JvKZTy87UCf9sOUpq3dsgxvTz/2bT/8Xi17WemZRDv5UKqNDYF5tolSbWxwP3hV5TwRTz0p1dYGtzzDAJduV4eInG0iKz2TqBfeGObrRmVQuTRJgZF8iMLyvi4gb2RO3tf58ka+I69hAXmrDOsgHxwg+t39uLPSM4ly8qF0Gxv8L+fmLd3GBrcDBa/f0m1slIZZLpNn/Xr9eo/gvNfgAF2OLcD713t4nFY+eAKKLnZVh7QjMzWNEBXXhKUlpRCdpHyhckJ4DJVa2ygqLzr6Eso1qILD0X/emh8gMz2T4Jc+VGptg9uVpzlvVY3Krevw+JB8/xIbEEF8aDRmlZXXtVnlUnjekI8KF/LSh4yUNMyqlMbfQT5KkLqmBsblLIgrZPtJTkomWeV3rIli1D89fSl1G9bmzMFzBS5HFXV1dcUPYd2c/Vn+71tWZpaiVek/LyODVFd3dJs3JPlGzihzampImjck/uTvRV+Ouhpq+XoplCRZkgxZkvK1ptHh0TRoXV9ReZHoS6jRoAYXj/xd6LKmfjuVlnYtWTx4MWEBBXeP7jqkK4//eUR89PsPzpKdnkmckw8WbW1yh05WU8OijQ0++9/vOpxPLTs9gyQnL4za1CPmUs61oWpqGLapR9jBgtd16el9KTtrAG7DV5PkVLLDciclJpOUqLyPCA+LoFW75ooRyfT19WjQqA7HDpxRuYz7dx5j12ag0rSNP63Cy8OHXdsOkpWVxY5tBzh1VHkfc+nuWdbYb+La5cKvs/w3EveZKVmf7D4zq1evxsLCgvXr1+Pt7Y2xsTGNGjVi8eLFDBkyhJUrVyquZ1m1ahVXrlxh6tSpnDp1iilTpvD8+XOGDBmCmpoaw4YNY/r06Vy8WPB9TVQ5fPgwEyZMoF27dpQqVYr169fj7OyMrq7uB703910XabZ1CjEvfIh29KLaJDs0pTr4npR/wZpum4osNIZX604B4LH3Eh1+s6f6lO6EXHtO+T4tMa1fmafz9wGQkSgj/L4L9ZYNI1OWRlJgJBYta2E9sC2OK48CkOAZTIJ3KI03TuDFqmOkxSRS1q4JVu3qcHeU6nHZC+O78wJ1tk0j3tGbuOeeVJjcHQ2pDsE576HOT9NJCY3Gc628mV9NSwP9nIuH1bQ10C1lioFNRTKSUpD5hpGZlEKim/J9JzKTU0mPSXhrekk6svskU2aPw98ngED/YL5eOIXwsEiuXczd2e07u51rf9/k+P6zJCclv9WFJTlZRlxM3Ad1bXHdfZFWW6YQ/cKHyOde1MrZJrxy1merrVNIDo3Bcb18EAu3vZfp+utSak3pRtA1R6z7tMS0XmUezs9tYXP55W/a7JxJ+EM3Qu+7UqZjPcp1acjVgWsVZXQtjJBYGmFQST66lnHN8mQkyUgKiiKtkNHk3HZfpOWWKUS98CHquRc1J9mhIdXBOydvy61TkOXL2+XXpdSc0o3ga45UzMn7SEXesIduhOXkLdulIf/kyQugb22FZYsa3BhZ9O3Wec9F2v44hUgn+fqtPckOTYkOHqfkedtsnUJySAzPNsjzuuy7TLezS7GZ0o3Afxyp1KclZvUqc3+BPG9qTCKpMcoXHmdnZCKLiCXeK0QxrebYLoQ7eJCRnEKZtnVosmwYT9edIq2I9/J5uO8S7b7uS7RPKDEBEXw1dyAJ4bGKigrA6OOLcbvswOND8orZg70X6bdpCsFOPgS98KLFeDu0pDo8P5O7Td/fdYEOswcQ5upPqLMf9Qe2xbxKGU5Plbc0pSbKcDh2jY6zBxIfHE1sUCStp/SQr8tijmh2bM9pJv1vDH7eAQT5BzNj4WQiwiK5fim30rf7zDauX7zFyf2/AjBryVTuXn9IaFAoUj0p3ft3pUmrhkwbKm/x8vX0w887gGUbF7L525+IjY7nq27taNG+KV+PUt31qCQlJ8vwD8y9J0pQcBhu7l4YGRpQupTlR3/9N+KP/Ir56gWkObuT+uo1hiP7oSbRJeG8vBJuvmYBmeGRxGyTb7dG44eS6uJORkAwatraSNo2Q79HZyLXblMsU93QAM3SlmjkXFOoZS3fb2dGRr91fc77+n3f7wyZNZQg32DC/EMZOW8U0eHRPLjyQFFm7Ym1PLj0gL8O/QXAtDXTad+nPWsmriY5Saa4viY5Pkmpq1HpiqWxaV6HlWNWfnBOz11/02jrVGJfeBPz3Isqk7qhIdXFP2c/1+inachConHNOVaraWlgkHOcU9fSRLe0KYY2FclMSlFcm6oh1UGvUinFa0grWGBoU5H02ERkQSV/kXrI7j+psuVrEl94kvjcg9KTeqEh1SHipLyraJWts0gLjSJg/TEAyszoR7l5Q/Gc8SOpAeGKVp3MpBSy3nNUuHc5sPM4M+dMxNfbn0C/IGYvnk5YaARX/r6hKHP0t51cvnCDI/tOkZSYjLubciUrOVlGbHScYnpkeJTKi/6DA0MI9C/4fkbC/w+frDKjpqbGN998wzfffPPWc6GhoUr/a2lp4eCQO1qOjo4OBw4c4MAB5XHc16/P7cKUdwjmN/LfP6Z06dL8/Xfu2YvAwEDCw8OpWlX1CEhFFfjHQ3TMDLBZMFB+00xnP+4M/47UnLO30rJmSi0RUQ4ePJr+M3UWDqLO4sEk+oRyb9xm4l/n/sh/OHU7dZcMofnP09E21icpKJKX351W3DQzOyOTuyM3UnfpUNocnoemng6JPmE8/maX0s03iyrs9wdomxlSZcEgdCyNSXD249mwDYpBAXTLmitdF6BTypSW179T/G89oxfWM3oRfc8Fh/7fFvv1S8q+7UeQSCWs/GExBob6PHv8gilDv1E6OJavWBbjAu7bUFL8/niEjpkh9eYPkN+E0tmP6yM2Ks7o6+Vbn5EOHtyd8QsNFg6iwaLBJPiEcmv8j8Tl2SYCLjnweNF+bGb2psnq0cR7h3B70lYiHueOx199dCfqze2v+N/2/DIA7v9vF96n77wzb/35A9DNyXvjHXnvzfiF+nny3s6XN1BF3jv58gJUGdqe5JBoQm4VfQQm3z8eoWtqSMN58vUb7ezH1ZG5efXLmCt95yIcPLg18xcaLRhEo4WDifcJ5fqEH4l9XbyKtXnDyjSY1x8tqS5xXsHcX7gf71/vFXn+ezv/QluqQ6/1E9A1lOLv4M7R0d8p3djStIIVUhMDxf/Ofz1Ez8yAjnMGym+a6eLH0dHfkZRnAIaH+y+hqaOF7bKRSIz1CHP158iI9cTk6f52Zd0JsjKz6PfjNLR0tQl09OTQsLWkFLEi9saB7UeRSHVZ/sNC+Y1pHzsxfdgcpe9YOWvl75ipuQlrflqGhaUZiQlJuLt4Mm3obMXogRkZmcwcMZdvlk5j2+HvkepJ8PcJZNmsNdy99iB/hBL3ys2D8V8vVPy/8afdAPTp1pm19nM/+uu/kXT5FuomxphMH4OGuQmpr70Im76ErOhYADRLWSpt1+oSXcyXzELDypzs1FTSfQKIWLqBpDxnqqUdWmKxOrdCaLlRfn1DzI7DxO48UiK5f91xFl2JLl+v/xo9Qz1cHFxYPmoZ6Xm261IVSmNomtvVs8doeWV6w5nvlJb145wfuXY2t6Wyy5AuRIZE8vz2hw9qEPz7Q3TMDKm5YCA6FsbEO/vxcNgGxbFaUtZM3gMih24pEzpey/2dUW16T6pN70nkfRfu9V8DgHGDyrT5bZmiTN1vRwHgf+oWz7/Z9cGZ84v64x6aZoaUnz9MftNMZx/cRqwmPWeQEJ2y5pDnPViNtkVdR4vqexcoLSdw0ykCN50q8XwAu346iERPwrpN9hgaGeDwyJFxQ2Yo7SMqWJfH1Mz4o7z+l+C/OkTy56KWnb+f0n/Y9evXSUxMpG7duoSEhLBgwQKCgoJwd3d/a/CAwpwpPeIjpix5RlmZ7y70LzIbn88dodgWa3wZQ3u+8aW1cKd/YYF9Nb+83eq51C/re+fw6ujnjlAsgZ2KfnPVf4uvY959k8N/k0lpqm8c+W9lpf5xWkY+luFpX9Y+AsA78vnnjqDSnnIFj9r2sU0K/LL2nUXxyVpm/g3S09NZsmQJ3t7eGBgY0KpVK44dO1asiowgCIIgCIIgvC/RMlOy/l9VZmxtbbG1VX0nZUEQBEEQBEEQviz/T4aJEQRBEARBEAThv+b/VcuMIAiCIAiCIHxO2V/YdaD/dqJlRhAEQRAEQRCEL5JomREEQRAEQRCET0QMAFCyRMuMIAiCIAiCIAhfJFGZEQRBEARBEARBpZ9//hlra2t0dXVp3rw5jx8/LrT8mTNnqFmzJrq6utStW1fphvUfg6jMCIIgCIIgCMInkvUZH8V16tQp5syZw4oVK3j27Bn169fH1taW8PBwleXv37/PsGHDmDBhAs+fP6dv37707duXV69evcerF42ozAiCIAiCIAiC8JbNmzczadIkxo0bR+3atdm5cydSqZT9+/erLL9161bs7OyYP38+tWrVYvXq1TRq1Ijt27d/tIyiMiMIgiAIgiAIn0j2Z3ykpqYSHx+v9EhNTVWZMy0tjadPn9K5c2fFNHV1dTp37syDBw9UzvPgwQOl8iC/aX1B5UuCqMwIgiAIgiAIwv8D69evx8jISOmxfv16lWUjIyPJzMzEyspKabqVlRWhoaEq5wkNDS1W+ZIghmYWBEEQBEEQhE8k6zPeNHPx4sXMmTNHaZqOjs5nSlMyRGVGEARBEARBEP4f0NHRKXLlxdzcHA0NDcLCwpSmh4WFUapUKZXzlCpVqljlS4LoZiYIgiAIgiAIghJtbW0aN27MtWvXFNOysrK4du0aLVu2VDlPy5YtlcoDXL16tcDyJUG0zAiCIAiCIAjCJ/I+QyR/LnPmzGHMmDE0adKEZs2asWXLFpKSkhg3bhwAo0ePpmzZsorrbr755hvat2/Ppk2b6NGjBydPnsTBwYHdu3d/tIyiMvMerNWTP3eEYvFF+rkjFEtLnfKfO0KxVUpJ+dwRisVXXfdzRyiW5C+sDVnrcwd4DzrqX1bqwE5TPneEYil3bdfnjlBsl8q0/dwRiuVbqyafO0KxpGdqfO4IgvBOQ4YMISIiguXLlxMaGkqDBg24dOmS4iJ/f39/1NVzD9KtWrXi+PHj2Nvbs2TJEqpVq8b58+epU6fOR8soKjOCIAiCIAiC8Il8SS0zADNnzmTmzJkqn7t58+Zb0wYNGsSgQYM+cqpcX9j5TkEQBEEQBEEQBDlRmREEQRAEQRAE4YskupkJgiAIgiAIwieS/bkD/MeIlhlBEARBEARBEL5IomVGEARBEARBED6RLLXPneC/RbTMCIIgCIIgCILwRRKVGUEQBEEQBEEQvkiim5kgCIIgCIIgfCJf2n1m/u1Ey4wgCIIgCIIgCF8k0TIjCIIgCIIgCJ+IGJq5ZImWGUEQBEEQBEEQvkiiZUYQBEEQBEEQPpEs0TZTokTLjCAIgiAIgiAIX6QSr8zcvHkTNTU1YmNjCyxz8OBBjI2NS/ql32nlypU0aNDgk7+uIAiCIAiCIAglT3QzEwRBEARBEIRPRAzNXLJEZeYjsRzTjVLT+qJlYUyyiy/+y/aS5Oihsqz58C6YD+yApEYFAJJeehG04ZhSeZNuLbAYZYtevSpomhjwqutsZM6+752vytgu1JjeA10LI2Jd/Hm+9BAxjt4Fli/Xsxk2CwehV86cRJ8wnNacIPT6C8XzGlId6i0dShm7JuiY6JMUEIHHvst4H76mKNP+16VYtqqttFyvw9d4tnD/e7+PPrOH0HZYZ6SGUjwdXnPUfjfhvqEFlq/WrBZ2k/tQsW5ljK1M2T75OxyvPFEqs9f3rMp5z6w7zOXdf7x31lLj7Cg7vTfaFsYkufjhvXQfic89VZaV1ChHhflD0a9fGd3ylngvO0DIngtKZTT0dKmwcCim3ZujZWZI0itffJbtJ9HR673yVR/bmVrTeiCxMCLGxR8H+8NEFbJNVOjZjHoLBqJfzpwEnzCerz1JcJ5tAsCwahka2g/FskVN1DXViXMP5vakrSQHRQHQ+exSrFrVUprH4/A1Hi868M68dcZ0psGUHkgtjIhy9efO8sOEF5K3So9mNJs3EINy5sT5hvFg3Un8b+TmrWzXBJtRnbCoa42uiQGnbJcQ5eKvtIzawztSrW8rLOpYo20gYa/NZNLik9+ZtTDt5gyg4bCO6BjqEejgzsWl+4nxDSt0nsaju9Bicg/0LYwIc/XnyopDBL/Ife8jTy6lYkvl79qzo9e4uPT9v2t5TZ4/nr7De6JvqI+Tw0u+W7SZAJ+gAssPGN2H/qP7ULp8KQB8Xvuy98dDPLjxSFFmx9ktNG7VUGm+3w7/zoZFmz8oq8GQ3hiNGYSGuSlp7l5EbfiZtFevVZaVdmqD8YRhaJYvg5qWBul+wcQfOUviX/8olTEc1BPtWtXQMDYkaPBU0l6/33fuQzg4vuTA8bO4uHkSERXN1vXL6NSu1SfP8cbKFfOYMH44xsaG3L/vwIyvF+Pp6VNg+eXL5rB82VylaW6vPalTt73ifysrC77bsIzOndpiYKDPa3cv1m/Yxrlzf39QVvMx3bGa0hctCxNkrr4ELN9NcgHHZ7NhXTAb2BHd6hUBSH7pRfDGI7nlNTUoM38ERl81RrtCKTITkkm484LgDYdJD4v+oJwFsRprR+k8vy987feS5Kj6WGIxvDPmgzogzfP7ImD9sQLLl5T/LZrG0FH9MDQ04OnjFyybvw5fb/93zwhMnTWOBctncWDnMVbb/6CyzP6T2+nQuTVTRs3m6sWbJZhc+BK9Vzez1NRUZs2ahaWlJbq6urRp04YnT54UWP7gwYNUqFABqVRKv379iIqKUnr+TfevXbt2Ub58eaRSKYMHDyYuLk6p3N69e6lVqxa6urrUrFmTX375Ren5hQsXUr16daRSKZUrV2bZsmWkp6cXmMvLy4vKlSszc+ZMsrNL7mIs096tKb9iHMGbT+FsN5dkF1+qH1uOppmRyvKGLW2I+v0OboOX4dp7EWnBkVQ/vgKtUqaKMupSHRIfuxKw9vAH5yvXuwX1V47AZdNvXLW1J87Fn3YnFqFjZqiyvFmTajTfMROf4ze52nUpQZccaH1gDoY1yinKNFg1klId6/F45i9cajcf9z0Xabh2DKW7NlJalvfR6/xRb7ri4bT6xHu/D7upfek0rjtHl+5mXd8lpMpSmX14GZo6WgXOoyPVJcDVl2PL9xZYZk7TiUqPA/N/Jisri6cXH753VvM+rai0cgwBm87g2HUBSc6+2JywR8tc9TrXkOiQ6h+G35pjpIXFqCxTdfM0jNvXx2PmNhw7ziX21gtsTi9HO892U1QVezen0YoRvNx8jr9t7Ylx8afj8YUFbhPmTarR+pcZeJ24xd9d7Qm49JR2+2djlGeb0K9oSdfzy4j3DOafgWu50GkJL7ecJzNF+TvpcfQ6v9afoXg8W3PynXmr9mpO62UjcNhyjjPd7Yl08afnkYVICshbqnE1umyfgevJW5zpZo/P5ad02zsb0zx5NaU6hDx+zYN1pwp8XU2JNv43nXi6/f0rtXm1nNqTpmNtubjkAAf7LCc9OZVhRxahUcg2XKtnCzrbj+DO1t/Y19OecFd/hh5ZhDTfe39+/DpbmkxXPK6tf//vWl6jZwxjyPj+bFi0ifE9pyJLTmHb8R/Q1tEucJ6wkAh+XreLMXaTGNttMg73nvHDgbVUrm6tVO7c0T/pVr+f4vHTmp0flFXPtj1m86YQu+sowUOnkfbam1I71qNuaqyyfFZcPLF7jxMy+huCBk4h8ffLmK+ah6RVE0UZdYkuKc9fEb2l4H3IpyCTpVCjamWWzp3+WXMAzJ83nZkzxjN95iJatelFUnIyf/91DB0dnULne+XsRtnyDRSP9h36Kj1/cP9WalSvTL/+42jQqBPnz1/k5PGdNGhg895ZTXq1odyy8YRsOYVb9znIXHyoemRlgcdng5Z1if79Dh5D7HnddwHpIZFUPbpScXxWl+ggrVOFkK2nces2B+9J69GtUpbK+5e+d8bCmPZuTYUV4wjcfJpXtvNIdvGl5vFCfl+0qkPU+bu4DlqOc+/FpAVHUfOE8u+Lkjbl67GMnTQM+3nr6G87muRkGQdP/1zoPuKNeg1rM2zMAFxfuRdYZvzUEVCCv9k+h+zP+Pgveq/KzIIFC/j11185dOgQz549o2rVqtja2hId/fZZiEePHjFhwgRmzpyJo6MjHTt2ZM2aNW+V8/T05PTp0/z5559cunSJ58+fM3167k762LFjLF++nLVr1+Lq6sq6detYtmwZhw4dUpQxMDDg4MGDuLi4sHXrVvbs2cOPP/6o8j04OTnRpk0bhg8fzvbt21FTU3ufVaGS1aTeRBy/SuTp66R4BOK3aCdZslTMh3ZSWd776y1EHLqEzNmXFK8gfOf9gpq6GoZt6inKRP16i+Atp4m/80LlMoqj+pRu+By7ge+p2yS4B/F0wX4yZalYD2uvsny1iXaE3nDCfccFEjyCcd54lpiXvlQd31VRxqxJNXzP3CHigSvJgZH4HL1BnIs/pg2rKC0rQ5ZKakSc4pGRKHvv99F5fA/++ulXHK8+IdDNj/1zfsLYyoSGXZsVOM+rm885v+kkzy8/LrBMfESs0qNBl6a8fuBMZED4e2ctM6UXYcf+IfzkDWTugXgt2E2mLBXLoV+pLJ/o6IXvt0eI/P0eWWlvV8jVdbUx69EC39VHiH/oSopvKAE/nCbFJ5RSY7qqWGLhak7uhufxG3ifuk28RzCPFx4gU5ZKlQK2iZoTbQm54YTrjgvEewbj9L18m6gxrouiTP1Fgwi+/oLna04S88qPRL9wgq48IzUqXmlZmbI0UiLiFI+ibBP1J3XD5cQN3E7fJsYjmFuLD5CRkkrNIarz1ptgi/9NJxx3XSDGM5jHP5wl4pUvdcfk5nX/7R4OW88TePdVga/rtO8yz3/5k7BnJXNWs9kEO+5uP4/71aeEuwXwx5wdGFgaU6Nr4wLnaT6xG44nb+B05jaRHkH8vWQ/GbJU6g9Wfu/pslSSIuIUj7QP+K7lNXTiIPZvPcLty/fwdPVm5ax1mFuZ0d6uTYHz3L16n/vXHxHgE4S/dyA7vttLcpKMOo2VW49SZClERUQrHkmJH9bqZThqAAm/XSTx98uke/sTtWYr2SmpGPS1VVk+xcGJ5Ov3SPfxJyMwhPjj50jz8EanYe6P58S//iF211FSHj37oGwfqm3LpsyaPIbO7Vt/1hwAs76eyLr1W/nzzyu8fOnK2HHfUKaMFX36qF7Pb2RkZBIWFqF4REUpn7hp2bIJ2385wBMHR3x8/Fm3fiuxsfE0alivgCW+m+WkPkSeuEL06WukeATgv3gHWSmpmA3prLK876zNRB6+iMzFh1SvIPzmb0dNXR2D1vUByEpIxnPECmL/ukeqdxDJz90JWLYLvXpV0Spj/t45C1J6ci/Cj18l8tR1ZB6B+CzcRZYsFYthqo8lXjO3EH7oEsnOvqR4BuE9V/77wqjN+6/Ddxk3dTjbN+/hn4s3cXPxYN70ZViVsqBr946FzifVk/DjznUsmb2auLh4lWVq1anOhOmjWPDNyo+QXPhSFbsyk5SUxI4dO/j+++/p1q0btWvXZs+ePUgkEvbt2/dW+a1bt2JnZ8eCBQuoXr06s2bNwtb27R1cSkoKhw8fpkGDBrRr146ffvqJkydPEhoq7zK0YsUKNm3aRP/+/alUqRL9+/dn9uzZ7Nq1S7EMe3t7WrVqhbW1Nb169WLevHmcPn36rde6f/8+HTp0YN68eSorVh9CTUsTvXpVlCsd2dnE33VCv3GNIi1DXaKNmqYGGbGJJZpNnk8Dk3qVCLuT5wdbdjZhd15h1riaynnMmlQl/I7yD7zQm06YNa6q+D/KwYMyXRuhW8oEAItWtdGvXIqwWy+V5qvYvzW9nXfS9cYG6iwZgobk3WdqVDEvb4mxpQmu95wU02QJyXg7elClUfX3WqYqhuZG1O3YiDunrr27cAHUtDTRr1eZ2Nu5WcnOJu7OSwyaFG2beGuZGuqoaWqQla+VIyslDcPmtQqYSzV1LQ1M61Ui9I6zUr7QO86Y5/mM8zJvXJWQfNtE8C2n3PJqapTt1IB471A6Hl/AAKefsf1rJeXs3v6Rbt2/FQNe7aDH9fU0WDz4nduEupYGFnUrEXhXOW/gHWdKFZDXqlHVtyopAbecsCqg/KdgXN4CfUsTfPO8j9QEGUGOXpRtpPq7qK6lQem6lfC5q/z99bn7inL55rHp25rZz3cy6coGOiwYgqbu+33X8ipToTTmVmY8vvNUMS0pIQnn567UbVy0s+Xq6up06fMVEqkuLx2clZ6z69+FK69+58T1A0xfPAkdSeFn9gulqYlOrerIHuapdGRnI3v4DJ16tQueLw/dZg3Rsi5HytOX7y78/1SlShUoXdqKa9fvKqbFxyfw+PFzWjQvuFIOUK1qJfx9n+Ludp/Dh36ifPkySs8/eODA4IG9MTExRk1NjcGDe6Orq8Ot2w/eK6ualibSulVIuKt8fE648wK9Ih+fdVDT0iAjNqHAMhoGemRnZZEZn/ReOQuS+/si/7HECYNi/74oOP+HKF+xLJZWFty7lduFNCEhEcdnr2jYpPAK1KrvFnPj6h3u3X6k8nldiS5bdq1nxcINRIZHqSwj/P9U7GtmvLy8SE9Pp3Xr3LNBWlpaNGvWDFdXV5o2bapU3tXVlX79+ilNa9myJZcuXVKaVqFCBcqWLatUJisri9evX2NgYICXlxcTJkxg0qRJijIZGRkYGeU2rZ46dYpt27bh5eVFYmIiGRkZGBoqd73w9/enS5curF27lv/973/vfL+pqamkpqYqTUvLzkRbTUNleU1TA9Q0NUiPVO4ilx4Ri26Vsirnya/80tGkhcWUSCtMfjqmBqhrapASoZwvJSIeg6plVM6ja2H8VvnUiDh0LY0V/z9feojG30+g1/PtZKVnkJ2VzdP5e4l86KYo43/uPsmBkchCYzGuXZ66S4dhUKU0DyZsKfb7MLKQV5riI2KVpsdHxGFkYfz2DO+p1YAOpCbJeHZZ9c61KLTebBP51mFaRCxGVYu2TeSXmZRC/JPXlJ8zEJlHIGkRcVj0a41Bk+qk+BR8zZAqBW4TkXEYVi2tch5dC2NSIpXPnKVExCu2CV1zQ7T0JdjM7MmL787iuPYkpTvWp93eb/hn4DrCc7YL33P3SQqMRBYWg3GtCjRcOhSDKqW5M3FrgXl1c/Im58sri4zDpIC8UgtjkvPlTY6MR1qC20px6eWsq6R8+4qkyDj0C8glNZG/97fnicesSu731/n3+8QFRZIQFotlrfJ8tWgYZlVK8+uULR+U2cxS3jUlOkK5FT46IkbxXEGq1KzMvj/lXU1kSTIWTLDHx8NP8fzlc9cIDQwlIiyKqrUqM3PpFCpWqcDCicveK6uGiRFqmhpk5jvbnxkVg1al8gXOp6YvpcLVk6hpaZGdlUXUum2kPPy8rTD/ZqWsLAEIC4tQmh4WHkmpUpYFzvf48XPGT5yNu7sXpUtZssx+Djevn6N+w69ITJRXAoYOn8qJYzuICHMmPT2d5GQZAwdNwMvL972yapoayn/I5ztuZETGolu1nOqZ8im7ZDTpYdHKFaI81HS0KLt4NDG/3yGrhFpD31D8vsiXPz0yFkkRjyUVcn5fxOWtEJUgC0t5a1Rkvn1EZHgUFlZmBc7Xs58tderVpE+XkQWWsV8zl2dPXvDPf+AaGTEAQMn6IgYASEyUt1Ds2bOH5s2bKz2noSGvVDx48IARI0awatUqbG1tMTIy4uTJk2zatEmpvIWFBWXKlOHEiROMHz/+rcpOfuvXr2fVqlVK0ybq12CyYfHOfhdVqRn9Me3dBrdBy8hOLfh6n3+bquO7YtaoKndH/0ByYCTmLWrScN1YZKExhOec8fc5ekNRPt4tAFlYLB3OLkWvoiVJfoV34Wrepy2j1k1W/L9t/PqP80byaT34Kx6ev0PGv/Cz8Ji5japbptP0xR6yMzJJfOlNxLl76Ner/LmjoaYu77YZePkZbnvkJy5inP2xaFKNaqM7KSoznsdyt4lYt0Bk4bF0PrME/YqWJL5jm/jS2PRtRfd1ExT/nxr3/Ud7recnctdrxOsAEsNjGXliKcYVLIn1L/p6te3XmcUbcy/Snj1q0Xtn8vPyZ2SXiegb6PFVz/as2LqEqf1nKSo054/9qSjr5eZNVHgUv5zZQtmKZQjyC37v1y2u7CQZQYOnoi6VoNu8IaZzp5IRGEKKw8f58felGTasHzt+/k7xf+8+o99rOZcu526jL1+68ujxc7w9HzFoYC8OHJRfN7dq5XyMjQ3pajuEyKho+vS25cTxnXT4qj+vXrkVtOiPxmr6AEx6t8Vj0FLVx2dNDSrtWABqavgv2fHJ871L6Zn9MOvTGpeBy0vs90Wfgd1Y84O94v8Jw2cVP1cZK5avnc/ogdNIS01TWaaTXXtatW1Gz45D3zur8N9V7MpMlSpV0NbW5t69e1SsKB/dIz09nSdPnqhs6ahVqxaPHimf1X748O0Lqf39/QkODqZMmTKKMurq6tSoUQMrKyvKlCmDt7c3I0aMUJnr/v37VKxYkaVLcy+68/Pze6ucRCLhr7/+onv37tja2nLlyhUMDAwKfL+LFy9mzpw5StNe1iz4zEFGdALZGZlomStfjKdlYfzW2ZT8Sk3pQ+kZ/Xk9dAUy17ezl4TU6ASyMjLRtVDOp2thSEp4nMp5UiJi3yqvY2FESngsAOq6WtRdPIR7438k9JojAHGuARjbVKTGtB6Kykx+0c/kIwDpV7J6Z2XG8Z8n+OQZbUZTW77pGloYE5dnvRpaGBHg4lvosoqqWtNalK5Sll0zP2w0pfQ320S+dahtYUxazjp8Hyl+YbzqtwJ1qQ4a+hLSw2OpsWs2Kf6Fj4SVX4HbhLkRsohCtol8gxfIt6HY3GWmZxDnrjzCVZxHEJbNCu4OEZmzTRhYWxVYmUnJySvNl1dibvRWa80byRGxSPPllZobkvyO72RJ8rj6jL3Pc0e90sjZhvXMjUjMsx3omRsR5qL6+58cI3/vevn2L3rmhiQV8N4BgnNe19TaqliVmTtX7uH83FXxv7a2fGACUwtTosJzz7yaWpjg7lz4dUQZ6RkE+sq3B7eX7tRuUJMhEweyYeEmleVfPZO/bnnrsu9VmcmMiSM7IxMNMxOl6RpmJmRGqh5UA4DsbDIC5K+X9toL7UoVMJowTFRmcvz55xUeP36u+F8n56JuKysLQkNzty0rS3McX6je96sSFxePu4c3VataA1C5ckVmzhhPvQYdcXGRXwzu5ORCm9bNmTZ1LDNmFr9inREdT3ZGJpr5Wj41zY1JjyhkmwAsp/TFanp/PIevQOam4vupqUHlHQvQLmuBx5BlJd4qA3l+X+TLr2VehN8XU/tQZkZ/3IasLNHfF/9cuoXj09xur2/2EeYWpkSERSqmm1ua4fJS9SiCderXwtzSjD+uH1dM09TUpFnLRoyaOISaZZrTqk1TKliXw9HrttK8vxz8gScPnzO8z6T8i/1Xyyq5y7QF3uOaGT09PaZNm8b8+fO5dOkSLi4uTJo0ieTkZCZMmPBW+VmzZnHp0iV++OEHPDw82L59+1tdzAB0dXUZM2YML1684M6dO8yaNYvBgwdTqpR8KM9Vq1axfv16tm3bhru7Oy9fvuTAgQNs3iz/oVmtWjX8/f05efIkXl5ebNu2jXPnzhX4Hi5cuICmpibdunVTtPyooqOjg6GhodKjoC5mANnpGSQ5eSldvI+aGoZt6pL4VPUXGaDUtL6U/t8g3Ed+S7LTxxvmMzs9kxgnHyzb5OnfrqaGZZs6RD1VPTRllIOncnnAql0dop7Kf7yoa2qirq351ugi2VlZoF7wJmZcR14ZTgmLfWfu1KQUwv1CFY9gj0Biw2Oo1aquooyuvoTKDarh9azgUVCKo82Qr/B18iLwA3f82ekZJDp5Y9Q2Nytqahi1qUuCQ8HbRFFlJaeSHh6LhpEexh0aEH2p4JEFVc6fnkm0kw+l8m0TpdrYEPlU9Q/UyKeelGqrvE2UbldHUT4rPZOoF94YVlHu9mVYuTRJgZEUxLSOfPhQWSGVvKz0TCJe+lC2tXLecm1sCC0gb9gzT8q1Vs5bvm0dwgoo/zGkJaUQ4xemeER6BJEYHoN1nlza+hLKNqhC0DPV38Ws9ExCXvoozYOaGtat6xBYwDwAVjby71piMSvPyUkyAn2DFA9vd18iw6Jo2iZ3lEI9fSk2DWvx8mnRf7gCqKupK374qFK9jvx6pvfuG5+RQaqrO7rN8wz3rKaGpHlDUp1cihMUNa2Cc/5/k5iYhJeXr+Lh4uJOSEgYX3XMHQDCwECfZs0a8vDR00KWpExPT0qVyhUJCZFXiKRSCQBZWcodcjIzM1FXf79fgtnpGSS/9MKgtfLx2aBNPZIKOT5bTe1H6VmD8Ry1imQnFfuMnIqMTqXSeA5bTuZHuh6loN8XRm3qkVBI/tLT+1L2fwN5PWI1SSX8+yIpMRk/nwDFw+O1N+FhEbRql9uLRl9fjwaN6vC8gBMC9+88xq7NQHp2GKp4OD135vezf9Ozw1CysrLYse0A3dsNVioDsMZ+Ewu+XlGi70n48rxXN7MNGzaQlZXFqFGjSEhIoEmTJly+fBkTE5O3yrZo0YI9e/awYsUKli9fTufOnbG3t2f16tVK5apWrUr//v3p3r070dHR9OzZU2no5YkTJyKVSvn++++ZP38+enp61K1bV9Ea1Lt3b2bPns3MmTNJTU2lR48eLFu2jJUrV6p8D/r6+ly8eBFbW1t69OjB33//jZ6e3vusjreE7fmDSj/OIsnJi6TnHlhN6om6RJfInIvIK22dRXpINIEbjgJQano/ys4bhvfMzaQGhCvOGmUlpZCVnAKAhrE+2mXN0baS90uX5Fx/kx4e+1b/33dx33WRZlunEPPCh2hHL6pNskNTqoPvyVsANN02FVloDK9yhqj12HuJDr/ZU31Kd0KuPad8n5aY1q/M0/nyAR8yEmWE33eh3rJhZMrSSAqMxKJlLawHtsVxpfw96lW0pEL/VoRccyQtOhGj2hVosGokEQ9ciXMNeK/1/M/+C/T4egBhviFEBoTTd+5QYsNieH4ld6SyucdW8OzyI24cllegdaS6WFqXUjxvUd6K8rWtSYpNJDo490e2rr6EJt1bcroEhsIGCN71J9W2ziTxhReJzz0pM6kHGlIdwk/Ku1pU++lr0kKi8FsnPzOlpqWJtLq8D7e6liY6pU3Rs7EmMymFlJz76Bh3qA9qasi8gtG1LoX18lHIPIMUyywOt90XabllClEvfIh67kXNSXZoSHXwztkmWm6dgiw0Bsf18gE13PZepsuvS6k5pRvB1xyp2KclpvUq82h+7n1MXH75mzY7ZxL20I2w+66U6ViPsl0a8s/AtYB86Gbrfq0IvuZIakwixrUr0HjlCMIeuBL7jm3ixZ6LfLV5ChFOPoQ7elFvgh2aEh3cTsvzdvpxCkmhMTz8Tp7Xad9l+pxZSv3J3fC75ki13i2xqFeZm4ty8+oY66Ffxgw9K/l+zCSnIpYcEadooZJYGCG1MMLI2goAs5rlSUuUkRgcRWps8S/2fbzvEq2/7ku0TyixARG0nzuQhPBYXl/J/RE4/Phi3C874HDoKgCP9l6k96YphDj5EPzCi2bj7dCS6uB0Rv7ejStYUqdvKzyvOyKLTcSyZgW6LB+J30NXwt3e77uW18m9Zxj/zWgCfAIJ9g9l6oLxRIZFcetS7gXgP5/azM1LdzhzQH5CafriSTy4/ojQoHCk+lJs+3WiUasGzBo+H4CyFctg268z9689JC4mnqq1KzN75UyePXDE07Xgewe9S/yRXzFfvYA0Z3dSX73GcGQ/1CS6JJy/DID5mgVkhkcSs02+HRiNH0qqizsZAcGoaWsjadsM/R6diVy7TbFMdUMDNEtbomEh7/+vZS3/nmZGRr91fc7HlJwswz8wt8UqKDgMN3cvjAwNKF3ItSofw7af9rJk8Sw8PL3x9Q1g1cr5BAeH8fvvlxVlrlw6xfnfL/LLjoMAbNywjL8uXMXPP5AypUuxYvlcMjOzOHnqPABubp54ePiw4+fvWLBwNVHRMfTpbUfnzu3o03fMe2cN3/M7FTd/Q7KTJ8mOHlhM6IW6RJeo0/J7CVX88X+kh0YR/N0RAKym9af03OH4fr2JtEAVx2dNDSrvWoi0ThW8xq4GDXVFmczYRLLTM947qyohu/+kypavSXrhSeJzD0pN6oW6VIeIk9cBqLx1FumhUQSsPwZA6Rn9KDdvKJ4zfiQ1IFzRqpOZ5/dFSTuw8zgz50zE19ufQL8gZi+eTlhoBFf+zj02Hf1tJ5cv3ODIvlMkJSbj7qZcyUpOlhEbHaeYHhkepfLERnBgCIH+n64baknJ+s8Okvx5vFdlRldXl23btrFt27a3nuvQocNb92wZP34848ePV5o2d67yzbIApk2bxrRp0wp83eHDhzN8+PACn9+4cSMbN25Umpa369vKlSuVKjf6+vrcu3evwOW9r+g/7qFpakjZeUPRsjAh2dkH95HfkpFz0a52GQvIyl1HlqPtUNfRouqehUrLCdp0kuDN8gqFcdemVP4xty9qlR3z3ipTVIF/PETHzACbBQPlN8109uPO8O9IzblAWlrWTClflIMHj6b/TJ2Fg6izeDCJPqHcG7eZ+NeBijIPp26n7pIhNP95OtrG+iQFRfLyu9OKm2ZmpWdg1bYO1SbKK07JwdEEXniC65bzxcqe16Wd59GR6DB6/RSkhnp4PHFjy5g1Ste3WFS0wsA0t3uRdb0qzD+Zew3UkGVjAbh39gYH5v2smN6sV2tQU+PxH7k/0D5E5O/30TQzpMKCofKbZjr74jxsrWKgCJ2y5vKWrBzapUxocC33ZmFlp/eh7PQ+xN135lV/+VkoDUMpFZeMQKe0GRmxiURdeIjf+hNkZ2QWO5/fH4/QMTOk/vwB6FoYEePsx40RGxUX+euVNSc7zzYR6eDBvRm/UH/hIBosGkyCTyi3x/9IXJ5tIvCSA48X7cdmZm+arB5NvHcIdyZtJeKxvOUsKz2DUm1tqDnRFk2pDknB0QT8/YSXW35/Z17PPx+ha2pIs7kDkFoYEenix1+jNiLLyatf1lxpPxT61IN/vv6FZvMH0WLBYGJ9Q7k48Uei8+S17tKITpunKP7v+svXADzZ/BtPfvwNgDojO9F0Tn9FmX6/yi9OvzZnF6/P3Cni2s71YOdfaEl16L5+ArqGUgIc3Dk5+jsy82zDJhWskJjkdoV1/eshemYGtJ8zED0LeZe0k6O/IynnvWemZ2Ddug5Nx9uhLdEhPiQat4tPuPvT+WLnU+XwzyfQlUpYsnEe+ob6vHjykm9GzFfq617WugzGprld4UzNTVixbQnmlmYkJiTh6erFrOHzeXzbAZB3VW7WtjHDJg5EV6pLWHAEN/6+zf4tH3YyIenyLdRNjDGZPgYNcxNSX3sRNn0JWdGxAGiWslTa16lLdDFfMgsNK3OyU1NJ9wkgYukGki7fUpSRdmiJxer5iv8tN8qvF4jZcZjYnUc+KG9xvHLzYPzXuceMjT/tBqBPt86stX/7+Poxff/DL+jpSdn5y0aMjQ25d+8JPXqNVBo8p3Llipib5w4SUbZcaY4e+RkzMxMiIqK5d/8xrdv2IjJS3n0xIyODXn1GsW7tYs6fO4i+vh6eXr6Mm/A/Ll66/t5ZY/68i6apIaXnDpffNNPFB89Rq3KPz2XNITt3X2w+Sn58rrxbuVtbyOYThPx4Eu1SZhh3lbdC1LqiPHCJ+6ClJD4seKj39xH9xz20zAwpN3+Y/KaZzj64jVityK9T1hzyHEusRtuirqNF9b0LlJYTuOkUQZuK99uhqHb9dBCJnoR1m+wxNDLA4ZEj44bMUNpHVLAuj6mZ8Ud5feH/H7Xskrxb5HtauXIl58+fx9HR8XNHKZInZfu9u9C/iG+W9HNHKJbLOqnvLvQvM+7jnOD6aHzVdT93hGKJK7hn579SjPpn360W2+/pge8u9C9yyuLDh5r+lMpd2/XuQv8ykjJtP3eEYnls1eTdhf5F0jO/rB3bsDSfzx2h2Lwjn7+70Gdgb13wifmPbY3v8XcX+sJ8EaOZCYIgCIIgCMJ/wZd3uuvfrdgDAHwMK1eu/GJaZQRBEARBEARB+HcQLTOCIAiCIAiC8ImIm2aWrH9Fy4wgCIIgCIIgCEJxicqMIAiCIAiCIAhfJNHNTBAEQRAEQRA+EXGfmZIlWmYEQRAEQRAEQfgiiZYZQRAEQRAEQfhERLtMyRItM4IgCIIgCIIgfJFEy4wgCIIgCIIgfCJiaOaSJVpmBEEQBEEQBEH4IonKjCAIgiAIgiAIXyTRzUwQBEEQBEEQPhExNHPJEi0zgiAIgiAIgiB8kUTLjCAIgiAIgiB8IqJdpmSJlhlBEARBEARBEL5IomXmPezS0vjcEYqlZpba545QLP1lX95meVbyuRMUT4UvbFzIBLUv6zxWrbTPnaD4/q73uRMUz1hX7c8doVgulWn7uSMUmyz4zueOUCyrmyz73BGKJV3jy9qv3alo8rkjCIJKX96vRkEQBEEQBEH4Qn1h5xP/9UQ3M0EQBEEQBEEQvkiiZUYQBEEQBEEQPpFsMQRAiRItM4IgCIIgCIIgfJFEy4wgCIIgCIIgfCLimpmSJVpmBEEQBEEQBEH4IonKjCAIgiAIgiAIXyTRzUwQBEEQBEEQPpEsMQBAiRItM4IgCIIgCIIgfJFEy4wgCIIgCIIgfCKiXaZkiZYZQRAEQRAEQRC+SKIyIwiCIAiCIAjCF0l0MxMEQRAEQRCET0QMAFCyRMuMIAiCIAiCIAhfpH9ty8zYsWOJjY3l/PnznzuKIAiCIAiCIJSIrM8d4D9GtMwIgiAIgiAIgvBF+te2zPxX9Jk9hLbDOiM1lOLp8Jqj9rsJ9w0tsHy1ZrWwm9yHinUrY2xlyvbJ3+F45YlSmb2+Z1XOe2bdYS7v/qNY+VrPGUDd4R3RMZQS7ODO1SUHiPUNK3SeBqM703RKD/QsjIhw9efa8sOEvvAGQNdIj1ZzBmDdri4GZc2QRcXjeeUpd384S1qCDACbgW3ptnmKymX/0nA6BEcXKXvFcV2pNL0XOpZGJLj447zkAHHPvVSW1a9RjuoLBmFYrzLSCha4LDuE7+6LSmUqjOlChbGdkZS3ACDxdSCem34j4rpjkfIUld3sQbQc9hW6hnr4OrzmjP0+IgvZJio3q8lXk3tRrm4ljKxM2Tf5B15dcVA8r66pQfd5Q6jVoQFmFSxJSUjG/e4r/vruBPHhMcXK1jLf9nCtCNtD/dGdaZxne7ix/DBhOdsDQN3hHanRpxWWdazRMZDwS53JpMYnq1yWhrYmQ39fhaVNRY7aLSHCxf+dmTvMGUDDYR3RNdQjwMGdv5fuJ/odmZuM7kKryT3QtzAizNWfiysOEZwnM0C5RlXpOH8wZRtUITszm1AXP46N2kBGajpG5cxpN6sf1q1qo29hTEJYDC/P3ePO9vNkpWcW+LpVxnahxvQe6FoYEeviz/Olh4hx9C6wfLmezbBZOAi9cuYk+oThtOYEoddf5K4vqQ71lg6ljF0TdEz0SQqIwGPfZbwPX1NajmnjqtRdNBjTRvL3Euvsx+1hG8hKSS90PRWFbq++SAYORd3UlAxvL5J+2UrGa7d3zqfd/isMl6wg9f4dElbZf3COwoyYMxLb4bboGerh6uDKL0t+Jtg3uMDyg2YMoqVdK8pVKUdaShquT105uP4AQd5BAFiWs2T//QMq510/bT33Ltz9oLwrV8xjwvjhGBsbcv++AzO+Xoynp0+B5Zcvm8PyZXOVprm99qRO3faK/62sLPhuwzI6d2qLgYE+r929WL9hG+fO/f1BWYvKwfElB46fxcXNk4ioaLauX0andq0+yWsDfDV7AI1z9hP+Du78af/u/USzUV1oPSV3P3FhxSGCcvYTxuXMmXN3q8r5Tk3fivPfj5EY6zNw63SsalZAaqxPUlQ8blef8s/3p0lNlBX62p1nD6TpsI5IDPXwc3DnvP1+ogo5TgC0GNWFdlN6om9hRKirP3+sOETgi9xjomkFS7ovHUHFJjXQ1NbE/ZYTf648SGJk/FvL0tDWZPr5bylT25pt3RcT4uJX6GvnpTegD/ojhqBhakq6pxexm38i3UX1PkG3fVsMxgxHs1xZ0NQgIyCIxBNnkF26qihjbL8AvR52SvOlPHxM1OxFRc70b5MtrpkpUZ+9Zebs2bPUrVsXiUSCmZkZnTt3Jikp6a1yqampzJo1C0tLS3R1dWnTpg1PnuT+yL958yZqampcuHCBevXqoaurS4sWLXj16pXScu7evUvbtm2RSCSUL1+eWbNmqXy9kmA3tS+dxnXn6NLdrOu7hFRZKrMPL0NTR6vAeXSkugS4+nJs+d4Cy8xpOlHpcWD+z2RlZfH04sNi5Ws2rScNx3Xl6uL9HOu9gvTkVAYeXYhGIflq9GpOh2UjeLDlHEd62BPu6s/AowuRmhkCoG9lgr6VMTfXHudgl0VcnLsb6/b1sPt+kmIZr/98yC+NZyg9fG46EfDAleSot3eqqpTu05Kaq0bhueks97osJt7Zj2YnF6NtbqiyvIZEm2S/cF6vPU5KmOof+CkhUbxec4J7XZZwv+tSou460/jQPPRrlCtSpqL4ampv2o2z48zSvWzpa0+qLJWphxcXuk1oS3UJcvXj1+WqfzxpS7QpZ2PN1Z9+Y1PPxRyYuhnLKmWYuHdesbI1mdaTBuO68s/i/ZzI2R76v2N7qN6rOe2WjeDhlnMc62FPpKs//Y8uRGKW+zloSrTxu+XEk5/fXdFuu2QYSQV8Pqq0mtqTZmNtubDkAPv6LCc9OZURRxYVmrl2zxZ0tR/Bra2/sbunPaGu/ow4skixDYO8IjP80EK8b79kX+/l7O29jCeHrpCdLT8AmVcpI9/fLN7Pjs4LuPLtURqP6ESnBUMKfN1yvVtQf+UIXDb9xlVbe+Jc/Gl3YhE6Zqq3WbMm1Wi+YyY+x29ytetSgi450PrAHAzzbI8NVo2kVMd6PJ75C5fazcd9z0Uarh1D6a6NFGVMG1el3fGFhN56ybVuy/mn2zI891+BrA8/mGq374je5BkkHztE7IxJZHp7Ybj2B9SMjAudT92qFHqTppH+8kWh5UrCgGkD6TWuFz8v/pm5veeQkpzCt0dXo1XINlKneV0uHLrAvL5zWTbCHk1NTVYfXYOORAeAyOBIRjYeqfQ4uukoyYnJPL3hUOByi2L+vOnMnDGe6TMX0apNL5KSk/n7r2Po6OgUOt8rZzfKlm+geLTv0Ffp+YP7t1KjemX69R9Hg0adOH/+IieP76RBA5sPyltUMlkKNapWZunc6Z/k9fJqM7UnzcfZ8ufSA+zuu5w0WSqjDy8qdL9bp2cL7OxHcHPrb+zsYU+oiz+jDy9CL+f7Ghccxcam05Ue1zefJTVRhsdN+XadnZWF29WnHJ+4ia1fzePcvF1UblOHXmvHF5q33dRetBpny/ml+/ml7zLSZCmMf0feuj1b0MN+JNe2/sb2HksJcfFnfJ68WhIdxh9ZTHZ2NnuHr2XnwFVoaGsyeu981NTU3lpet8XDSQiLfdeqfYukUweMZk0jYd9hwsdOId3DC/Mfv0PdxFhl+az4eBIOHSNi0kzCR00i+cIlTJYuQKd5E6VyKQ8eEdJjgOIR/X/s3Xd0FNXbwPHvpm2y6T300DvSkQCC0jvSi/QO4k96byKCKCpFQaVIFQQVBaT3ThISCOm9997b7vtHwiYbdkMCAYzv/XD2HHb2zswzkzt3984ts+bzcscm/He91cpMZGQkY8aMYcqUKXh6enL9+nWGDh2q/MFQ3JIlS/j99985cOAAjx49ol69evTu3ZuEBNW7+IsXL2br1q04OjpibW3NwIEDyc0tuPvo7+9Pnz59GDZsGE+ePOH48ePcvn2bjz/++LUcX48p/Tmz43dcLzkS5hXMvgU7MLM1p1Wv9hrXeXrdhVNbj+Fy4aHGNCmxSSqvlj3b4X3PnbjQmHLF13pqH+7v+Av/S4+I8wrln/m7MbIxo16vNhrXaTutL26/XuPpiZvE+0Zwafl+cjOzaTaq4A5gnE8Yf8/aTsBlF5KDYwi968Htr05Qp3srJNoF2S0vO5eM2GTlS5Evp6ZDE9yOXy9z7LVn9Sf08FXCjt0gzSecp4v3kJ+ZQ/Ux3dSmT3YNwOuzI0Seuoc8O09tmpiLj4i94kpGYBTpAZH4bDpOXnoWZm3qlzmuF+k6pS8Xd/zJ00vORHqFcHTB95jYmtO8V1uN63hdd+Xc1t9wu+Co9vOs1Ex2j/8C17P3iQ2IJNjFj9/X7KNGi7qYVbUsc2ytp/bh4Y6/CCjMD+fn78bQxoy6peSH1tP68vTXa3icuEmCbwSXl+8nr1h+AHDZewHHH04T+civ1P3bd2tBzS7NuLnxaJlj7jC1D7d2nsLnkjMxXqGcWrALYxszGpUSc8dpfXl07BqPT9wkzjecsyv2kZuZTauRRTH3Wj2eh79c4M6u08T6hhMfEInH2Qfk5xTkHf8bT/h78U8E3HIjKTQWn8uPuPfzWRr1aadxvw1m9iXwyDWCjt8k1Scc5yX7yM/Mxn5MV7Xp60/rQ9S1J/jsOkuqbwTuW06S6BZEvSm9lGks29Yn6MQtYu95khEWR+DhayR7hGDRqq4yTcv14/HdewHvnadJ8QknzT+SsNMPkOeovw7Kw2DoSLLOnyH74jnyQ4JJ274VRXYW+r37aV5JSwvjpavIOLSf/EjNrSMVZfDUwRzfcZwHl+4T5BXEN/O3YmFjQcdeHTWus3bCGq6cvEyITwiBnoF8u/AbbKrbUK95PQDkcjlJsYkqr469O3L7zG2yMrJeKd5P5k3ji03bOH36Im5unkya/D+qVrVl8ODepa6Xl5dPdHSs8hUfr3pToGPHtuz8YT+OTq4EBobwxaZtJCWl0LpVi1eKt6y6dGzHJzMm0qNrpzeyv+I6TunDzR2n8LrkTLRXKH8s2IWxbenlhMO0vjgfu4bLiZvE+oVzemVBOdG6sJxQyBWkxSarvBr3bsvTsw/IycgGICslA8fDV4hwCyQ5PI6Au+48PHSZWu0alhpvpyl9uLbjFJ6XnInyCuW3wniblPI90WVaPxyPXcP5xA1i/MI5tXIvOZnZtC2M175tA8yrW3Ny0Y9Ee4cS7R3KiYW7qNaiNnUcVCu0Dbq9Q/0uzfln45Eynd/ijMaMIP3vf8g4e568oGCStnyLIjsb2YC+atPnuDwm68Zt8oJDyA+PIP23P8j1D0DvneYq6RQ5ucgTEpUvRWpauWMT/rveemUmLy+PoUOHYm9vT/PmzZkzZw5GRkYq6dLT09m1axdfffUVffv2pUmTJvz8888YGBiwd+9elbRr166lZ8+eNG/enAMHDhAdHc2ff/4JwKZNmxg3bhyffvop9evXx8HBge3bt3Pw4EGysl7tC6gkqxo2mNmY43nniXJZZmoGAa6+1G3doML2Y2JlSvP3W3Pr+JUXJy7GtKY1RjZmBN8uarnKSc0k0tWfqhp+vGvpamPbvDbBt92LFioUhNx2p2rrehr3JTWWkZOWiSJf/ZC3psM6k5uZjc9ZzRW44iS62pi0qE38LTeVOOJuumHetoLOrZaEKkM6oi2TkuTkUyGbtKxhg4mNOT53iuLOSs0k2NUP+wrMEwAGxjLkcjmZGrpzlWRa0xpDGzNCSuSHqDLkhxA1+aFKKflBHZmVCT2+nMaF+bvJy8wp0zpmNawxtjEnoNj+s1MzCXf1p3przTFXaV6bwGLHiUJB4O2nynVkliZUb12P9PgUJv+xlgVOPzDx+CpqvCBv6RvLyExS/wUr0dXGvEVtom+p7jf61lMsNZxfy7b1iLml2rIcdf0Jlm2Kzm28ky9Ve7VG384cAGuHJhjVsSP6RkEek1qaYNmmHtlxKbz/91oGPvmBbn+swrJ9BeQ3HR106jcg95GzyjHlujij00Tz3X7ZuInIk5LIvvD6uzfZ1rTDwsYC19uuymUZqRl4u3rTqE2jMm/H0NgQgDQNf9+6zetRt1ldLh6/+Erx1q5dkypVbLlytaibWkpKKg8fuvBuB80/vAHq16tNSJAzPl53OXhgBzVqVFX5/N49J0YOH4S5uRkSiYSRIwehry/lxs17rxTzv515YTnhf+f5cqKGhnJCW1ebKs1q43+n6PpTKBT433mqsWyp0syeKk3teVTKTTljGzOa9GlL0APPUuIt+J7wK7bv7NRMQl39qVlKvFWb1VZZ51m8z9bR1tNFoVCQl1PUtTQvOxeFXIF9scqVkZUJQzdN47f5P5CTla0xTrV0dNBt2IBsR9UyIdvRGb1mTcq0CWnbVujUrE6OyxPV5a1bYnf2d2yOHcB08adomahv0a4s5G/x9V/0VsfMvPPOO3Tv3p3mzZvTu3dvevXqxfDhwzE3N1dJ5+/vT25uLp06Fd3R0dXVpX379nh6qhYKHTsW3W2zsLCgYcOGyjSPHz/myZMnHDlSdLdBoVAgl8sJDAykcePGz8WYnZ1NdrbqBZ2vyEdbol3qsZlaFxxDSmySyvKU2GRMrc1KXbc8HIZ1Izs9k0cXHpRrPcPCGDJK9JXNiEvB0NpU7ToGFsZo6WiTHpessjw9LhmLulXUr2NuRMdPhvDk6DWNsTQf3Q2vv+6Rl122/vt6FiZo6WiTHasaR3ZsMkb1q5VpG5oYN65Bx7Mb0JLqkp+exaPJW0nzCX+lbSq3XXjO00rEnRabrPysIuhIdRmwbCwuf999Yb/sZ2Sl5AfZC/JDRon8kBGXjLmG/KBJr60zeXL4CtFPAjGpblWmdYxsCmIumR/T4pIx0nA+Zeaa8nAKVnULfvyZ17QBoOunQ7m08SjRHsG0GNqF8UdXsLvXUrX97M1r2dJuYi8uaWhVkhaeq6wSf/us2BSM61VVu46+tdlz6bNjk9G3KTo2l5UHaPPVVAa67ESem4dCrsB58R7i7hf0TzesVXAsTRYO5clnR0lyD6bWiC50/W0FF99fSlpg6WMGSqNlYopEWwd5kmoLgDwxEd0aNdWuo9O0OdLe/UiaM+2l91se5oXlcFKcaoxJcUmYWZurW+U5EomE6etm4O7oTrCP+nEDvUb1IsQ3BC9nzT9Sy8LOtuDvFR0dq7I8OiYOOzsbjes9fOjClGnz8fHxp4qdDatXLeD61T95p9UHpKUVdKMePXYWvx7ZRWy0O7m5uWRkZDJ8xFT8/YNeKeZ/O6NSyt3SygltdeVEbArWddVfr21GdSPGN5zQR77PfTZ8+1wa9WyDnoEUr0vO/LVMczdy48LyVv33hPqy+Fm8aSXiTY1NVsYb6uJLbkY2fZeN4cKW4yCR0GfpaLR1tDEuVqYM/3oWD45cIdwtELMylsXPaJmZItHRRp6ger3lJyQiraW+TACQGBpi9/dvSPR0IV9O0tffqVSIsu87knX9NnmRkehUq4rJrKnofbuZ2Okfg/y/+vNcKI+3WpnR1tbm0qVL3L17l4sXL7Jjxw5WrlzJgwfl+2FeVmlpacycOZNPPvnkuc9q1lR/oW3atIn169erLGtl2pjWZqp3GToM7sL4L2Yo32+fsqkCIn6xTiM/4P6pWy+sCDQe4kDPTUX9dP+Y9PXrDg09IwOG/rKIeN9w7n77h9o0VVrXw7J+Nf75dNdrj6cs0vwiuP3BUnRMZFQZ2IEW2+fw4MP1L1WhaT24EyO/KBor9POULysyVLW0dLSZuPN/SCQSTqzaqzFdoyEOdC+WH069gfygScvJvdAz0n/hmJpmQxwY8MVU5ftfJ3/1WuKRaBX0H3905CqPT9wEIMo9mNqdmtJyZDeubjmukt7Y1pxxB5fg8c8DXI5prrS/DvWm9MKydT1uT/iajLA4rN5tRKsvJpEZlUjMLXflsQQcvkrQ8YJjSXoajE3nptiP6cbTL46XtvkKJTEwwHjJStK++xpFSvKLV3gJ3YZ0Y+6mom7D6yete+Vtzv58NrUa1GLJsMVqP9eT6tF1cFeObz9W7m2PGfMhu74vKhcGDZ7wUjGev1CU79zcPHnw0IUAvweMGD6Q/b8UxLV+3WLMzEzo1XsUcfEJDB7Um1+P7qbbB0N5+vTFEzZUFi0GOzCwWDlxZMrrKSeK05Hq0nywAze2n1L7+fkNh7m+7Q8sa1eh55JR9Fk1jjOrfwGg5eBODCkW74EpW15LjOkJqRydu43Bn0+h46TeKOQKnvx9l3C3QBSF4+ccJvVGamjA9R/+ei0xaKLIyCBm4nS0DAyQtm2N6SdzyAuPJMelYOxR5uWi/J3nH0iuXwB2vx9B2vodsp1c3misFUVMAFCx3vpsZhKJhE6dOtGpUyfWrFlDrVq1lN3Cnqlbty56enrcuXOHWrVqAZCbm4ujoyOffvqpStr79+8rKyaJiYn4+PgoW1xat26Nh4cH9eqVvQvM8uXLWbBggcqy/zWf+Fw618uOBLoW3ZHR0Ss4tSbWZiQXa50xsTYl1COozPsvTf12jalStxo/fvzNC9P6XXpEZLGZvrSlBfHJrExIjymKT2ZlQoyGGaQyE1KR5+VjaKV6d8jQypT0EneRdA31GXZwMTnpWZya8R3yPPUzPLUY3Y3op0FEuwW98BieyUlIQZ6Xj7TEXSqptSnZxY7lZShy88kovPOe8iQQ05Z1sZ/el6eLNd9J08T9sjNfuxaNE9HRKxi8aWRtqtJiZ2RtSkQ5ZorRREtHm4nf/w/z6tb8MGZDqa0y/iXyg04p+UHTjGLP8oOsRH6QWZmSEVv2H6s1HJpQpXV9PvH7RWX52DMb8Dp1lwsLfgTA59Ijfiwec+E1ZmhlSlqxmI2sTInScD4zEjXlYRPlndBn24r1U63AxvlFYFpNdQySkY0ZE46tJNTZlzPLNFceswvPlX6JPKtvbUJWjPpzlRWb9Fx6qbUpWYXxaenr0nz5KO5M+ZaoK64AJHuGYta0Fg1n9yfmljuZhQN4U0pUxlN9I5BVK/t4KnXkKcko8vPQMlNt4dAyN0ee+PyMhFpVqqFtVwWTz74oWigp6Ols+c8VEqeOR/6KY2geXHqAt4u38v2zQf5mVuYkFpvZz8zKjEAPzbPIPTPrs1m0696eZSOWEh8VrzZNp/6dkBpIufJ7+br6Apw+fZGHD4t+jEmlekDBzGNRUUVjIG1trHB97P7c+pokJ6fg4xtAvXr2ANSpU4uP506hRcv38fAo6Db75IkHnTt1YPasScz9uPLOClWS1+VHhLkW+64rLCeMrE1JK1HuapqhKyMxlXx15YS1Calqyram/Tqgqy/F9Y9barf3bExNnH8kmUlpTDu5luvbT5EYm4jHZWdCi31PFI83tZzxGpWI17jENnxvufF11/nIzI2R5+eTlZLBCscfSDhdkNfqODSlZuv6bPA5qLKduX9/zuO/7sDX69Tu/xl5UjKKvHy0LFTLBG0Lc/LjS5mlVKEgPyyCfCDX1x8d+5oYTxhLvIv6CULyIyLJT0xCu3o1qKSVGaFivdXKzIMHD7hy5Qq9evXCxsaGBw8eEBsbS+PGjXnypKi/pKGhIbNnz2bx4sVYWFhQs2ZNtmzZQkZGBlOnTlXZ5meffYalpSW2trasXLkSKysrhgwZAsDSpUt59913+fjjj5k2bRqGhoZ4eHhw6dIldu7cqTZGqVT63Cwy6rqYZadnEZOuOm1iUkwijR2aKysv+kYG1GlZn+uHX61f9TOdR31A0BN/wjxf/EM4Nz2LpHTVcUFpMUnU6tRU+WNVz8iAKi3r4npI/ZeyPDefaLdAanZqit/FwiZgiYSanZricqBoGkU9IwOGH1pCfk4ef075hnwNrUa6MikNB3Tg1pe/leVwlRS5+aQ8CcSySzOizzkp47Ds0ozgfRfKta0X0pKgpad5BpnSZKdnkV3inKfEJNLAoZmy8iI1MqBWy3rcPXxJ3SbKHmZhRcbavgrfj/mMDA19+5/JTc8iuURs6TFJ1CiRH+xa1uXxC/JDjU5N8S+WH2p0asrjA2U/nutrD3H3q6Lpxg1tzRh2ZBln5+4kqljlJSc9i5wSMafGJFK7U1OiC8+nnpEB1VrWxenwZY0xR7oFUrtTU7yLxVy7UzMcDxRcl0mhsaREJWBZR7WrnEUdO/yvFX25GtuaM+HYSiLdAvl70Y+gZuKSZxS5+SQ+CcSmc1Mizhft16ZzM/z2qy8P4p38sOncFN+fzyuX2b7XjHjngh8+Wjo6aOnpPLdfhVwOWgWVhIzQWDIjEzAu0e3PqI4dUdfU/1Aos7w88nx90G3Vhpx7t5XHpNuyNVl///lc8vzQEBJnTFJZJps0FYmBjPRdO5DHlm8CE3Uy0zPJTFetxCfEJNCy0zvKyouBkQENWzbk3KHSx+zM+mwWHft0ZPnI5USHau6O12tULx5efkBKQtlmYiwuLS1d2Q3smcjIaD54vzOPCysvxsZGtG/fit0/HVS3CbUMDWXUrVOLI0d+B0AmMwAKJi4oLj8/Hy2t52eyqsxy0rNIUFNO1HFoqrzJIS0sJx5qKCfyc/OJfBpIHYemeBWWExKJhDoOzXh48PnrtfWornhffkRGQuoL45MUXpvPbiDlpGcRr+Z7oq5DU2XlRWpkQI2WdXlQSrwRTwOp69AUj8Jp+yUSCXUdmnJPTbwZiQVx1unYBENLEzwvFxzj6XUHuPR10fexia05Uw4t59ePtxPq6s+EF2WVvDxyvX2Qtm1N1s07hQcsQdq2NWknT71g5WK0tAq6nGn62NoKLVMT5HFle4yD8N/3ViszJiYm3Lx5k++++46UlBRq1arF1q1b6du3L8ePq3Z/2Lx5M3K5nPHjx5Oamkrbtm25cOHCc+NrNm/ezP/+9z98fX1p2bIlp0+fRk+v4G5XixYtuHHjBitXrqRLly4oFArq1q3LqFGap1N9FZf3naX/vGFEB0USFxrDkIWjSYpOxOVi0UD3hUfW8ujCA64dLPjBIpXpY2Nvp/zcuoYtNZrYk56URkJEnHK5vpEBbft15LeNZf+CK+nR3vO8+8kQEoOiSQ6JodOi4aTFJBVVVIARvy7H77yTsrLitOccfbfOJNotkEhXf9pM7YOuTMrT324AhRWZw0vRNdDj7Ke70DM2QM+44Is0Mz5F2ZwN0HDgu0h0tPH48065Yw/cfZYW22eT7BpAkosftWf0Q0cmJexYQRwtdswhOyoB740FXSwkutoYNSiY0lZLTxt9OwuMm9YiPz1L2RLTcOVoYq64khUej46RPlWHdsLSoQmOoyquy+CNfefoOe9DYoOiSAiNoe/CkaREJ+JW7Lkxs4+swu2CI7cPFlTM9GRSrIrlCcsaNlRtUouMpDSSIuLR0tFm0q75VG9amz1Tv0RLW0vZtzojKY38Up57Utyjvefp8MkQkgrzg8Oi4aTHJBVVVIBhhfnhWWXl0Z5z9N46kxi3QKJc/WlVmB/cC/MDgMzaFENrU8zsbQGwalSDnLRMUsLjyU5OJzVC9Y53buFsUMnB0aRFlf5l9WDvebrMG0JCYBRJobF0Wzic1Jgk5Q8QgPFHl+N1wQnHwpjv7TnHkK0ziXgSSMRjfzpMKYjZ9URRzPd+PEvX+cOI9gwhyj2Yd4Z3wapuVU7OKniuhLGtOROOryI5PI5LG4+qTOtcspXyGZ8fz9F+20wSHweS4OpP/el90JFJCSrMs+22zyIzKlHZ9ct3z3m6/bGKBjP7EXnFhRqDO2LxTh2cFxe0AOWlZRJz14MWq8eQn5lDelgc1h0bYz+8C67rDiv3673rLE0XDSPJPYQk92DsR3bBpF5V7k1X/4yM8sj84zeMFy0nz8eLPG8v9D8cjkTfgKyLBc9wMlq8AnlcLBn7f4bcHPKDVZ+VokgrqHSXXF6R/tr7F6M+GU14UATRIVF8tGg8CTEJ3LtYNPB9468buXf+HmcOnAFg9udz6Dq4K59P20BGeqZyfE1GSjo52UUTVFSpVYWmHZqxbuK6Cot3+449rFj+Cb5+AQQFhbJ+3WIiIqL566+iGzUXzx/n1F/n+GHXLwBs2byaM2cvERwSRtUqdqxds5D8fDnHjp8CwMvLD1/fQHZ9/yVLlm4gPiGRwYP60KPHewwe8nxPg9chIyOTkLCilrfwiGi8fPwxNTGmSinjgSrCvX3n6TpvCPFBUSSGxtJ94XBSo1XLiUlHluNxwYmHBwvKibt7zvHh1plEuAUS5upPx6l90JNJeVSsnACwqGVLrfaNOKym22v9bu9gZG1K+OMAcjKysKlfnV4rxhLs6E1SWNxz6Z+5s+88H8z7kPigKBJCY+m5cASp0UnKigrA1CMr8LjgpKys3NrzDyO2ziLcLYBQV386Te2Lnkwf52LxthnRlRi/cNLjU6jZuj4D107gzt5zxAVEAgXTTRcvvbILy+KEkBhSohKgDEMh0349gfnqZeR6eZPj7oXR6GFI9PXJOFPwG8d8zTLyY+NI2VXQ28FowhhyPX3IC49AoquLvkMHZH16krTlOwAkBvoYT51I5rWbyOMT0KleFZO5M8kPCyfrgfoZPiuD/+JIn4SEBObNm8fp06fR0tJi2LBhbNu27blJvYqnX7t2LRcvXiQkJARra2uGDBnChg0bMDVVPz5Mk7damWncuDHnz59X+9kvv/yi8l5fX5/t27ezffv2UrfZuXPn554tU1y7du24eLFiWkZe5PzuU0gNpEzYNBOZiSG+jl58N/FzlfEt1rVsMbYo+iFk36Iui48VjdEZtXoSAHdOXmP/ou+Vy9sP7AQSCQ//fvmHsz3cdQZdAym9Nk1BaiIj3MmH38dvUWlJMatpg4GFsfK99+kHyCxM6LRgGDJrU2I9gjk5foty4LhtM3vlzGbTb6l2f/vJ4VNSihXgzUd1xfeco8YHKJYm8q976Fma0GDJCPRszEh1D+bhmM3kFP6QNKhmpfIcDX07C7pcLeqbXmfuQOrMHUj8HQ8eDP0MAD0rU97ZMReprRl5qRmkeoTgOGoTcTfdqChXd/+NnoGUkZumY2AiI9DRmx8nblbJE1a1bDEsds5rtKjLx8fWKN8PWV3Qr/7hyRv8umgXpnYWNO9ZMGXn4nOq/a13jv4M//seZYrNqTA/9CjMDxFOPvxRIj+YlsgPPqcfYGBhQsdi+eHPYvkBoMVH3ek4f6jy/ciTqwG4sOBHPE6q75ZRVnd3n0FPJmXApqnom8gIcfLhyIQvVWI2r2mLzLwoZo8z9zG0NKbbguEFD8PzCObohC9JLxbzg33n0ZHq0mv1RxiYGRLtGcLhcZtIDCnsjtGlOZa17bCsbcf8h6qtup/VGqc21rC/7yO1NKbpkuEFD810D+bW2C/JLtyvrJqlSp6Nd/LlwZzvabZ0BM2WjyQtMIo7k78hxTtMmeb+rJ00XzGKDt/PQc/MiPTwONy+/E3loZm+P59HS6pLy/UfoWduSJJ7CDdGbyI9+NVbQnJuXCPd1AzZhClomVuQF+BHysrFKAonBdC2tnnrA3R/33USfQN95m2ah6GJIR5OHqwZv5rcYnnErmYVTIqVw/0n9Adg8wnVcW7fLviWKyeL7o73HNWTuMg4XG4+qrB4v/r6BwwNZez+YQtmZibcueNI/4EfqUxEU6dOLaysLJTvq1WvwuFD32NpaU5sbAJ37j6kU5eBxBXeuc7Ly2Pg4PF8sXE5p/78BSMjQ/z8g5g89VPOnb9aYbGX5qmXL1PmLVW+37LjJwAG9+3BxlULNa1WIW7vPoOegZRBz8oJRx8OTfxSpdw1L1HuPj1zH5mFMR/MH174EMpgDk1ULScAWo/sSkpkAv5qvifysnNpM/p9+qz+CB09XZIj4vG84MitXadLjffm7tPoGUj5cNM09E1kBDv6sL/E94RlLVtkxeJ1O3MfIwsTeswfjrG1GZGeweyfuFnlgZhWdarQe8koDEyNSAqL5drOv7i9t2JnFcy8ch0tczOMp01G29KcXF9/4uYvRZ5YWCbY2hS0HheS6Btgtvh/aNtYo8jOJjc4lMR1X5B55TpQ0NKsW7cOsr690DI2Ij8unuwHTqT8tB9yX/2hv0LFGTduHJGRkVy6dInc3FwmT57MjBkzOHpU/cQ4ERERRERE8PXXX9OkSROCg4OZNWsWERERnDyp/uHwmkgU6h7qUgldv36d999/n8TERMzMzF7rvqbZD3+t269ojeT6bzuEcmmi4Tkw/2aXDN52BOVTU/7Wh8uVS6qkchVTjcs2u/S/yvstwl6c6F9kkqf6u33/VuejXN92COWWGfFqNxvetA1tV7/tEMolt5INAv+4StSLE/3LVLv3Zirr5TW+1tAXJ3pNDgWrn5DpVXh6etKkSRMcHR1p27bg5ur58+fp168fYWFhVK2qfhbAkk6cOMFHH31Eeno6Ojpl/53yVp8zIwiCIAiCIAhC5XXv3j3MzMyUFRmAHj16oKWlVa4ZipOTkzExMSlXRQb+BbOZVZRu3brxH2lkEgRBEARBEP6j3uavVXXPT1Q32VV5REVFYWOjOvZNR0cHCwsLoqLK1qIXFxfHhg0bmDFjxosTlyBaZgRBEARBEATh/4FNmzZhamqq8tq0Sf1ER8uWLUMikZT68vJ69edUpaSk0L9/f5o0acK6devKvf5/pmVGEARBEARBEATN1D0/UVOrzMKFC5k0aVKp26tTpw52dnbExKhOKpOXl0dCQgJ2dnYa1iyQmppKnz59MDY25s8//0RXt/yPwxCVGUEQBEEQBEF4Q+RvsaNZebqUWVtbY21t/cJ0HTt2JCkpCWdnZ9q0aQPA1atXkcvldOjQQeN6KSkp9O7dG6lUyt9//42+/stNWCW6mQmCIAiCIAiC8FIaN25Mnz59mD59Og8fPuTOnTt8/PHHjB49WjmTWXh4OI0aNeLhw4JnLaakpNCrVy/S09PZu3cvKSkpREVFERUVRX5+2Z6P94xomREEQRAEQRCEN0RRyablLosjR47w8ccf0717d+VDM4s/GzI3Nxdvb28yMgqeLfjo0SPlTGf16tVT2VZgYCD29vZl3reozAiCIAiCIAiC8NIsLCw0PiATwN7eXmXW4YqchVh0MxMEQRAEQRAEoVISLTOCIAiCIAiC8IbI33YA/zGiZUYQBEEQBEEQhEpJtMwIgiAIgiAIwhvyNqdm/i8SLTOCIAiCIAiCIFRKojIjCIIgCIIgCEKlJLqZCYIgCIIgCMIb8l98zszbJFpmBEEQBEEQBEGolETLzEtYpJfxtkMoF+8UvbcdQrmcNMh72yGU26CsynWOM7Uq112hxvn5bzuEcrltUPnuE/3pZfG2QyiX6TkGbzuEcvnMtu3bDqHcNrRd/bZDKJfVThvedgjlcr3p8rcdQrn0C8x62yGU2+O3HYAGYmrmilX5vnEFQRAEQRAEQRAQLTOCIAiCIAiC8MYoFJWrd8S/nWiZEQRBEARBEAShUhKVGUEQBEEQBEEQKiXRzUwQBEEQBEEQ3hC5mJq5QomWGUEQBEEQBEEQKiXRMiMIgiAIgiAIb4iYmrliiZYZQRAEQRAEQRAqJVGZEQRBEARBEAShUhLdzARBEARBEAThDVGICQAqlGiZEQRBEARBEAShUhItM4IgCIIgCILwhoipmSuWaJkRBEEQBEEQBKFSEi0zgiAIgiAIgvCGKBSiZaYiiZYZQRAEQRAEQRAqJVGZEQRBEARBEAShUhLdzF4Ts3EDsJw6DG1rc7K9AonesIusJz5q05qO7I3pkO5I69cCIMvdj9hvDqikb+Tzj9p1Y77cS8Le3ysk5tqTe1JvzgCk1qakeITwZOUBklz81aY1bliNRotHYPZObWQ1rHFbfZCAn8+rpLF8txH15gzArEVt9O3MeTDpG6LOO1VIrM8MmT+K98b0QGYiw8/Jm4OrfiImKEpj+gbtG9NnxmDsm9fBzNaCHTO+xOWio0oaqUyf4UvH0apXe4zMjYgLjeHyL+e4fuRihcYOBee8fuE5Ty7DOW9c4pz7lzjnr6L+pJ40mt0fA2tTEj1CcF51gATXAI3pawxoT4slIzCsbkVqYDSuG38l8upj5edjIo6oXc9lw1G8dp1VWaalp0Ovs59h3rQW53quIMk9+KWOoebkXtSeMxA9G1NSPULwXLGfZA3n06hhdeotGYFpizoY1LTGc/UBgn86p3HbtecNouGqsQT99A9eqw++VHwA3ecPp+2Y99E3MSTEyYe/V+0jvpQ8C9BhfE86zxyAkbUpUZ4hnFl7gPDHBcdlVt2KRbe3q13v1znbcP/nAQDVWtSh19LRVG1eGxQQ9tifC5uOEuUZUu5jGL5gDO+P6YGhiSE+Tl7sW/kjUUGRGtMPmjOUdn3epWrd6uRk5eDr7MWvmw8SGRChTPPBmJ44DH4P+2Z1kBnLmNZ8HBkpGeWOraTKVq5ZTeyH7cwh6Fqbk+kZROian8hw9VWb1nJMTyyHv49+g4Lvjgw3fyK2HCpKr6NN1cXjMP2gDXo17chPzSD11mMiNh8kNzrhpWP8YP4w2hTLw6dX7SMhKLrUddqP70mnmf0xsjYl2jOEs2sPEP64oHwxq27Fgtvb1K53fM423P95iIGZEcO3zcG2UU1kZkakx6fgdcmZy1/9RnZa5ksfiyZOrm7sP3oSDy8/YuMT2LZpNd3fc6jw/ZRF9cm9sJ8zED0bM9I8gvFasZ8UDXnYsGF16i4ZiUmL2hjUtMF79QFCflL9/VBn0XDqLh6hsizdN5y7nRdUWMxzlkxj6LhBGJsY4+r4hI1LvyIkMExj+hETP2TkxA+pWqMKAP7egfz4zT7uXL2vTGNpbcGCNR/zbtd2GBrJCPIL4edtB7hy9nqFxf2myN92AP8xomXmNTDu9x42y6cTt/MoQUPmke0VQI29G9C2MFWbXta+BSlnbhAyYTnBoxaSGxlHjX2fo2NrqUzj6zBO5RW57FsUcjmpF+9USMxVB79L03Uf4b31D270Wkmyewgdf12GnpWJ2vTaBlLSQ2Lw+PwYWdGJ6tPIpCS7B/Nk+f4KibGkvrOG0GNyPw6u/InPh6wgOzObhQdXoyPV1biOVKZPqGcQh9fs0Zhm9KqJNOvakp/nb2dlj0+5tO8s49ZPpWWPthUaf7XB79Js3Ud4bf2D671WkuIegkMZzrl7Kef8ZdUc9C6t1o7j6Td/cL73KpI8Qnj/6DKklupjsWpbH4cfPsb/1+uc77WSsPNOdNm3ANOG1ZVp/nxnjsrr/vwfUcjlhJ59+Nz2Wq4aQ2bUqx2T3eCONFo/Hr+tJ7nbczmp7sG0PbZc4/nUMtAjMzgG741HX3g+TVrWocaEHqS8ZCXrmS6zBvLu5N78tXIfu4esJiczi4kHl5WaZ5sNeJe+qz7i2rY/+KH/SqI8Qph0cBmGhX+b5Ih4NrebrfK68s0JstMy8b3uCoCeTMrEA0tJjojnxyFr+Hn4OrLTMpl4cBlaOtrlOoaBsz6k96T+7FvxI6sHLyUrI5tlh9agW8oxNO7QlEsHz7FmyFI2fbQObV1tlh1ai9RAqkyjZyDl8Q0X/vq+Ym7OQOUr18wHdqb66ilEfnccr34LyPQIpN6hdehYqv/uMO7YnIS/buE7ahXeQ5aQGxlHvcPr0LWzAEDLQIqsWV0it/2GV98FBEzfhH7datTZt/KlY+w8awAdJvfm9Mr9/DRkDTmZ2UwoQx7us2oc17f9we7+q4jyCGFCiTy8pd0cldfVb04W5uGCGyQKuRyvS84cnbaVbR8s4s9FP1KnczMGbpzy0sdSmszMLBrWq8PKhXNey/bLynZwRxqun0DA1t950HMZqe7BtD62At1S8nBmcDS+G38lu5RyLc0rlBvNZihfjoPWVljMkz/+iDFTR/D5kq/4qN80MjOy2HXsW/SkehrXiYmIYdvGXYzpNZmxvafw8LYz2375kroNayvTbNyxBvt6NfnfxCUM6zaeK//c4KufNtCoWYMKi12onP6TlRm5XM6WLVuoV68eUqmUmjVrsnHjRgCWLl1KgwYNkMlk1KlTh9WrV5Obm1uh+7eY/CHJv50n+Y9L5PiHErVmJ/KsbEyH91KbPnLRVyQdPUu2ZwA5AWFErdwGWlrIOr6jTJMfl6jyMurxLhkPnpAbWvod3bKqN7MfwUeuEXLsBqk+4Txespf8zGxqje6qNn2SawAenx0l/K97yHPy1KaJufoYry9PEHmuYltjnuk5pT+nd/yO6yVHwryC2bNgB2a25rTu1V7jOm7XXfhz6zEeXXj+B/Uzdds05O7vN/C+7058WCw3fr1MqGcQtd+pV6Hx1y1xzl3LcM7dX3DOX1bDGX3xP3qNwOM3SfENx3HpPvIys6kzRn0sDab1IfLaE7x2nSXFLwK3r06S6BZE/clFeTwrNlnlVb13G6LveJAeEquyrSrvv4Nd1+a4fHb0lY7BflZ/Qg9fJfzYDdJ9wnFfvIf8zByqjemmNn2KawDenx0h6tQ9FNmaz6e2TMo7P8zDfeFP5CWlv1KMDlP6cH3HKbwuORPtFcrJBbswtjWjcS/NFeVO0/rhdOwaj07cINYvnL9X7iU3M5s2Iwv+Ngq5grTYZJVX497teHr2PjkZ2QBY1a2KzNyYK9+cIC4gkhjfcK5t+wNjazPMqlmV6xj6TB3AqZ0ncL70kFCvYHYt2IaZjQVte3XQuM6XEzdw8+Q1wn1DCfEMYvfCHVhXt6F287rKNOf3neH0rj/wc/EuVzylqWzlms30wcT9epGE366Q5RtKyPJdyLOysRzVQ236oE++Ie7gOTI9Asn2Dyd48U4kWloYdyr47pCnZuA3bi1JZ+6QHRBOhosPoat/xLBFPXSrlu/v/kzHKX24WSwP/1GYhxv1aqNxHYdpfXE+dg2XEzeJ9Qvn9Mp95GZm07rUPNyWp2cfKPNwVkoGjoevEOEWSHJ4HAF33Xl46DK12jV8qeN4kS4d2/HJjIn06NrptWy/rGrN6k/Y4StEHLtOuk84nspy7X216VNc/fH97AjRp+4iz9b820aRl09ObLLylZuQWmExj5s+kp+/+4XrF27h6+nPqnmfYW1rxQd93tO4zo1Ld7h95R4hgWEEB4Syc/OPZKRn0qJ1U2Wad9o149e9J3nq4kl4SAQ/f/cLqclpNG7xevLA66R4i//+i/6TlZnly5ezefNmVq9ejYeHB0ePHsXW1hYAY2NjfvnlFzw8PNi2bRs///wz3377bcXtXFcH/ab1SL/rWrRMoSDjrisGLRuVaRNaBlIkOtrkJ6Wp/Vzb0gyjru1IPlEx3Z4kutqYtqhN7M2nRQsVCmJvPcW8bf0K2UdFs65hg5mNOR53niiXZaZmEODqS93Wr3aXxt/Zm5Y92mJmW3B3s1HHptjVror7rccvWLPsJLramGk45xZv+Jxr6Wpj0aI2UbdUY4m+9RSrNupjsWpTj+ji6YHIG0+waqO+wqdvZULV7i0JOHbjueXtv5rG/Xm7yM/MfuljkOhqY9KiNvG33FSOIf6mG2ZtXy0/NNk8hdjLLsTffPrixKUwr2GDsY05/neKtpOdmkmYqz81Wqs/z9q62lRtVltlHYVCgf+dpxrXqdqsNlWb2uN0/LpyWVxAJOkJqbQZ9T7autroSHVpM6obMb5hJIXFqt2OOjY1bDG3seDp7aJrITM1A39XX+q3LvsPCpmxDIA0DWVcRahs5ZpEVwdZ87qkFju3KBSk3nqMYZuynVstAykSXW3ykjT/MNU2NkQhl5OfUv6KuXkN68I87K5clp2aSfgL8nAVDXm4uoZ1qjSzp0pTex4Vy8MlGduY0aRPW4IeeJb7OCoLia42xi3qkFCiXEu46YbpK+ZhWR073nu8i04Pt9Psh3noV7N88UplUK1mVaxtrXhws6iyn5aajpuLBy3aNivTNrS0tOgzuAcGMn0eOxflm8eOT+k9uDsmZsZIJBL6DO6BVF8Pp7uPKiR2ofL6z42ZSU1NZdu2bezcuZOJEycCULduXTp37gzAqlWrlGnt7e1ZtGgRx44dY8mSJWq3l52dTXa26o+sHHk+elrqu2bomJsg0dEmL061eTcvLglZnRplOgbrRZPJi0kg466L2s9NP+yBPD2zwrqYSS2M0dLRJjs2WWV5dmwyxvWqVsg+KpqJtTkAKbFJKstTYpMxtTZ7pW0fWbeXiZtm8c2Dn8jLzUMhV3Bg+W58Hlbcl+azc56l5pwbveFzrimWrLgUjX9/fWszsuJKpI9NxsDGTG362iPfIzcti9B/VMcndfhuFn6HrpDwJBDD6i93pxhAz8IELR1tctScT8P61V56u3ZDOmLSojb3er98t5xnjKwLugqllYgxLTYZY2sNXVDNjdHW0SYt7vl1rOqq/9s8q6SEPioaZ5GTnsXe0RsY99MCus37EID4oCgOTNiMPL/svbdNC/++ySXiSY5LKvN1J5FIGL92Kt6OnoT5lH+8TllVtnJNx6Lwu6NEmZYXl4R+verqVyqh2ooJ5EYnqFaIipFIdam2fAKJf91C/hLjTIwK/8bq8rCRhr//szycXiLPpMemYF1qHg5XycPPDN8+l0Y926BnIMXrkjN/LdPcZbiy01Su5cQmY1j/5fNw8iM/nn6yiwz/CKQ25tRZNIy2f63nXtdF5KdnvVLMVjYFNwHjY1XHZMXHJig/06ReozocOvsTelI9MtIzmT9lOQE+QcrPF89YxZYfN3DL6wK5uXlkZWYxf/JyQoPCXylmofL7z1VmPD09yc7Opnv37mo/P378ONu3b8ff35+0tDTy8vIwMVHf9xRg06ZNrF+/XmXZXIt6fGz5eu7sWcwYgUn/roSMX4oiR30TsenwnqScvqbx8/+idwd3YcIXM5Tvv5uy6bXtq/vEftRtWZ9tUzcRHx5Hg/aN+eizaSRFJ+Bxx+3FGxCeU2d0V4L/vKPS7aHB1N7oGunjseOvtxiZZvpVLWn8+UQcR35RancNTd4Z3IlBX0xVvj80ZUtFhqeWjlSXFoMduL79z+eWf7hlBiHOPvz2yU4k2lp0nt6f8fsWs2vQKvI0HF+nIe8x9YtZyvdbJm985Rgnb5hBjQY1WT98xStvSyhiO2cY5oO64DtiJQp1f08dbWrvWgISCSErdpVpmy0GOzCwWB4+MuWrigpXIx2pLs0HO3Bj+ym1n5/fcJjr2/7AsnYVei4ZRZ9V4ziz+pfXHtd/SfxVV+X/0zxCSH7kS2fn77Ed3JGIo9fKta1+Q3ux+quim8Eff7TopeMK8g9hZPeJGJkY0XPA+2zYvoqpH85VVmjmLp2OsakR04fPIykhmff7vseWnzYwefBs/Lw0T1bzbyT/j3b3elv+c5UZAwMDjZ/du3ePcePGsX79enr37o2pqSnHjh1j69atGtdZvnw5CxaozvAR1HqEhtSQl5iCIi8fHStzleU6VmbkxZY+e4zFlKFYzhhB6KSVZHsHqU1j0LYp0jo1iPh0c6nbKo/shFTkeflIS9wdllqbkhWTVGH7eRWulx0JKDajj45eQdY1sTYjudidTBNrU0I8gl56P7pSPYYtHsPOmV/x5FpB03WYVzA1m9jTe8agCqvMPDvn+mrOefYbPueaYtG3MnmuteaZrNgk9K1KpLc2JVNN7NbtG2JSryp3Zu1QWW7bqQmWbeozMuiAyvLe5zYQ/Mcd7n/6Y5mPISchBXlePnoVeD5N3qmN1NoMh0tFFWctHW3MOzai5pTeXKzxEcg1fyF5XnYm1NVP+f5ZnjWyNiWtWJ41sjYl0kP9xAIZiank5+VjVOJcl9zGM836dUBXX4rLH7dUlr8zuBPm1az56cO1yoe1nfjfTlY+/pnGvdridvqe2v07X3qIn0vRrIo6egWDvE2tTEmKKWp9NrUyI9gjUO02ipv02XRadW/LZyNXkhAV/8L0r6IylGvF5SUUfneUaOHQsTIjN7b0CSpsZg7Bds5Q/MauJdNLTV7S0abOriXoVbPGd9TqMrfKeF1+RJhr0axZ2q+Qhw1L5GFDaxNS1ZQvTQvzsGuJPPzMszE1cf6RZCalMe3kWq5vP6X2eqjsNJVrehX8PZGXkkGGfySy2nblXvf6hdu4PSrqdvhskL+ltQVxMUXXuKW1Bd5P1c/Kp4wjN0/ZyuL5xJumLRszbtpINizZQvVa1RgzdQRDu47D37ugrPHx8KN1h3cYPXkYny99/RVt4d/rPzdmpn79+hgYGHDlypXnPrt79y61atVi5cqVtG3blvr16xMcXPrsRFKpFBMTE5WXpi5mAOTmkeXuh2GxwftIJMg6tiTT1UvjahbThmM5dwyhU1eTVcoFbza8F5luvmR7vfiHQ1kpcvNJfhKIdZeigXZIJFh3bkqiU+mFz5uSlZ5FTHCU8hXhG0ZSTCJNHJor0+gbGVCnZX38H6mfArsstHW10dHTfe7pvHK5HImk4i4XRW4+SRrOecIbPufy3HwSngRi11k1FtvOzYhzVh9LnLMftsVjB+zea0acs99zaeuM6Ub84wCSPFS7FDmvPsj5Hss533MF53uu4Mb4gi+jO7N28PjLE+U6BkVuPilPArHsUqxPtkSCZZdmJDm9XH6Iv/mU210Xcbf7UuUr2cWfiN/vcLf70lIrMlDQtSshOFr5ivENJzUmkboORedNamRA9ZZ11XanAcjPzSfiaSB1iq0jkUio49BU7TptRnXD67IzGSUG8+oa6KFQyFXytUKuQKEo2J4mWelZRAdHKV/hvqEkxiTQtFMLZRoDIwPqtqyP76PSB+5P+mw6bXt3YOOYNcSGxpSatiJUhnKtOEVuHhlu/hgXO7dIJBh3bkG6s+ZzazvrQ6p8MhK/8evJePL89fesIiOtXQW/MWvIL2U8TUkl83BsYR6uUyIPV3tBHo5Um4ebEaZmndajuuJ9+dFzeVgdiVZBmawj/c/dlwUK8nDqkwAsuhR9zyGRYNGlGckVmIe1ZVJk9ralzn6mSUZ6BqFB4cqXv3cgsdFxdOhSNKmJoZGM5q2a8MSpfOMOtbS0lLMk6hfOfCiXq3aLlefLlfmgMlEoFG/t9V/0nysB9PX1Wbp0KUuWLEFPT49OnToRGxuLu7s79evXJyQkhGPHjtGuXTvOnj3Ln3/++eKNllPC/j+p8uUCMp/6kvXEB/OJg9EykJL8+yUAqmxZSF50PLFbfwHAYvpwrP43nsgFW8gNj0G7sFVHnpGJIqOo/6qWoQHGfboQs7ni+wj7/fgPrbfNIulxAIku/tSd3hdtmT4hhQO2W++YTWZkAp5fHAcKByY2KOjHraWrg34VC0ya1iI/PYv0wucNaMukGBa70yOraY1J01rkJqWRGf7qd2Uv7TvLgHnDiA6KJDY0hg8XjiYpOpFHF4tmKlt0ZC2PLjzg6sGCZ0VIZfrY2BfFZFXDlhpN7ElPSiMhIo6stEy87rszYvl4crJyiA+LpeG7TXAY2pVjnx94LoZX4V94zhNLOedZkQl4FDvnJoXnXFJ4zk2b1iKv2Dl/Wd4/nePd72aS8DiQeBd/Gk7vg45MSmBhLO9um0VmVCKPNxXE4rPnPN1/X0Wjmf0Iv+JCrcEdsWhRB8fFe1W2q2NkQM2B7XFZ//xMZRkl8kBeYV/ttOAYMiPL/wyMoN1nab59NsmuASS7+GE/ox/aMinhhcfQfMccsqMS8Nl4DCg4n0bPzqeeNvp2FhgX5uGMoGjy07NI81J9LkJ+Rja5ianPLS+ru/vO023eh8QHRZEYGkv3hSNIjU7C82LRYNnJR1bgccGJBwcLJvi4s+cfhm2dRYRbAGGu/jhM7YueTB/nE6qTKVjUsqVW+0Ycmvx8dza/20/pvWIsAzdM5v4vF5BoSXhv9iDk+fkE3PMo1zGc33uGD+eNICowktjQaEYsHEtSTAJOFx8o06w4uh6nC/e5eKDguT2TP5+Bw6D32Dp9E5npmcrxNRkpGeRm5wBgam2GmbUZtvYFz5mo0bAWWemZxIXHkZ78chMFVLZyLebnv6j1zf/IeOJHhqsv1lMHomWgT/xvlwGo9e2n5EbFE/HlIQBsZw+lysKxBM3bSk5YjLJVR56ehTwjq6Ai8+NSZM3q4j9pA2hrKdPkJ6WhyC3/rIj39p2n67whxfLwcFKjk/C66KxMM+nIcjwuOPHwYMF33t095/hw60wi3AIJc/Wn49Q+6MmkPNKQhw9Pfv4ue/1u72BkbUr44wByMrKwqV+dXivGEuzoTVJYXLmP40UyMjIJCSt6DlJ4RDRePv6YmhhTxc6mwvenSfDuszTdPocUV39SXPypWViuRRy7DkDTHXPJjkrAb+OvQEEeNnyWh/V0kNqZY1SYhzML83D9tR8Rd9GZzLA4pLbm1F0yAkW+nKg/K2Yc7pGff2P6pxMJDgglPCSCuUtnEBsdx9XzN5VpfjqxnavnbnBsX8FU7J+smMXtq/eJCo9CZiij39BetHVoxezR8wEI8gsmOCCU1VuW8s1nO0hKSOGDvu/xbtd2zBu/uELiFiqv/1xlBmD16tXo6OiwZs0aIiIiqFKlCrNmzWLq1KnMnz+fjz/+mOzsbPr378/q1atZt25dhe4/9Z+baFuYYP3J+IKHZnoGEDp1DfnxSQDoVrGGYncXzMf0R0tPl2o7VQcZx+04QtyOogcPGg/oChJIOXO9QuMFiPjrPlJLExotGY7U2owU92Duj9lMdlwKAAbVLFEUi1nfzpz3rxR1v6k/ZwD15wwg7q4Hd4Z+DoBZyzp0/mO1Mk3zz8YDEHL8Bi7/K3sXIk3O7T6F1EDKxE0zkZkY4uvoxTcTP1fp/29TyxZji6IxUfYt6rL0WNEYqDGrJwFw++Q19i36HoDd875l+JKxzPjuEwzNjIgPj+OPr37l+uGKfWhm+F/30bM0oXHhOU92D+ZesXMuq2apkk8MSjnntwvP+csK+fs+Uktjmi8ejr61KYnuwVwf9yVZxWJRFGuJiHPy5e7c72mxdAQtlo0kNTCKW1O+Idlb9Ud+rcHvgkRC8Km7rxRfWUT9dQ89SxPqLxmB1KYgDzuN2awcPGtQzUqlNUXfzoJOV79Uvq89dyC15w4k4Y4HD4d+9lpivLX7NHoGUgZvmoa+iYwQRx8OTNyskmctatliaGGsfP/0zH0MLUzoPn84RtZmRHoGc2DiZtIL/zbPtBnZjZTIBPxuPt8VMs4/gsNTv+aD/w1jxp/rUcgVRLoHcWDil+XunnN6959IZfpM2zQbmYkhPk6ebJ6wgdxix2Bb0w5j86Lrruf4vgCs+U01n+5euJ2bJwv66PcY15th80crP1t78ovn0pRXZSvXEk/fRsfChCoLxxY8NNMjEL/x68krHDyvV80KFEXxWo3vg5ZUlzo/LVPZTuQ3vxL57TH07CwxK5wyu/FF1YdS+oxYSdr98s/Qd3v3GfQMpAzaNFWZhw9N/FIlD5urycMyC2M+mD+88MGvwRya+OVzebj1yK6kRCbgryYP52Xn0mb0+/RZ/RE6erokR8TjecGRW7tOl/sYyuKply9T5i1Vvt+y4ycABvftwcZVC1/LPtWJLizX6i4ZidTGjFT3IB6N2aQs1/RLfE9I7SzoeLXohob93EHYzx1Ewh13nAvLNf2qljTf/Qm65sbkxKeQ9NCbh/1WkRtfMdMz7995GAOZPmu+XoqxiREuD58wZ8wCcgpvXABUt6+GmYWZ8r2FlTmf71iNtY0laanp+Hj4MXv0fO7fLJg0Ji8vn4/HLeR/K2ez/eBXyAwNCAkMY/Unn3P7ivpusv9mYsxMxZIo/qttTq+RV4N+bzuEcvFOMXvbIZTLX/o5L070LzMoS/PDwP6NMrU0dy36NzLPz3/bIZTLbYPK1+0hQFHxT1F/nUZlax4f+W9UQ/fVnlH0NpzSNnrbIZTLaqcNbzuEcrnedPnbDqFcFklC33YI5fY46vXfSHsZ71fv+db2fS3s0lvb9+tS+b5xBUEQBEEQBEEQ+I92MxMEQRAEQRCEfyOF6GZWoUTLjCAIgiAIgiAIlZJomREEQRAEQRCEN0QuhqtXKNEyIwiCIAiCIAhCpSQqM4IgCIIgCIIgVEqim5kgCIIgCIIgvCGik1nFEi0zgiAIgiAIgiBUSqJlRhAEQRAEQRDeELlom6lQomVGEARBEARBEIRKSbTMCIIgCIIgCMIbIlpmKpZomREEQRAEQRAEoVISlRlBEARBEARBECol0c1MEARBEARBEN4QhUJ0M6tIomVGEARBEARBEIRKSbTMCIIgCIIgCMIbIiYAqFiiMvMSXNLM33YI5VJbK/Nth1Au2mi/7RDKLU2rcjVyyuTytx1CubjoV66iyrxynV4Aamjpv+0QysVWK+tth1AuufmVr1zL1a5cP7iuN13+tkMol27um952COUie2fq2w5BENSqXL/ABEEQBEEQBEEQClWu252CIAiCIAiCUIkpRDezCiVaZgRBEARBEARBqJREy4wgCIIgCIIgvCFiauaKJVpmBEEQBEEQBEGolETLjCAIgiAIgiC8IWJq5oolWmYEQRAEQRAEQaiURGVGEARBEARBEIRKSXQzEwRBEARBEIQ3REwAULFEy4wgCIIgCIIgCJWSaJkRBEEQBEEQhDdETABQsUTLjCAIgiAIgiAIlZKozAiCIAiCIAiCUCmJbmaCIAiCIAiC8IYoRDezCiVaZgRBEARBEARBeGkJCQmMGzcOExMTzMzMmDp1KmlpaWVaV6FQ0LdvXyQSCadOnSr3vittZeb69etIJBKSkpJeaTv29vZ89913FRKTIAiCIAiCIJRGrlC8tdfrMm7cONzd3bl06RJnzpzh5s2bzJgxo0zrfvfdd0gkkpfed6XpZtatWzdatmz5r6141J/Uk0az+2NgbUqiRwjOqw6Q4BqgMX2NAe1psWQEhtWtSA2MxnXjr0Refaz8fEzEEbXruWw4iteusxhWt6Lp/A+x7dQEfWszMqMTCfrjDh7bTiHPza+QY7Kd1Ieqs4ega21GhkcQgav2kO7qpzatzdgeWI3ohqxhTQDS3fwJ2XREY/qKMmj+KLqM6Y7MxBA/Jy+OrPqZmKAojenrt29M7xmDqNW8Dma2Fnw/YwuuFx2fS2dXtxrDln1Egw5N0NbRItI3jF2zt5IQEVfm2BpM6kGTYnnCcdVB4kvJEzUHtOedJcMxqm5FSmA0LhuPEVEsT3T8dgZ1R72nsk7EtSdcHbdF+d6iuT2tVo7C8p06KPLlhPzjiPO6I+RlZJc57tLUmdyT+nMGoG9tSrJHCI9XHiDRxV9tWuOG1WiyeARm79TGsIY1j1cfxP/n8xUSR3FdFgyj5Zj3kZrICHPy4cLK/SQGRZe6TusJPegwoz9G1qbEeIZwce1BIh+r/9uMPLCYut3e4eT0b/G96AyATeOadJw9kOrtGmBgYUxyWCwuh6/itP/CC+N1WDCM5mML4o1w8uHyiv0kvSDelhN60HZmfwytTYn1DOHqmoNEFcarb2qIw4Jh1HqvOcbVLMmMT8HvojN3vj5JTmqmchvvrx9PtbYNsGxQnQS/CA71XfnCWAF6zh9O+zEfYGBiSJCTN3+u2kd8KdcYQMfxPXlv5kCMrU2J9Azhr7W/EPa4KJ9Y1LSh/8qPsG/bEB09HXxuPOGvdb+QFpesTGNV245+K8Zh36Yh2rraRHqFcPGbEwTc8yhT3JpUhnKtZLxVisUbVEq81mriDX0N8faYP5x2Y97HwMSQYCcfTpUhT7w7vifvzRyAkbUpUZ4h/L32wHN5ot/KcdQqlidOr/uFtLiU57alrafDnFOfUbWJPdv7LSfSI7hc8Vef3Av7OQPRszEjzSMYrxX7SdFQjhk2rE7dJSMxaVEbg5o2eK8+QMhP/6ikqbNoOHUXj1BZlu4bzt3OC8oV16twcnVj/9GTeHj5ERufwLZNq+n+nsMb239J0xdNZtDY/hibGPHE6Slbln9LWGC4xvQfThjE0PGDqFLDDoAAnyD2fXuQ+9ceqk3/zaHNdPygA0unrOLmhTuv5RiEsvP09OT8+fM4OjrStm1bAHbs2EG/fv34+uuvqVq1qsZ1XV1d2bp1K05OTlSpUuWl9l9pW2b+TWoOepdWa8fx9Js/ON97FUkeIbx/dBlSSxO16a3a1sfhh4/x//U653utJOy8E132LcC0YXVlmj/fmaPyuj//RxRyOaFnCy5sk3pVkWhJcFy6j3/eX4LLusPUH9+dFstHVcgxWQ7qRK21kwn75jfcei8i3SOIxkfXoGNpqja9iUMz4k/dxmPEGp4OWk52RDyNf12Lrp1FhcSjTp9Zg+k+uS+HV/7EF0OWk5OZzacHV6Ej1dW4jlQmJcwzmKNr9mpMY13TlqUnNxDlH87XY9ayvs8izuz4ndzsnDLHVmtQB9qsHceTb/7kn96rSPQI4YOjS0vNE51/mIv/rzc422sVYeed6bpvvkqeAAi/+piT78xVvm7P2an8zMDWjO7HlpEaGM35Aeu4Ou4rTBtWp+N3M8scd2mqDX6X5us+wmvrH1zttZJk9xA6/boMqZX6Y9IxkJIeEoP758fIik6skBhKenfWANpO6sX5Ffs4MHgtuRnZjDq0FO1S8kDjAR3ovmoct7f9yb4Bq4j2DGHUoaXI1Pxt2k3tA2ruZNk1tyc9PoW/P93Fnh5Lubvzb7otHUmbiT1Ljbfd7AG0mtyLy8v3cXRQQbzDDpceb8OBHei6ehz3vvuTQ/1XEesZwrDDSzEojNfQ1hxDWzNubDzKgZ7LOL/wJ+y7tqD3V9Of29bT4zfwPnO/1BiL6zprIJ0m9+HPlXvZOWQ1OZnZTD24rNRrrMWAdxmwajxXtv3O9v4riPQIZurBZRgWxqtrIGXaoRWgUPDz2M/ZNXwd2nraTNqzSOXO3KS9S9DS1uansZ+zfeBKIj1DmLx3MUbW6sugsqgM5VpxFoM6UbMw3qe9F5HhEUSjMsTrOWIN7oOWkxMRT6MKjve9WQNxmNybUyv38cOQ1eRkZjHlBXmi+YB36b/qI65s+4Od/VcS6RHClBJ5Ysqh5SgUCvaM3cju4evR1tNhwp7Fau/W9l0+ltTopJeK33ZwRxqun0DA1t950HMZqe7BtD62Al0N5Zi2gZTM4Gh8N/5KdinlWJpXKDeazVC+HAetfan4XlZmZhYN69Vh5cI5b3S/6nw0ZzQjpgxly7JvmTpwDpkZWXx3ZAt6peSR2MhYftj0M5P6zmRyv1k433Fhy77Pqd3A/rm0o6cPr/QPnVS8xX+vw7179zAzM1NWZAB69OiBlpYWDx480LheRkYGY8eO5fvvv8fOzu6l918pKjOTJk3ixo0bbNu2DYlEgkQiISgoCABnZ2fatm2LTCbDwcEBb29v5Xr+/v4MHjwYW1tbjIyMaNeuHZcvX67w+BrO6Iv/0WsEHr9Jim84jkv3kZeZTZ0xXdWmbzCtD5HXnuC16ywpfhG4fXWSRLcg6k/upUyTFZus8qreuw3RdzxID4kFIPL6Ex7M/4moG26kh8QSfvERnrvPUqNvuwo5piozBhJz9BKxx6+S6RtG4NIfkWdmYzPmA7Xp/T7+jugD58lwDyLLL5yAhT+AlgTTzi0qJB51uk/pz9kdv/P4khPhXiHsW7ATM1tzWvXSfA6eXnfl1NZjuFxQf7cHYMjiMbhdc+H3zYcJdQ8iNiSax5edSI1//g6hJo1n9MXv6DUCjt8k2TeCB0v3k5+ZTT0NeaLRtN5EXHuCR2GeePzVSRLcgmg4WfXHsTwnVyVf5CRnKD+r1qMV8rx8Hq44QIp/JPGPA3i4dB+1BrTHyN62zLFrUn9mP4KOXCP42A1SfcJxWbKX/Mxsao1Wf0yJrgE8/ewoYX/dIz8n75X3r067qX24s/MvfC89ItYrlDMLdmNsY0aDXm00rtN+Wl8eH7uG24mbxPtGcH7FfvIys2kxUvU4bJrUpP30fpxd/PNz23jy200urz9E6AMvkkJjcf/zDk9O3KRBn7bPpS2u9dQ+PNjxF/6XHhHnFcq5+bsxsjGjXinxtpnWF7dfr+F+4iYJvhFcWr6f3Mxsmo8qiDfeJ4zTs7YTcNmF5OAYQu96cOerE9Tp3gqJdlERf23tIVwPXia5sAwpi85T+nJ1x594XHImyiuE3xb8gImtOU17aT7OLtP68/DYVZxO3CDGL5w/V+4lNzOHdiO7AWDftgHm1a35bdFuorxDifIO5beFu6jWog51HZoCIDM3xrpOFa7v+osorxDig6I49+Wv6Mn0sWtQo8zxl1QZyjV18caViNdaQ7z+H39HTIl4JRUcb6cpfbi24xSel5yJ8grltwW7MLY1o0mpeaIfjseu4VyYJ06t3EtOZjZtC6+5Z3ni5KIfifYOJdo7lBMLd1GtRW3qFOaJZxp0e4f6XZrzz0b1vRdepNas/oQdvkLEseuk+4TjuXgP+Zk5VBvzvtr0Ka7++H52hOhTd5Fn52rcriIvn5zYZOUrNyH1peJ7WV06tuOTGRPp0bXTG92vOqOmDeeXbYe4dfEO/p4BfPa/TVjZWvFe784a17l96R73rj4gLDCc0IAwfvxyL5npmTRr3UQlXf2mdRkzcyQbF27RsCXhRbKzs0lJSVF5ZWe/Wu+NqKgobGxsVJbp6OhgYWFBVJTmVtv58+fj4ODA4MGDX2n/laIys23bNjp27Mj06dOJjIwkMjKSGjUKvtBWrlypbJ7S0dFhypQpyvXS0tLo168fV65cwcXFhT59+jBw4EBCQkIqLDYtXW0sWtQm6tbTooUKBdG3nmLVpr7adaza1CO6eHog8sYTrNrUU5te38qEqt1bEnDsRqmx6BrLyE4q22Cr0kh0dTBsUZfkW0+KFioUJN96glGbhmXahpaBHlo62uQlvZ4C3aqGDWY25njecVMuy0zNIMDVjzqtyxajOhKJhBbvtyY6MIJPD65kq9Melp/6gpalVJBKepYnIm+5Fy1UKIi85a7xb2zdpp5qHqIgT1iXSG/bsTHDn3zPoFtf0X7TJPTMjZSfaUt1kOfmqbQk5GUVfPnatG9Q5vjVkehqY9aiNjE3VfN5zK2nWLRVn89fN7Ma1hjZmBF0uyim7NRMIlz9qdZafUxautrYNa9N4G3Vv03QbXeqtS461zr6egzePpeLq38hPTZZzZaeJzWWkZWUrvFz05oF8QYXizcnNZNIV3+qaigrtHS1sW1em5AS8YbcdqdKa/V56VksOWmZKPLlZYpdHYsaNpjYmON7pyjerNRMQl39qanh/GrralOtWW2VdRQKBX53nirX0dHTRaFQkJdT9MMwNzsXhVyBfbuCazcjMZUY/3DaDH0PXQMpWtpavDu2O6mxyYS7Bb7U8VSGcq24Z/GmqInXuBzxSiowXvPCPOF3R/Wae1GeqNqstso6CoUC/2J5QltNnsgrkScAjKxMGLppGr/N/4GcrPL/+JLoamPcog4Jt4q+N1AoSLjphukrlmOyOna893gXnR5up9kP89CvZvlK26usqtasgpWtJY63nZXL0lPT8XDxpFmbpqWsWURLS4seg95HX6aPm3NR2SfVl7J+5yq+XrGNhNjX09r//8GmTZswNTVVeW3atElt2mXLlikbETS9vLy8XiqOv//+m6tXr1bI8JFKUZkxNTVFT08PmUyGnZ0ddnZ2aGtrA7Bx40a6du1KkyZNWLZsGXfv3iUrKwuAd955h5kzZ9KsWTPq16/Phg0bqFu3Ln///XeZ962uBpurKBqTIrUwRktHm6wSP3iy4lLQ19AdQt/ajKy4EuljkzGwMVObvvbI98hNyyL0n+fHdjxjZG9Lgym98D90tYxHppmOhTESHW1yY5NUlufGJaFnrT7GkmqunEBOdKLqD4cKZFoYR0qJGFNjk5SfvQxjK1P0jQzoO3sIT2+48t2Ez3G58JDZuxfRoEOTF2+A0vJEMgal5gnVlp+s2BT0i+WJiOtPuPu/H7k8chOPNh7DpmNjPji8GIlWQTeMqNseGFib0mR2f7R0tdEzldFqRUG3Q015q6yeHVN2iWPKjk1WifFNMizcb3qJ85Yel4KhhvMsMy84jowS1196XLJK96Ueaz4izNkX30uPyhRLtTb1aTygA65HNV9/hoX5MqNEvBmlxGtQeN7TS8SbEZeseR1zI979ZAhPjl4rU+yaGBduP63E3zwtNhljDdeYzNwEbR1tlbEvAKnF1glx8SU3I5t+y8aiq6+HroGU/is+QltHG5NieWnPuC+o2tSez9z38bn3QbpM68++SZvJTNFcYSxNZSjXiistXt23FG/peULzNfeiPBFamCf6LhujzBP9VoxDW0cb42J5YvjXs3hw5MpLV2j1LEzQ0tEmp0T8ObHJSF+hHEt+5MfTT3bxaMwmvJbsxaCmNW3/Wo+2of5Lb7OysrQp6NJYsrKREJeo/EyTuo1qc8XnH24EXmTJ5gUsm7aGIN+i8VCfrp+Lm5M7ty5W/jEyb3MCgOXLl5OcnKzyWr58udo4Fy5ciKenZ6mvOnXqYGdnR0xMjMq6eXl5JCQkaOw+dvXqVfz9/TEzM0NHRwcdnYJh/MOGDaNbt27lOp+VZgIATVq0KGo+fzZwKCYmhpo1a5KWlsa6des4e/YskZGR5OXlkZmZWa6WmU2bNrF+/XqVZUONmjHc+M10MwCoM7orwX/e0djEbWBnTrcjSwg98wD/V/wBUxGqfvwhVoM74TF8DYpSmuXLo8Pgznz0RdHYjx1T1N9FeFXP+me7XnLi8t6zAIR6BFG3dUO6juuJz4NXG3z8KoL/KhrrkOQVRpJHCEPuf4utQxOibruT7BPO3U9/pM3acbRcPhJFvhzvfRfJjEmq9P2LAZoOcaDPF0Utr79N/vq17Kdej9bUcmjCvn5lGyBv1aA6w3+ez+1tfxJYrHWt0RAHem4qivfPSa8n3uL0jAz48JdFxPuGc+/bP8q1bsvBnRj6xTTl+/1TXk83jvSEVA7P/Y4PP5+Kw6TeKOQKHv99lzC3AOTyonw6eMNk0uKT2T1iPblZObQf/QGT9ixix6BVpJb4gf8mvI5y7XWq8vGHWL5ivC0Hd2LIF1OV7w+8xjxxdO42Bn8+hY6FeeLJ33cJdwtEUZgnHCb1RmpowPUf/notMbyK+Kuuyv+neYSQ/MiXzs7fYzu4IxH/gu/k16nXhz1Y+mXRRAeLJqj/UVwWwf6hTOw1DUNjIz7o/x6rv1vGnGGfEuQbTOeeDrTp1IqJvZ4fCyiUj1QqRSqVlimttbU11tbWL0zXsWNHkpKScHZ2pk2bgm7TV69eRS6X06FDB7XrLFu2jGnTpqksa968Od9++y0DBw4sU3zPVPrKjK5u0YCyZz9E5fKCrhWLFi3i0qVLfP3119SrVw8DAwOGDx9OTk7ZB3IvX76cBQtUZyQ51bBoqrnshFTkefnPtcLoW5k8d2f+mazYJPStSqS3NiUzJum5tNbtG2JSryp3Zu1Quy0DWzM+OLGSOCdfHi7WPKi9PPISUlHk5T9390/XyoycF/yIqDJrMFXnDsVz1DoyPMs3w0xpXC87EVBsRh5dvYKsa2JtRnKxmIytzQj1CHrp/aQlppKXm0ekb6jK8ij/MOq1bVSmbWjOE6ZklponVAeg6lubkKUmTyhjDYklKz4FY3tbogq7IQX9eY+gP++hb2VCXkY2CgU0mtGXtOAYjdspzzFJSxyT1Nq01Bgrku+lR0QUm3FIuzAPGFqZkF4sBkMrE6I91N+wyEgsOA5ZievP0MpUebfZ3qEJ5rVsWOD2k0qaobv/R+hDb46O3qhcZlm/KmOPLsfl12vc3aH6I8v/0iOiiscrLYhXViJemZUJsRrizSw874Yl4pVZmT7X/U3XUJ9hBxeTk57FXzO+Q55XvlkNPS47E1rsGtPRKyhbjaxNVSoPRtamRGi4xjISU8jPy8eoRLzGJbbhe8uNLV0/RWZujDw/n6yUDFY57uLx6XsA1HVoSuMPWrPunWlkpxXMyHZq9T7qd25Gm+HvcX1X2VvXn/k3lmulKS3ekq01JdkVxus1ah2ZrxBvyTzx7JpTlyc0zSiWkZha5jzxddf5KnliheMPJJwuKLvqODSlZuv6bPA5qLKduX9/zuO/7nBi4e4XHk9OQgryvHz0SpRjetamZFdgOZaXkkGGfySy2i8/oLmyuH3xDh4uRTf5dPX0ALCwNic+JkG53MLKHB/30mfVy8vNIywoAgBvNx8at2zEqGnD+HLpN7Tt3Ipqtapy0fOMyjpf/Lyexw/cmDtifkUd0hvxX3toZuPGjenTpw/Tp09n9+7d5Obm8vHHHzN69GjlTGbh4eF0796dgwcP0r59e2VPq5Jq1qxJ7dq1y7X/StHNDEBPT4/8/PJ9Od+5c4dJkybx4Ycf0rx5c+zs7JQTB5SVVCrFxMRE5aUr0VZ+Ls/NJ+FJIHadi/UFlUiw7dyMOGdftduMc/bDtotq31G795oR5/z8hV5nTDfiHweQpObHjoGdOR+cXEWiWyAP5v+odtall6HIzSP9ib/qoFGJBJPOLUhz9ta4XpU5Q6j26XC8xm0g/Yn6aS5fVnZ6FrHBUcpXhG8YSTGJNHJopkyjb2RAnZb1CHikOcYXyc/NI+iJP7Z1qqkst61dlfjwsk3LrClP2HVuqvZvDBDr7IddiTxR5b1mxGpIDyCrYoHU3EhtJTgrLoW8jGzsB3dAnp1D5M2nz2+gHBS5+SQ9CcSmi+ox2XRuSoKT+nxe0XLSs0gMjla+4nzDSYtJwr5TUUx6RgZUbVmX8EfqY5Ln5hPlFqiyDhIJtTo1JfxRwbm+t+s0e3qvYG/flcoXwJXPDnN2cVEFx6p+Ncb9uhK3329x86sTz+0rNz2LpOBo5SvepyDemiXirdKyLhEaygp5bj7RboEq6yCRULNTUyIfFeUNPSMDhh9eSn5uPqemfEP+S9yJz0nPIj44WvmK9g0jJSaResWuMamRATVa1iVEw/nNz80n/GmgyjoSiYR6Dk3VrpORmEpWSgZ1OzbF0NIEj8sF/ez1DAruGirkqmN+FHLFSz+L4N9YrpXmWbwmJeI17dyC1DLE610B8ZbMEzG+4aTEJConaoCy5YmIp4Eq60gkEuq+IE/U6dgEQ0sTPAvzxOl1B9jedxk7+i1nR7/lHJhc0Er068fbufDVb2U6HkVuPqlPArDo0rxooUSCRZdmJFdgOaYtkyKzty119rP/ioz0TMKCIpSvQJ8g4qLjadu5tTKNzEhGk1aNeVps/EtZSLQk6BbeVDm48yjje0xlYq9pyhfAtnU/8PmCLyvugISXduTIERo1akT37t3p168fnTt35qefir4zc3Nz8fb2JiMjo5StvJxK0zJjb2/PgwcPCAoKwsjISNn6Upr69evzxx9/MHDgQCQSCatXry7TeuXl/dM53v1uJgmPA4l38afh9D7oyKQEFg7Yf3fbLDKjEnm86TgAPnvO0/33VTSa2Y/wKy7UGtwRixZ1cCzRsqJjZEDNge1xWX/0uX0a2JnT/eQq0sPjcPnsqMqUv5pahMoj8qfT1P1uHmmP/Uhz8aXK9IFoy6TEHisYE1B32yfkRMUTuqlgRpmqcz+k+qLR+M39luzQGOXdxPz0LOQZWa8cjzpX9p2l/7xhxARFERcaw+CFo0iKTsSl2HNjFhxZg8uFh1w7WPB8E6lMHxv7ojsBVjVsqNHEnvSkNOUzZC7+9DczdszH96EHXvfcada1JS26t+Hr0evKHJvnT+dwKMwTcS7+NC7ME/6FecJh20wyohJx3VTwJey15wK9fl9J45l9Cb/iin1hnri/eB8AOjIpLRYOJeTsQzJjkjG2t6XVqtGkBkYTcb2oP3yDyT2Jc/IlNz2LKu81o/XqMbh8cZzclFcvPHx//Ie222aR+DiARBd/6k3vi7ZMn+DCY2qzYzZZkQm4f1GQzyW62pg0KJhaWktXB4MqFpg2rUVeehbpL3iuSlk57j2Pw7whJARGkxwaw3sLh5Mak4TPxaLBp2OOLsfnghPOBy4B8HDPOQZsnUnUk0AiHvvTbkofdGVSnpwoOI702GS1g/6TI+JJDi2YCcyqQXXG/rqcwJtuPNxzTjl+RZ4vJ7OUWYwe7T3Pu58MISkomuSQGDotGk5aTBJ+xeId/uty/M474VoYr/Oec/TZOpMot0CiXP1pPbUg3qe/FcSrZ2TAsMNL0TXQ459Pd6FnbICesQEAmfEpym46ZrVs0TWUYmhtio6+HtZNCp5FEu8brvHZVLf3neODeUOIC4oiMTSGXgtHkBKdiPtFJ2Wa6UdW8vSCI/cOXgTg1p6zjNw6mzC3AMJc/eg8tS+6MilOJ4omMGk7oisxfuGkxadQq3UDBq6dwO2954gLiAQg+JEvmcnpjNw6myvb/1B2MzOvYYPXNReN5/dFKkO5pi7e9MJ47aYPRKtYvHW2fUJusXirvIF47+w7zwfzPiQ+KIqE0Fh6LhxBanQSHsXyxNQjK/C44FQsT/zDiK2zCHcLINTVn05T+6In08e5WJ5oU5gn0uNTqNm6PgPXTuBOsTyRHBFP8asyu/B4EkJiSIlKoKyCd5+l6fY5pLj6k+LiT80Z/dCWSYk4dh2Apjvmkh2VgN/GX4GCcszwWTmmp4PUzhyjprXIT88is7Acq7/2I+IuOpMZFofU1py6S0agyJcT9eebG9uRkZFJSFiE8n14RDRePv6YmhhTxc6mlDUr3vE9J5n0yXhCA8KJDI1k+uIpxEXHcfPCbWWaHce3cuPcLU7+cgqA2cumce/aQ6LCozE0ktFrSHdad2zJp2OXAAVjcNQN+o8OjyYytPRnHAlvhoWFBUePPv979Rl7e/sXdnl/2S7xlaYys2jRIiZOnEiTJk3IzMxk//79L1znm2++YcqUKTg4OGBlZcXSpUtJSSn79LplFfL3faSWxjRfPBx9a1MS3YO5Pu5L5YBuWTVL5Q8KgDgnX+7O/Z4WS0fQYtlIUgOjuDXlG5K9w1S2W2vwuyCREHzq7nP7tHuvOcZ17DCuY8eQRztVPvu16rhXPqb4v++gY2lCjcVjCh7W5h6I17gN5BYO4pRWs4JiFUPbCb3RkurSYM8Sle2EbT1O2NbjrxyPOud3/4WegT7jN81EZiLD19GLbRM3klfsrrR1LVuMLIyV72u1qMPiY0VjoEatngTA3ZPX2b/oewBcLjzk8Mqf6DvnQ0avm0J0QAS7Zn+Nn1PZZ+wI/vsBUksTWiweVvDQTPdgro7boswThtWsnssTt+f+QMulI2hZmCduTPlWmScUcjlmjWtQZ0RndE0MyYxOJPKGG4+3nERebNpjq5Z1eGfhUHQM9Unxi+DBkn0E/l4xX6jhf91HamlCkyXDkVqbkewezJ0xm8kuls+L5wkDO3O6Xyka29RgzgAazBlA7F0Pbg39vEJiur/7DLoyKX03TUHfREaokw+/Tdii0jJhVtMGA/OiPOB55gEySxO6LBiGobUpMR7B/DZhy3MD80vTqF97DK1MaTa0M82GFk03mhQay67Omrs7OO46g66BlJ6bpiA1kRHu5MMf49XEWyzPep9+gIGFCZ0WDENmbUqsRzC/jy+K16aZPVULZzabdusblf397PApKWEFlfReW6ZRo2Nj5WcTzn/xXJqSbuw+jZ6BlGGbpqFvIiPI0Zt9EzerXGMWtWwxLBbvkzP3MbQwodf84RhbmxHhGcy+iZtVH4hZpwp9lozGwNSIxLBYru08xa29RQ8izEhMZe/EzfRZPJLpR1ehraNNtG8YB2d8TaTny89GWRnKteIS/r6DrqUJ1UvEm/cS8YZXULw3C/PEh4V5ItjRh/0l8oRlLVtkxfKE25n7GFmY0KMwT0R6BrN/4maVB2Ja1alC7yWjMDA1Iikslms7/+L2XtWHU1aE6L/uoWdpQt0lI5HamJHqHsSjMZuUkwLolyjHpHYWdLxaNFbIfu4g7OcOIuGOO85DPytYp6olzXd/gq65MTnxKSQ99OZhv1Xkxr+56ZmfevkyZd5S5fstOwruiA/u24ONqxa+sTgADv9wDAOZAcu2LMTIxIgnjm7M/2gpOcXySLVaVTG1KOruZ25lzppty7G0sSAtNR1/zwA+HbsEx1vO6nZR6cn/A+NY/00kiv/CyOA3rCIqC29SbTJfnOhfZK+e9osT/ct0zSnbYLp/C9lraKF8nbyllaZHLAB6lbBUjdEqXzfet+3DnFd7LsKb9nKd496uU3qVazauDzIrVx7u5v56JrJ5Xd57Z+qLE/3L3Av/d07A0MC69GeSvU4+sU4vTlTJVJqWGUEQBEEQBEGo7P5rEwC8bZXrdqcgCIIgCIIgCEIhUZkRBEEQBEEQBKFSEt3MBEEQBEEQBOENERMAVCzRMiMIgiAIgiAIQqUkWmYEQRAEQRAE4Q0REwBULNEyIwiCIAiCIAhCpSRaZgRBEARBEAThDVEoKtez3v7tRMuMIAiCIAiCIAiVkqjMCIIgCIIgCIJQKYluZoIgCIIgCILwhsjFBAAVSrTMCIIgCIIgCIJQKYmWGUEQBEEQBEF4QxTioZkVSrTMCIIgCIIgCIJQKYnKjCAIgiAIgiAIlZLoZiYIgiAIgiAIb4iYAKBiicrMS/hDN+1th1AuafKctx1CuRxtl/m2Qyi31Y62bzuEcjGsZI2yZpWs3G+anfe2Qyi3yQ6RbzuEcml7K+Vth/Cfd6uW+dsOoVz6BWa97RDKRfbO1LcdQrncfLz3bYcgCGqJyowgCIIgCIIgvCFiAoCKVbluzwqCIAiCIAiCIBQSLTOCIAiCIAiC8IbIRctMhRItM4IgCIIgCIIgVEqiMiMIgiAIgiAIQqUkupkJgiAIgiAIwhuiEFMzVyjRMiMIgiAIgiAIQqUkWmYEQRAEQRAE4Q0RUzNXLNEyIwiCIAiCIAhCpSQqM4IgCIIgCIIgVEqim5kgCIIgCIIgvCFyMQFAhRItM4IgCIIgCIIgVEqiZUYQBEEQBEEQ3hAxAUDFEi0zgiAIgiAIgiBUSqJlRhAEQRAEQRDeELlomalQb6xlplu3bnz66advancv9G+LRxAEQRAEQRCE8qlULTM5OTno6em97TDKZdSCsXQf0xNDE0O8nLz4eeUuooIiNaYfMmcYHfp0pFrd6uRkZePt7MWRzQeJCAhXppnxxWyad34HC1sLstKz8Hb24vDmA0T4h2vcblmNXziePmP6YGhqiIejBztX7CQiKEJj+pFzR9Kpbyeq161OTlYOHs4e7PtiH+HF4jW3Nmfqyqm06tIKmZGMMP8wju04xp1zd14pVmnvIUgHjUbLzIL8YD8y9m0n38/rhevpOnyA0fw15Dy8TfpXq5TL9UdMQq/TB2hZWqPIyyM/wIfMX/eQ7+f5SnGW1H/+CBzGdMfAxJAAJ2+Or9pDbFCUxvR12zemx4yB1GxeG1NbC36a8RVPLjppTD964zQ6j+vJyc8OcH3fPxUaO0DP+cNpP+YDDEwMCXLy5s9V+4gvJf7a7Rvx3owBVG9eBxNbcw7M2IpHKfGXV5cFw2g55n2kJjLCnHy4sHI/iUHRpa7TekIPOszoj5G1KTGeIVxce5DIxwFq0448sJi63d7h5PRv8b3orFzec914qrVtgHWD6sT7RbCv38pyx15zci9qzxmIno0pqR4heK7YT7KLv9q0Rg2rU2/JCExb1MGgpjWeqw8Q/NM5lTQ1Jvak5qQeGNSwBiDNOwy/rX8Qd9W13LGpI+07BP0hhddckD/pe7aR7/via06v8wcYLVxLzoNbpG0uvOa0tTEYOw3dNu+ibVsFRUY6uY+dyTj0I4rE+AqJ95lPl81m9PgPMTExxvnhY1Yv/oKggJAyrTvrk8ksWfMJ+3cfYcOqr9Wm2XdsJ916dGLm+PlcOnf9/1W8hsMGYzRuFNoWFuT6+ZP0zQ5yPdTnCf2uXTCeOBad6tVAR5u80HDSfj1B5vlLyjRmq5Zg2L+PynpZ9x8SP3/ZK8VZ0pwl0xg6bhDGJsa4Oj5h49KvCAkM05h+xMQPGTnxQ6rWqAKAv3cgP36zjztX7yvTWFpbsGDNx7zbtR2GRjKC/EL4edsBrpy9/srxTl80mUFj+2NsYsQTp6dsWf4tYYGav/M/nDCIoeMHUaWGHQABPkHs+/Yg9689VJv+m0Ob6fhBB5ZOWcXNC6/23VxWTq5u7D96Eg8vP2LjE9i2aTXd33N4I/sW/lveSMvMpEmTuHHjBtu2bUMikSCRSPD392fq1KnUrl0bAwMDGjZsyLZt255bb8iQIWzcuJGqVavSsGFDAO7evUvLli3R19enbdu2nDp1ColEgqurq3Ldp0+f0rdvX4yMjLC1tWX8+PHExcVpjCcoKKjCj3vwrKH0ndSfn1bsYvngxWRnZLHq0Dp0pboa12naoRkXDv7DiiGL2fDRWnR0dVh1aB1SA6kyTYCbPz8s2s6n3T/m8wnrkEgkrD60Hi2tV/tzjpg9gkGTB7FjxQ4+HfgpWZlZfH7481Ljbf5uc04fOM38wfNZMXYFOjo6bDyyUSXeRd8tonrd6qyfup7ZPWdz5/wdlu9aTt2mdV86Vl2H9zGYOIesE7+QsnQ6+cH+GK38ComJWanraVnbIZswm1yPx899lh8ZSsbebaQsnELq6nnIY6MwXv0VEhPTl46zpB6zBtF1cl+OrdzD10NWkpOZxdyDK9Ap5RxLZVLCPYM5vmbfC7ffonc77FvVJykqocJiLq7rrIF0mtyHP1fuZeeQ1eRkZjP14LJS49eTSYn0DOFUGeIvr3dnDaDtpF6cX7GPA4PXkpuRzahDS9EuJZ7GAzrQfdU4bm/7k30DVhHtGcKoQ0uRWZo8l7bd1D5QSneAJ7/dwPPMfY2fl8ZucEcarR+P39aT3O25nFT3YNoeW46e1fNxAGgZ6JEZHIP3xqNkRSeqTZMVGY/3579yt+cK7vZaSfxtd1ofWIRRw+ovFWNxep3eRzZ5LpnHD5C8cDp5Qf4Yr/kaialZqetpWdshmzibXHfVa04i1UenTgOyfjtI8sLppH65Gu1qNTBe8cUrx1rczHmTmDR9DKsWfcHQ3hPIyMjkl9++R0/64htjLVo1YczEYXg+9dGYZsqscaXmkf9yvAbdu2H6yWxS9x4kZtJMcn39sfr2S7TMzdSml6ekkHrgCLHTPyZm/HQyzp7HfOUSpB3aqqTLuveAyP7DlK+ENZ9XSLzPTP74I8ZMHcHnS77io37TyMzIYtexb0s9xzERMWzbuIsxvSYztvcUHt52ZtsvX1K3YW1lmo071mBfryb/m7iEYd3Gc+WfG3z10wYaNWvwSvF+NGc0I6YMZcuyb5k6cA6ZGVl8d2QLeqWUc7GRsfyw6Wcm9Z3J5H6zcL7jwpZ9n1O7gf1zaUdPH/5WBqRnZmbRsF4dVi6c88b3/bYpFIq39voveiOVmW3bttGxY0emT59OZGQkkZGRVK9enerVq3PixAk8PDxYs2YNK1as4LffflNZ98qVK3h7e3Pp0iXOnDlDSkoKAwcOpHnz5jx69IgNGzawdOlSlXWSkpL44IMPaNWqFU5OTpw/f57o6GhGjhypMZ4aNWpU+HH3nzqQ33eewOnSQ0K8gtm54DvMbSxo1+tdjetsnLie6yevEuYbSrBnEN8v3IZ1dRvqNC/64X/514t4PvQgNiyGwKcB/Pr1YayqWWNd3eaV4h0ydQjHdhzj/sX7BHkF8fWnX2Npa4lDb813SlaPX83lE5cJ8Qkh0DOQbxZ8g211W+q3qK9M07hNY/7e/zc+rj5EhURxbPsx0lPSqde83kvHqj9gBNlXzpJz/TzysGAyfvoGcrLQ+6Cf5pW0tDD8ZCWZv+1HHvN861ju7SvkuTkjj4lEHhZExoHvkciM0K758pWukt6f0o8LO/7A7ZITEV4hHFzwPaa25rzTq53GdTyuu3Jm63GeXHAsddumtuaMWDeZX/63g/y8vAqLubjOU/pydcefeFxyJsorhN8W/ICJrTlNe7XVuI739cdc3Pob7hcqrjXmmXZT+3Bn51/4XnpErFcoZxbsxtjGjAa92mhcp/20vjw+dg23EzeJ943g/Ir95GVm02JkV5V0Nk1q0n56P84u/lntdi6tO8Sjg5dJCol9qdjtZ/Un9PBVwo/dIN0nHPfFe8jPzKHamG5q06e4BuD92RGiTt1Dka3+7xt78RFxV1zJCIwiIyAS303HyUvPwrRNfbXpy0N/0EiyL7usGwwAAEL+SURBVJ0h5+q5gmtu91bIzkLa/QXX3PxVZBzbjzxatYVXkZFO6vqF5Ny9hjwilHwfD9J/3oZOvUZoWb1aWVbc5Flj2fnNz1w+dx0vD18WzVmNrZ01vfq9X+p6MkMDvt39BSvmbyA5OUVtmsbNGjB1zniW/G/d/8t4jcaMIP3vf8g4e568oGCStnyLIjsb2YC+atPnuDwm68Zt8oJDyA+PIP23P8j1D0DvneYq6RQ5ucgTEpUvRWpahcT7zLjpI/n5u1+4fuEWvp7+rJr3Gda2VnzQ5z2N69y4dIfbV+4REhhGcEAoOzf/SEZ6Ji1aN1WmeaddM37de5KnLp6Eh0Tw83e/kJqcRuMWDV8p3lHThvPLtkPcungHf88APvvfJqxsrXivd2eN69y+dI97Vx8QFhhOaEAYP365l8z0TJq1bqKSrn7TuoyZOZKNC7e8Uowvo0vHdnwyYyI9unZ64/sW/lveSGXG1NQUPT09ZDIZdnZ22NnZIZVKWb9+PW3btqV27dqMGzeOyZMnP1eZMTQ0ZM+ePTRt2pSmTZty9OhRJBIJP//8M02aNKFv374sXrxYZZ2dO3fSqlUrvvjiCxo1akSrVq3Yt28f165dw8fHR2082traFXrMNjVsMbexwO120d3IjNQM/Fx9aNi67AWbzFgGQFqS+sJcaiDl/RE9iA6JIj4y7qXjtatph4WtBS63XFTi9Xb1plHrRmWP16Qg3tSkVOUyT2dP3hv4HkZmRkgkEroO6oqeVI8n95+8XLA6OmjXaUjek6IuPygU5D5xRqdBE42r6Q+fgDwliZyrZeh6paODtMdA5Olp5Aer7/ZTXpY1bDC1McfrjptyWVZqJkGufti3frUfmxKJhAnffsyVn04T5au5q8SrsKhhg4mNOb53niqXZaVmEurqT81XjP9lmNWwxsjGjKDbRfFkp2YS4epPNQ3xaOlqY9e8NoG33YsWKhQE3XanWuuiyrWOvh6Dt8/l4upfSI9NrvDYJbramLSoTfytoryAQkH8TTfM2r7aXVwlLQl2QzqiI5OS5KT5Tn2Z6OigXbcBuY/VXHMNm2pczWDkRBTJSeRcKVt3R4nMEIVcjjy9Yn681qhVDRtba+7ceKBclpqahuujp7Rq26LUddd/uZxrl25x5+YDtZ/rG+jz3Y+bWLt0M3ExFdMtrlLFq6ODbsMGZDuq5olsR2f0mmkuh4uTtm2FTs3q5LiofhdIW7fE7uzv2Bw7gOniT9EyUd9a+TKq1ayKta0VD24W3VxJS03HzcWDFm2blWkbWlpa9BncAwOZPo+di8qfx45P6T24OyZmxkgkEvoM7oFUXw+nu49eOt6qNatgZWuJ4+2i85yemo6HiyfN2mi+9krG22PQ++jL9HFzLir7pPpS1u9cxdcrtpEQq761V3g95Cje2uu/6K2Omfn+++/Zt28fISEhZGZmkpOTQ8uWLVXSNG/eXGWcjLe3Ny1atEBfX1+5rH379irrPH78mGvXrmFkZPTcPv39/WnQoOw/FrKzs8nOzlZZlq/IR1tSeuXHzMYcgKS4JJXlSXFJmFmbl2nfEomESWun4eXoQaiPan/pXuP7Mn75RPQNDQj3C2PDuLXk5b783XjzwpgS41QLtMTYRMxtyh7vzLUzcX/oTrB3sHL5F7O/YPkPyznhdoK83DyyM7PZMH0DkaWMHSp1P8amSLS1kSerdqVSJCeiXa2m2nW0GzVH+kF/UhZPK3Xbuq07Yjh/DehJUSTFk7ZhIYrUivkxa2JtBkBqiR/HqbHJys9eVs/Zg5Hn5XN9/7kXJ35JxtYF3e3SSsSfFpuM8SvG/zIMbQr2mR6nehc6PS4FQ2v1XQNl5sZo6WiTEZdcYp1kLOtWUb7vseYjwpx98b308j9CSqNnYYKWjjY5Jc5ldmwyhvWrvdK2jRrX4N2zG9CS6pKfnsWjyVtJ93m18XQF15wOimTV8kGelIiuhmtOp3FzpN37kbyg9GtOSVcP2YSZ5Ny6ApkZrxTvM9Y2VgDExaqWFXEx8VjbWmpcb8CHvWnWohGDe36kMc2qzxfyyPExlytgjMwzlSleLTNTJDrayBNU80R+QiLSWurzBIDE0BC7v39DoqcL+XKSvv5OpUKUfd+RrOu3yYuMRKdaVUxmTUXv283ETv8Y5PJXjtvKxgKA+BLnOD42QfmZJvUa1eHQ2Z/Qk+qRkZ7J/CnLCfAJUn6+eMYqtvy4gVteF8jNzSMrM4v5k5cTGvTy159lYUwlKxsJcYnKzzSp26g2P/1d0EUxMz2TZdPWEORb9N386fq5uDm5c+vimxkjIwivy1urzBw7doxFixaxdetWOnbsiLGxMV999RUPHqjeVTI0NCz3ttPS0hg4cCBffvnlc59VqVJFzRqabdq0ifXr16ssa2zSgKZmqq0VnYd0ZeYXs4vWm7yhXPtRZ9qGmdRoUJPVw5c/99ntUzd4cssVcxtzBs34kAU/LGbVsGXkZueWadvvD3mfeZvnKd+vnbT2leOdu3Eu9g3tWTR0kcryCYsmYGhiyPLRy0lOSKZj744s/2E5i4cvJsgr6JX3+0L6BhjOW0H67q9eWDHJdXchZfE0JMamSHv0x3DBOlKXz0aRklTu3bYd3JkxX0xXvt81ZXO5t1EWNZrVptvkvnzZv2IHyLYc3ImhXxT9EN0/5c13Qyiu6RAH+nwxRfn+t8nqBze/qno9WlPLoclLDej/N0j3i+DuB0vRMZFhN7ADLbbP4cGH61+5QlMu+gYY/m8l6bu+LtvNAG1tjBatAySk//jNS+928PC+fP510aQeU8d+Uu5tVKlqy5qNi5kwfDY52Tlq03Tv0xWHLu0Z8P7ol44VKl+8FUGRkUHMxOloGRggbdsa00/mkBceSY5LQS+GzMvXlGnz/APJ9QvA7vcjSFu/Q7aTi6bNatRvaC9Wf7VE+f7jjxaVkrp0Qf4hjOw+ESMTI3oOeJ8N21cx9cO5ygrN3KXTMTY1YvrweSQlJPN+3/fY8tMGJg+ejZ+X+glGSur1YQ+WfrlA+X7RhOe//8sq2D+Uib2mYWhsxAf932P1d8uYM+xTgnyD6dzTgTadWjGx1/QXb0gQ/uXeWGVGT0+P/Px85fs7d+7g4ODAnDlFA7/8/V/cnadhw4YcPnyY7OxspNKCQeaOjqpjCVq3bs3vv/+Ovb09OjrqD7FkPJosX76cBQsWqCyb1Gzsc+mcLj3Ez8Vb+V5Hr2BgnpmVGUkxRXdUzKzMCPIIfOF+p342g9bd27F25HISop7vEpCRmkFGagZRQZH4uviw/8kR2vd+lzt/33rhtgHuX7qPl2vRjDO6hfGaW5mTWCxec2tz/N1f/HeZvWE27bu3Z/HwxcRFFXV3q1KrCoMmD2Jm95mEFLYuBXoG0qx9MwZMGMDOFTvLFG9xitRkFPn5aJlaUPwvKDE1R570/MB3bbtqaNtUwWjZpmKJJQCYHbtCyv/GF/Xnz85CHhUOUeFk+Hpgsv0w0g/6kXXqaLnjdLvsRJCrr/L9szxhbG1KSmyScrmxtSlhHkHl3v4zdds3xsjShM/ufq9cpq2jzdCV43l/Sl/Wdp5XytqaeVx2JtTVT/n+WfxG1qakFovfyNqUiFeIv6x8Lz0iothMX9p6Bde2oZUJ6TFF8RhamRDtoX7mp4zEVOR5+cisVFtuDK1MlS1O9g5NMK9lwwK3n1TSDN39P0IfenN09MZXPpachBTkefnolWhBklqbkl3sWF6GIjefjMLZ3FKeBGLSsi720/vivnjPy28zNRlFfh4SU9VWWi2zUq452yoYFR/MLyno1Wx+8grJH49HHlV4zWlrY7RoPVrWtqSunf9KrTKXz9/AtVi3H73CPGtlbUFsdFG5ZGVjiYeb93PrAzR7pzFWNpb8fbXomtfR0aF9x9aMnzaKRlU74NC5HTXtq+Pqf1Nl3R9++RrH+y6MHVy2H4iVLd7i5EnJKPLy0bJQzRPaFubkx5cyAYlCQX5YBPlArq8/OvY1MZ4wlniX5ydlAciPiCQ/MQnt6tXgJSoz1y/cxu1RUdeqZ4P8La0tVLrbWVpb4P3U97n1i8vLzVO2sng+8aZpy8aMmzaSDUu2UL1WNcZMHcHQruPw9y74jvfx8KN1h3cYPXkYny/9qkzx3r54Bw8XD+V73cKeKRbW5sTHFJ1XCytzfNz9nlu/ZLxhhbORerv50LhlI0ZNG8aXS7+hbedWVKtVlYueZ1TW+eLn9Tx+4MbcEfPLFK/wcv6rA/HfljdWmbG3t+fBgwcEBQVhZGRE/fr1OXjwIBcuXKB27docOnQIR0dHateuXep2xo4dy8qVK5kxYwbLli0jJCSEr78uuEMrKfyBOnfuXH7++WfGjBnDkiVLsLCwwM/Pj2PHjrFnzx60tbWfi8fCwkLtbGBSqVRZaXpGXRezrPRMotIzVZYlxiTQrFMLZeXFwMiAei0bcOHw+VKPcepnM2jf+13WjlpJTGhMqWkLDrzg2J9VSMoiMz2TzBLxJkQn0LJzSwI8Cu4gyYxkNGzZkLOHzpa6rdkbZuPQx4GlI5YSHao6Je6zWc0UctULVy6Xv/zsa3l55Ad4o9O8NbmOtwuWSSToNm9D1vk/n0ueHx5C8oLJKssMRk9FYmBAxv6dyONLOccSCei+3HTg2elZZKdnqSxLjkmkoUNzwj0Kmvr1jQywb1mP24cvqdtEmTj+cRPv224qy+YeXMHDP29y/8T1l95uTnoW8SXiT4lJpJ5DMyIL45caGVCjZV3uv0L85Yknp0Q8aTFJ2HdqSkxh5UXPyICqLevy6PAVtduQ5+YT5RaIfaemRdMsSyTU6tQU5wMFx3Bv12lcj11XWW/6pc1c+ewwvlfK/2NKHUVuPilPArHs0oyYc07KOCy7NCN434UK2cczEi0JWuUoG9TKyyPf3wfdFm3IfVj8mmtN1jkN19z/JqksMxg7FYmBjIy9O5DHFV5zzyoyVauRuvpTFKnqB66XVXpaBulpqpWhmOhYHN7roJzhy8jIkJatm3Fk/wm127h76yF9Og9XWbZlx3r8fQP5cfsvyOVydm3fz/HDqsd9/vZJPl+1lSsXbvxn41WRl0eutw/Stq3JulnYTUkiQdq2NWknT5V9O1paBV3ONH1sbYWWqQnyuJeboTEjPYOMdNVzHBsdR4cubfF2L6i8GBrJaN6qCSd+eT4vl0ZLS0s526d+4XedvERXOHm+HEk5vusy0jPJKPHdHBcdT9vOrfEtvLEoM5LRpFVj/jj4V7nilWgV/U44uPMofx9V/W4/cnU/29b9wO1Ld8u1XUF4295YZWbRokVMnDiRJk2akJmZiZeXFy4uLowaNQqJRMKYMWOYM2cO586V3uffxMSE06dPM3v2bFq2bEnz5s1Zs2YNY8eOVY6jqVq1Knfu3GHp0qX06tWL7OxsatWqRZ8+fZQ/oEvGExgYiL29fYUe89m9pxk2byRRgZHEhEYzauFYEmMScLxYNJXrmqOf8fDCfc4fKBggO+3zmXQe9B5bpn9BVnomZoVjETJSMsjJzsGmhi0OAzvz5KYrKQnJWFSx4sPZw8jJyubRNWd1YZTZqb2nGD1vNOGB4USHRjN+0Xjio+O5e6GoYNv06ybunr/L6QOngYKuZd0Gd+OzaZ+RmZ6pHHuTnppOTlYOoX6hhAeGM2/zPPZ8vofUxFQ69u5Iqy6tWDdp3UvHmnXmBIZzl5Pv702enyf6/YeDVJ+cawX5R/bxcuQJcWQd/Rlyc5CHqraGKTIKBhgrl0v10R/6EblOd1EkxiMxMUXaewhaFtbk3Lv+0nGWdG3fP/SZ9yGxQZHEh8bQf+EokqMTeXyxqHVx3pFVPL7gyM2DBT9q9WRSrO3tlJ9b1rChWpNaZCSlkRgRT3pSGuklJojIz8sjJTaZmICXG5ekye195/hg3hDigqJIDI2h18IRpEQn4l7suTHTj6zk6QVH7h28qIzfslj8FjWsqdKkFplJaSRFvNpAZMe953GYN4SEwGiSQ2N4b+FwUmOS8Cn2PJgxR5fjc8FJWVl5uOccA7bOJOpJIBGP/Wk3pQ+6MilPThT8qEuPTVY76D85Ip7k0KKZy8xr2aJrKMXQ2hQdfT1smhSME4jzDYesF49fC9p9lubbZ5PsGkCyix/2M/qhLZMSfqwgjuY75pAdlYDPxmNAwaQBRg0KpliW6Gmjb2eBcdNa5KdnKVtiGqwcTewVV7LC49E20qfq0E5YODTBadQm9UGUQ9bfv2H4yXLy/L3I8/VCf8Bw0Dcg+0rBNWf4yQrkCbFkHi645vJDSlxzhYP6lcu1tTFa8hnadRqQtnEZaGkjMSsYA6BIS4EKmpFv/+6jfLxgGkEBIYQFhzN/+Ryio2K5+E9Rd6bDf+zmwtlrHNp7nPS0DHy8VFujMzIySUpIVi6Pi4lXO4g+IiySsBDNz+X6r8Wb9usJzFcvI9fLmxx3L4xGD0Oir0/GmYIbduZrlpEfG0fKroJWQaMJY8j19CEvPAKJri76Dh2Q9elJ0pbvAJAY6GM8dSKZ124ij09Ap3pVTObOJD8snKwHpc/mWB5Hfv6N6Z9OJDgglPCQCOYunUFsdBxXzxe1XP10YjtXz93g2L7fAfhkxSxuX71PVHgUMkMZ/Yb2oq1DK2aPLmjBCPILJjgglNVblvLNZztISkjhg77v8W7Xdswbv1htHGV1fM9JJn0yntCAcCJDI5m+eApx0XHcvHBbmWbH8a3cOHeLk7+cAmD2smncu/aQqPBoDI1k9BrSndYdW/Lp2IIudwmxiWoH/UeHRxMZqvm5YRUpIyOTkLCi/BceEY2Xjz+mJsZUsau4GQ3/jeSiZaZCvbHKTIMGDbh3757Ksv3797N//36VZZs2FX3p/vLLL2q35eDgwOPHRU3SR44cQVdXl5o1iwYd1q9fnz/++KNc8VS0v3b/gb5Mn5mb5iAzMcTLyZONE9arjGuxrWmHsXnRTC29xxdMc7r+N9VnLXy/cBvXT14lNzuXxu2b0H/KIIxMDUmKS8bzoTurhi4jJf7VBqqf2HUCfZk+n2z+BCMTI9wd3Vk9frVKvFVqVcHEoijeARMGALDlhOp4iq0LtnL5xGXy8/JZM2ENk5dPZt2+dRgYGhARFMHW+VtxvPbyX065d6+RaWKG/qjJhQ/w8yNt4xLlAGUtK9vyPUtBLke7Wk2k3XojMTZFkZpCnr8XqWvmIQ8Leuk4S7q8+2+kBlLGbJqBgYkMf0dvfpi4ibxi59iqli1GFsbK97Va1OV/x4rGNA1bPRGA+yevc3jRrgqLrSxu7D6NnoGUYZumoW8iI8jRm30TN6vEb1HLFsNi8VdvUYeZx9Yo3w9cPQEAp5M3OLFo9yvFc3/3GXRlUvpumoK+iYxQJx9+m7CF/GLxmNW0wcC8KB7PMw+QWZrQZcEwDK1NifEI5rcJW8iIK1+rQN8vp1GrY2Pl+6nnCq7ZHzp9Cqkv/jEQ9dc99CxNqL9kBFIbM1Lcg3Eas1k5KYBBNSso1qKpb2dBp6tF4wBrzx1I7bkDSbjjwcOhnwGgZ2VKix1zkdqakZuaQapHCE6jNhF/U7Xl7mX8X3t3HlZj/v8P/HlO62mVyBJtahTJMiTrIEt8fZgs02D0FdkVFWEoZQkhsowRMZYxGPswU9YZJHsSMmlzmu+UqLGkmrb3749+nXGck/gMve+b1+O6uq56n3NdPa/7qvvc7/t+v1+vkrizkBjVgezLsZCa1EV5RiqeL5z1z/9cfTOAvfkGbWnd+tB2riwta7xauQfRs/nTUXbn5r/ODACb1n0Hmb4MYavmw8jYENcu34SXx1Sl/SUWVk1R17TOO/l9/5aY8had/hVSkzow9PaChqkJSu+n4bHfbFT8Vfk3odHADOylJxUSXRnqzJoODbP6YH//jdIHWfgrJAxFp38FALCKCmg1s4Fe/76QGhqg/HEe/r58Dc+itgGlb7Yf9E1sW78LMj1dBK+cDUMjAyRcuYUpI/yVjnETK3PUqVtH8XPdeiZYvC4I9c1MUfD8BVLupmLyl364dK7yc6ysrBzTRgVg+rzJWLtjBfT0ZZBn/IEg38W4cPrfXWvs+mYPZHoyzAkPgIGRAW5dTYLfV7NR8tJ5ztyyMYzr/rNs1aSeCYIj58LUrC4Knr9AWnI6ZowMxNXz/+6m57t0+959jPX5p7VG+LrKpb2D+/fGkvkBvGIREZIwES7c27FjB2xsbGBubo7ExERMmzYNPXr0wK5du2rl9w+3HFwrv+ddKahQvylUqHa7FNX8JoEJutqAd4S3ol87VdnfmTrs3ZZOf9/avsGTGaFx7vxun+K9b+3P/7slaaRm5+3erJKlUAzIKK75TQKip6FT85sE5FxiNO8Ib02rng3vCGrp61lx+90vCjO5/e73hWtp5v9WTk4OgoODkZOTg0aNGmH48OFYsuTfb8olhBBCCCGEiIcoJzOBgYEIDAys+Y2EEEIIIYSQD5YoJzOEEEIIIYSIERUAeLfEtXCeEEIIIYQQQv4/ejJDCCGEEEJILRFh7S1BoyczhBBCCCGEEFGiyQwhhBBCCCFElGiZGSGEEEIIIbWEgZaZvUv0ZIYQQgghhBAiSvRkhhBCCCGEkFpCBQDeLXoyQwghhBBCCBElejJDCCGEEEJILaEnM+8WPZkhhBBCCCGEiBJNZgghhBBCCCGiRMvMCCGEEEIIqSW0yOzdoiczhBBCCCGEEHFiRBCKi4vZggULWHFxMe8ob4Tyvn9iy0x53z+xZaa875fY8jImvsyU9/0TY2YiLBLGqKSCEDx79gzGxsZ4+vQpjIyMeMepEeV9/8SWmfK+f2LLTHnfL7HlBcSXmfK+f2LMTISFlpkRQgghhBBCRIkmM4QQQgghhBBRoskMIYQQQgghRJRoMiMQOjo6WLBgAXR0dHhHeSOU9/0TW2bK+/6JLTPlfb/ElhcQX2bK+/6JMTMRFioAQAghhBBCCBElejJDCCGEEEIIESWazBBCCCGEEEJEiSYzhBBCCCGEEFGiyQwhhBBCCCFElGgyQwghhBBCCBElmswIQGpqKmJjY1FUVAQAEGOBOTFmFrpnz57h8OHDSE5O5h3lg0XHmHxIqj5DhKikpAS///47ysrKeEchnMnlcrXXDIwxyOVyDomI2FFpZo7y8vLg4eGBM2fOQCKR4P79+7CxscHYsWNhYmKCVatW8Y6oZMyYMdiwYQP09fWVxjMzMzF69GicP3+eU7Lq/fXXX4iOjlZcrDo4OGDs2LGoW7cu52SqvvjiC3Tv3h3Tpk1DUVERWrdujczMTDDGsGfPHgwdOpR3RADA2rVr3/i9vr6+7zHJ2xPLMRaz06dP4/Tp08jNzUVFRYXSa1u3buWUqnrV/T1LJBLo6urC1tYW3bt3h4aGRi0nU8/X11dt5hcvXmDgwIE4e/Ysh1TVKywshI+PD7Zv3w4ASElJgY2NDXx8fGBubo45c+ZwTqiqvLwcq1evxr59+yCXy1FSUqL0en5+Pqdk/xDzeVhDQwPZ2dkwMzNTGs/Ly4OZmRnKy8s5JSNipck7wMfMz88PmpqakMvlcHBwUIx7eHjA399fcJOZxMREODk5YdeuXejUqRMAYPv27fD19UWvXr04p1N17tw5DBo0CEZGRmjfvj0AYN26dVi0aBF++ukndO/enXNCZefOncO8efMAAIcOHQJjDE+ePMH27duxePFiwVxor169+o3eJ5FIBPchKpZj/LKjR4+qHX/5Ytva2rqWU6kXGhqKhQsXon379mjUqBEkEgnvSDVavXo1Hj16hMLCQpiYmACovAmip6cHAwMD5ObmwsbGBmfPnkXTpk05pwWOHz8OExMThIaGKsZevHgBNzc3jqmqN3fuXCQmJuLXX39Vyti7d2+EhIQIcjITGhqKLVu2ICAgAPPnz8e8efOQmZmJw4cPIzg4mHc8AOI+DzPG1J4bCgoKoKuryyERET1GuGnQoAG7efMmY4wxAwMDlpaWxhhjLC0tjenr6/OMplZJSQmbOXMm09bWZnPnzmXDhw9nBgYGLCoqinc0tRwdHdn48eNZWVmZYqysrIxNmDCBOTo6ckymnq6uLpPL5YwxxkaPHs1mz57NGGPswYMHgvx7ECMxHmOJRMKkUimTSCRKX1VjUqmUde/eneXn5/OOyho2bMh27NjBO8Zb2b17N+vRowdLTU1VjN2/f5/16tWL7dmzh2VlZbEuXbqwoUOHckz5j9TUVNaoUSO2evVqxhhjz549Y506dWLdunVjBQUFfMOpYWFhweLj4xljyp9z9+/fZ4aGhjyjVcvGxoYdO3aMMVaZuepvIzIyko0YMYJnNFHz8/Njfn5+TCqVsokTJyp+9vPzY76+vqxjx46sc+fOvGMSEaInMxy9ePECenp6KuP5+fnQ0dHhkOj1tLS0sGLFCujp6WHRokXQ1NTEb7/9pnhKIzSpqanYv3+/0vIQDQ0N+Pv7Y8eOHRyTqde0aVPEx8ejbt26iImJwZ49ewBU3iUWw90q9v9XrAr5brwYj/HJkycxb948LFmyBM7OzgCAK1euICgoCPPnz4exsTEmTpyImTNnIjo6mmvWkpISdO7cmWuGtzV//nwcOHAAzZo1U4zZ2tpi5cqVGDp0KNLT0xEeHi6Yp3bNmjVDTEwMevbsCalUih9++AE6Ojo4fvy4yhJgIXj06JHKciKg8vNPqOeKnJwctGrVCgBgYGCAp0+fAgAGDhyIoKAgntFELSEhAUDlZ0VSUhK0tbUVr2lra6N169aYOXMmr3hExGgyw1G3bt2wY8cOLFq0CEDlRWBFRQXCw8PRs2dPzulUlZaWYs6cOdiwYQPmzp2LCxcuYMiQIYiOjsaAAQN4x1PRrl07JCcno3nz5krjycnJaN26NadU1ZsxYwZGjRoFAwMDWFpaokePHgAql0ZVfbAK0Y4dO7BixQrcv38fAPDJJ59g1qxZGD16NOdkqsR4jKdPn46oqCilSYKrqyt0dXUxYcIE3LlzB2vWrMHYsWM5pqzk7e2N3bt3i+qCLzs7W+2m9LKyMuTk5AAAGjdujOfPn9d2tGo5OTnh2LFj6NOnDzp27Ihjx45BJpPxjqVW+/btcfz4cfj4+AD452bHli1bBHsjrEmTJsjOzoaFhQWaNWuGEydOoF27drh69aogbzQCwB9//IGjR4+q3eMTERHBKZWyqv1cXl5eiIyMhJGREedE5ENBkxmOwsPD4erqimvXrqGkpASBgYG4c+cO8vPzERcXxzueivbt26OwsBC//vorXFxcwBhDeHg4hgwZgrFjx+Kbb77hHVGJr68vpk+fjtTUVLi4uAAALl26hA0bNmDZsmW4deuW4r1OTk68YipMmTIFzs7OyMrKQp8+fSCVVhYbtLGxweLFizmnUy8iIgJBQUGYNm0aunTpAgC4cOECJk2ahMePH8PPz49zQmViPMZpaWlqP/SNjIyQnp4OALCzs8Pjx49rOxoAwN/fX/F9RUUFoqKicOrUKTg5OUFLS0vpvUK5qHpZz549MXHiRGzZsgVt27YFUHkHefLkyYq9gElJSVz3JbVt21btUwwdHR38+eefiv89ALhx40ZtRqtRWFgY+vfvj7t376KsrAyRkZG4e/cuLl68iN9++413PLXc3d1x+vRpdOzYET4+Pvjqq68QHR0NuVwuuHMaUFl0Y9CgQbCxscG9e/fg6OioKGzSrl073vFUbNu2DUDl6om0tDR0794dMpms2r00hNSEqplx9vTpU6xfvx6JiYkoKChAu3btMHXqVDRq1Ih3NBXjxo3D2rVrVZYyJCQkYPTo0bh9+zanZOpVXahWRyKRKE6eQqueIoYlWwBgbW2N0NBQeHp6Ko1v374dISEhyMjI4JSsZmI5xl27doWhoSF27NiB+vXrA6hcuuPp6YkXL17g3LlzOHXqFKZOnYrff/+91vO96VNkiUSCM2fOvOc0by8nJwejR4/G6dOnFZOvsrIyuLq6YufOnWjQoAHOnj2L0tJS9O3bl0vGlzf712TBggXvMcl/Jy0tDcuWLVP6nJs9e7Zgn4a+6tKlS7h48SLs7Ozwn//8h3ccFc7Ozujfvz9CQ0NhaGiIxMREmJmZYdSoUXBzc8PkyZN5R1SSn5+P4cOH4+zZs6Ko5EqEjyYz5J34+++/Bff4/cGDB2/8XktLy/eY5M1FR0dj9erViiVbdnZ2mDFjBry9vTknU09XVxe3b9+Gra2t0vj9+/fRqlUrFBcXc0pWPbEd499//x2DBw9GRkaGoppWVlYWbGxscOTIEXzyySc4fPgwnj9/LsilfWJx7949pKSkAACaN2+usjyVfDyWLl2KBg0aqCzd3Lp1Kx49eoTZs2dzSqaeoaEhbt68iWbNmsHExAQXLlxAy5YtkZiYiMGDByMzM5N3RCWenp7Izc3Fli1b4ODggMTERNjY2CA2Nhb+/v64c+cO74hEZGiZGUcvL3N6WVXJVQsLC8FNEHbu3Ilvv/0WGRkZiI+Ph6WlJdasWQNra2sMHjyYdzwlu3fvFtUHUnBwMCIiIuDj46NYSx4fHw8/Pz/I5XIsXLiQc0JVtra22LdvH77++mul8b1798LOzo5TquqJ8Rg3b94cd+/exYkTJ5Qutl9eJvf5559zTPiPp0+fory8XKWPU35+PjQ1NQW9Rt7e3h729va8Y3yQysvLcejQIUW/rxYtWmDw4MHQ1BTmJcimTZuwe/dulfGWLVviyy+/FNxnh76+vmKfTKNGjZCWloaWLVsCALflp69z4sQJxMbGokmTJkrjdnZ2b3UTkhAFPkXUCGP/lFx9uexq1c9SqZTp6OgwT09PVlRUxDsqY4yxb775htWrV48tXryYyWQyRYnNbdu2sR49enBOp8rS0pLFxcWpjF+6dIlZWVlxSPR69erVY7t371YZ3717NzM1NeWQqGb79+9nGhoarF+/fmzhwoVs4cKFrF+/fkxTU5MdPHiQdzwVYjzGYuLm5sY2bNigMr5x40bWv39/DolqVlZWxrZs2cJGjBjBXF1dWc+ePZW+hKasrIytWLGCdejQgTVo0ICZmJgofQnN7du3mY2NDdPT02Nt27Zlbdu2Zfr6+szKyoolJSXxjqeWjo4OS09PVxlPS0tjOjo6HBK93uDBgxUtEgICApitrS1bvHgxa9euHXN1deWcTpWBgQFLSUlRfF91LXH16lVWt25dntGISL1+UwF5rw4dOgQ7OztERUUhMTERiYmJiIqKQvPmzbF7925ER0fjzJkzmD9/Pu+oACobTm7evBnz5s1TKnfcvn17JCUlcUymXk5Ojtq9R/Xr10d2djaHRK9XWlqqaO75sk8//VRttSUhGDp0KC5fvox69erh8OHDOHz4MOrVq4crV67A3d2ddzwVYjzG1XV8X79+PWbMmFH7gV7j8uXLavfQ9OjRA5cvX+aQqGbTp0/H9OnTUV5eDkdHR7Ru3VrpS2hCQ0MREREBDw8PPH36FP7+/hgyZAikUilCQkJ4x1Ph7e2Nli1b4o8//sCNGzdw48YNZGVlwcnJCRMmTOAdT62mTZuqLcITFxeHxo0bc0j0ehEREejYsSOAyr8PV1dX7N27F1ZWVtzLtatTVcm1itAruRIR4D2b+ph16NCBxcTEqIzHxMSwDh06MMYYO3ToELOxsantaGrp6uqyzMxMxpjy3ZSUlBSmq6vLM5patra2bOfOnSrjO3bsYNbW1hwSvd60adOYn5+fynhAQACbMmUKh0QfHjEe48aNG7Nr166pjF+/fp2Zm5tzSFQ9PT09duvWLZXxW7duMZlMxiFRzUxNTdnx48d5x3hjYmvoqKury27fvq0ynpSUJMjPDcYYW758OTM1NWVbt25lmZmZLDMzk0VHRzNTU1MWFhbGO57oJSUlMTMzM+bm5sa0tbXZsGHDmIODA2vQoIFS81pC3pQwF6x+JJKSktRuPLe0tFQ86WjTpo1gniJYW1vj5s2bKpljYmLg4ODAKVX1xo8fjxkzZqC0tFRRYvX06dMIDAxEQEAA53TqRUdH48SJE4pS0pcvX4ZcLoenp6dSCVwhlbitqKhAamoqcnNzUVFRofRa9+7dOaX6x8vHDajsb1HdMRaivLw8GBsbq4wbGRkJbj28s7MzoqKisG7dOqXxb7/9Fp9++imnVK+nra2tUsBCyMTW0PGTTz7Bw4cPFXs4quTm5gr2uM+aNQt5eXmYMmWKYi+Krq4uZs+ejblz53JOV72SkhK152ELCwtOidRzdHRESkoK1q9fD0NDQxQUFGDIkCGCreRKhI8mMxzZ29tj2bJliIqKUnTCLS0txbJlyxQbUf/v//4PDRo04BlTwd/fH1OnTkVxcTEYY7hy5Qp++OEHLF26FFu2bOEdT4XYPpBu376t6AmQlpYGAKhXrx7q1aunVPZaSKWEL126hJEjR+LBgweKUsdVhFLyetu2bXB0dISmpiYkEoniovrVYyzUCjq2traIiYnBtGnTlMZ/+eUX2NjYcEql3uLFi9G7d28kJibC1dUVQOUNhKtXr+LEiROc06kXEBCAyMhIrF+/XlD/W9URW0PHpUuXwtfXFyEhIUr9vhYuXIjly5fj2bNnivcKpUCERCLB8uXLERQUhOTkZMhkMtjZ2Qny+AJASkoKxo0bh4sXLyqNM4G2HgAAY2NjzJs3j3cM8oGg0swcXbx4EYMGDYJUKlU0bUxKSkJ5eTmOHTsGFxcX7Ny5Ezk5OZg1axbntJW+//57hISEKC4Ezc3NERISgnHjxnFOVr2CggJRfCCJUZs2bfDJJ58gNDQUjRo1UrkYVPdEobZJpVLk5OTAzMwMNjY2uHr1KkxNTXnHemNbt27FtGnTMGvWLKUnjKtWrcKaNWswfvx4zgmV3bx5EytWrMDNmzchk8ng5OSEuXPnCrK6HVDZIPHs2bOoW7cuWrZsqdLo8+DBg5ySqTdnzhwYGRnh66+/xt69e/HVV1/ByspK0dBx2bJlvCMqebnfV9X5gb3S40nIF91i0KVLF2hqamLOnDlqz8NC2/slxkquRNhoMsPZ8+fP8f333yuVXB05ciQMDQ05J1NVVFQExhj09PRQWFiI27dvIy4uDi1atEC/fv14x/ugZGVlAYCir4hQ6evrIzExUbDLRQDA1NQUP//8Mzp27AipVIqHDx8qmk+KxcaNG7FkyRL8+eefAAArKyuEhIQIdmmcmHh5eb329apu5UIVHx+P+Ph4wTZ0/O233974vZ999tl7TPLh0tfXx/Xr10VTWlwqlVY7sQUALS0teHh4YNOmTdDV1eWSkYgLTWYE4O7du5DL5YqlUFUGDRrEKZF6ffv2xZAhQzBp0iQ8efIE9vb20NLSwuPHjxERESG4LsNiU1ZWhtDQUKxduxYFBQUAKtfE+/j4YMGCBSp3jIWgV69eCAwMhJubG+8o1ZowYQK2b9+Oxo0bQy6Xo0mTJkrV+F6Wnp5ey+nezqNHjyCTyWBgYMA7So2Ki4tVzmlCWUZEyIekQ4cOWL16Nbp27co7yhs5cuQIZs+ejVmzZsHZ2RkAcOXKFaxatQoLFixAWVkZ5syZAw8PD6xcuZJzWiIGtGeGo/T0dLi7uyMpKQkSiUTxqL2K0B6537hxA6tXrwYA7N+/Hw0aNEBCQgIOHDiA4OBgmsz8Sz4+Pjh48CDCw8OVGjqGhIQgLy8PGzdu5Jyw0stLBHx8fBAQEKDYlPzqhKtq+SRPUVFRGDJkCFJTU+Hr64vx48cL8snn65SVleHXX39FWloaRo4cCQD4888/YWRkJKiJTWFhIQIDA7Fv3z7k5eWpvC60c5pYial5MQA8efIE0dHRiqaZLVu2xNixYwWxDFWsXt5rtHz5cgQGBiIsLEzteVhoNxGWLFmCyMhIpRUdrVq1QpMmTRAUFIQrV65AX18fAQEBNJkhb4ZHCTVSaeDAgWzw4MHs0aNHzMDAgN25c4edP3+eOTs7s3PnzvGOp0Imk7EHDx4wxhgbPnw4CwkJYYwxJpfLBVt2VUyMjIzYzz//rDJ+/PhxZmRkxCGRelXNXasavb76VfWaVCrlHVXFmDFj2LNnz3jHeCuZmZnM3t6e6enpMQ0NDUVJdF9fXzZx4kTO6ZRNmTKFOTg4sP379zOZTMa2bt3KFi1axJo0acJ27drFO161fvzxRzZ8+HDWsWNHRWPHqi+hEVvz4qpGiObm5szd3Z25u7uzJk2aMFNTU3b9+nXe8UTr1Sbbr/4s5POwrq4uS05OVhlPTk5WlOvOyMig6wryxujJDEfx8fE4c+YM6tWrB6lUCg0NDXTt2lVR/SUhIYF3RCW2trY4fPgw3N3dERsbCz8/PwCVJTaFdudHjHR0dGBlZaUybm1trah2JwQZGRm8I/zXhL7/QZ3p06ejffv2SExMVCpc4O7uLrjN/z/99BN27NiBHj16wMvLC926dYOtrS0sLS3x/fffY9SoUbwjqli7di3mzZuHMWPG4MiRI/Dy8kJaWhquXr2KqVOn8o6noqp58eeff6602b99+/aYOXMmx2Tq+fn5YdCgQdi8eTM0NSsvOcrKyuDt7Y0ZM2bg3LlznBOK09mzZxXfZ2ZmomnTpirLZysqKiCXy2s7Wo3EVsmViADv2dTHrE6dOiw9PZ0xVtkI7cyZM4wxxlJTUwV5R+LHH39kWlpaTCqVsj59+ijGw8LCmJubG8dkH4bQ0FA2YsQIVlxcrBgrLi5mo0aNUjwFE5qwsDAWHR2tMh4dHc2WLVvGIdGHp27duuzevXuMMeVmtUK8c6mvr694emtubs4uX77MGGMsPT2d6evr84xWrebNm7Pdu3czxpSPb1BQEJs6dSrPaGqJrXlxdXfh79y5I7i/X7GSSqXs4cOHKuOPHz8W5JOZuLg4ZmpqyurXr89cXV2Zq6srMzMzY6ampiw+Pp4xVtncOjw8nHNSIhb0ZIYjR0dHJCYmwtraGh07dkR4eDi0tbURFRUluP4RADBs2DB07doV2dnZSqUeXV1d4e7uzjGZeA0ZMkTp51OnTqFJkyaK45uYmIiSkhJFzw6h2bRpE3bv3q0y3rJlS3z55ZeYPXs2h1QfloqKCrV7Tf744w/B7f2xsbFBRkYGLCwsYG9vj3379sHZ2Rk//fQT6tSpwzueWnK5HJ07dwYAyGQyPH/+HAAwevRouLi4YP369TzjqRBb82IjIyPI5XKVSltZWVmC+/sVK/bKftsqBQUFgqwG1rlzZ2RkZChVch0+fLhSJdfRo0fzjEhEhiYzHM2fPx8vXrwAACxcuBADBw5Et27dYGpqir1793JOp17Dhg3RsGFDpbGqaiTk7b26AXbo0KFKPwu9NHNOTo7ajs3169dHdnY2h0Qfnr59+2LNmjWIiooCUFnCtKCgAAsWLMCAAQM4p1Pm5eWFxMREfPbZZ5gzZw7+85//YP369SgtLUVERATveGo1bNgQ+fn5sLS0hIWFBS5duoTWrVsjIyNDpRGsEIitebGHhwfGjRuHlStXKiaNcXFxmDVrFkaMGME5nbj5+/sDqDwnBAUFQU9PT/FaeXk5Ll++jDZt2nBKp15paSns7e1x7NgxTJo0iXcc8oGgyQxHL1fysLW1xb1795Cfnw8TExNRdKIm/54Y93C8rGnTpoiLi4O1tbXSeFxcHBo3bswp1Ydl1apV6NevH1q0aIHi4mKMHDkS9+/fR7169fDDDz/wjqekah8dAPTu3Rv37t3D9evXYWtrK4jKdur06tULR48eRdu2beHl5QU/Pz/s378f165dU3lyKgTe3t6QyWSYP38+CgsLMXLkSDRu3BiRkZH48ssvecdTsXLlSkgkEnh6eqKsrAxAZR+RyZMnC67Bp9hU7atljCEpKUlpb6W2tjZat24tuH1UWlpaKC4u5h2DfGCozwwhAtGrVy8cPHhQZTnOs2fP8Pnnn+PMmTN8gr1GeHg4wsPDsWLFCqXu9IGBgQgICMDcuXM5J/wwlJWVYe/evUhMTERBQQHatWuHUaNGQSaT8Y4mehUVFaioqFBsTt+zZw8uXrwIOzs7TJw4UVDFN15VWFiIgoICmJmZ8Y5So8LCQqSlpQEAmjVrpvQUgfw7Xl5eiIyMFE0hnrCwMKSkpGDLli2K/ztC/g2azBAiEFKpFDk5OSoXJrm5uTA3N0dpaSmnZNVjjGHOnDlYu3atokGirq4uZs+ejeDgYM7pPgznzp1D586dVT70y8rKcPHiRXTv3p1Tskpr16594/f6+vq+xyQfl9zcXPz+++8AKqtD1a9fn3MiQt6Mu7s7Tp8+DQMDA7Rq1Qr6+vpKrx88eJBTMiJWNJkhhLOqJpRt2rTBmTNnULduXcVr5eXliImJwaZNm5CZmckpYc0KCgqQnJwMmUwGOzs76Ojo8I70wdDQ0EB2drbKJDcvLw9mZmbcG1G+usSwOhKJBOnp6e85zdsLCQlBcHAwpFKp0vjTp08xadIkwS3le/78OaZMmYIffvgBFRUVACr/Rjw8PLBhwwZBNKJ8m+V5dOH68fHy8nrt62Jffk1qH01mCOFMKpUq9kip+3eUyWRYt24dxo4dW9vRiABIpVI8fPhQ5c57SkoK2rdvr9QJnLy9pk2bomnTpti1a5eiiuSvv/4KT09PNGzYEFeuXOGcUJmHhwcSEhKwbt06dOrUCUBlz7Lp06ejTZs22LNnD+eENV+svowuXAkh/xZNZgjh7MGDB2CMwcbGBleuXFG6aNXW1oaZmZlKMzTy4au6u33kyBG4ubkpPe0qLy/HrVu30Lx5c8TExPCK+EH466+/MHHiRMTExGDVqlVISUlBZGQkZs2ahdDQUMGt6dfX10dsbCy6du2qNH7+/Hm4ubkpKmQKRVFRESoqKhRLiTIzM3H48GE4ODgoFcEhhJD/lrDO0oR8hKr6RVQtGSEE+KdsN2MMhoaGSpv9tbW14eLigvHjx/OKV60//vgDR48ehVwuV+yjqiLE8swmJibYt28fvv76a0ycOBGampr45ZdfBNvbydTUVO1SMmNjY5iYmHBI9HqDBw/GkCFDMGnSJDx58gQuLi7Q0tLC48ePERERgcmTJ/OOSDjYv38/9u3bp/Y8cePGDU6piGjVdpdOQoh63333HTt27Jji51mzZjFjY2PWqVMnRcdv8vEJCQlhBQUFvGO8kVOnTjE9PT3m6OjINDU1WZs2bVidOnWYsbEx69mzJ+941Vq7di3T09NjI0eOZM2bN2ctWrRgN2/e5B1LrU2bNrHevXuz7OxsxVh2djbr27cv+/bbbzkmU8/U1JTdvn2bMcbY5s2bmZOTEysvL2f79u1j9vb2nNMRHiIjI5mBgQGbNm0a09bWZhMnTmS9e/dmxsbG7Ouvv+Ydj4gQLTMjRCCaN2+OjRs3olevXoiPj4erqyvWrFmDY8eOQVNTkzbKfqSKiorAGFOUsn3w4AEOHTqEFi1aoG/fvpzTKXN2dkb//v0RGhoKQ0NDJCYmwszMDKNGjYKbm5sg78K7ubnh6tWr2LRpE4YNG4aioiL4+/vju+++Q2hoKAIDA3lHVNK2bVukpqbi77//hoWFBQBALpdDR0cHdnZ2Su8Vwh1uPT093Lt3DxYWFvjiiy/QsmVLLFiwAFlZWWjevDkKCwt5RyS1zN7eHgsWLMCIESMU5wkbGxsEBwcjPz8f69ev5x2RiAwtMyNEILKysmBrawsAOHz4MIYNG4YJEyagS5cu6NGjB99whJtXl+k4OztDW1tbkMt0kpOTFdW/NDU1UVRUBAMDAyxcuBCDBw8WVNYq5eXlSEpKUjR5lclk2LhxIwYOHAhvb2/BTWY+//xz3hHeiq2tLQ4fPgx3d3fExsYqGqvm5uaKpi8Kebfkcjk6d+4MoPL/7fnz5wCA0aNHw8XFhSYz5K3RZIYQgTAwMEBeXh4sLCxw4sQJ+Pv7A6js21JUVMQ5HeHlxo0bWL16NYDKdeYNGzZEQkICDhw4gODgYEFNEPT19RXr3xs1aoS0tDS0bNkSAPD48WOe0ap18uRJnD9/HoGBgUhLS8P+/fthbm6O/Px87Nu3j3c8FQsWLOAd4a0EBwdj5MiR8PPzg6urq6IC24kTJ9C2bVvO6QgPDRs2RH5+PiwtLWFhYYFLly6hdevWyMjIUFvRk5CaSGt+CyGkNvTp0wfe3t7w9vZGSkoKBgwYAAC4c+cOrKys+IYj3BQWFsLQ0BBA5QXgkCFDIJVK4eLiggcPHnBOp8zFxQUXLlwAAAwYMAABAQFYsmQJxo4dCxcXF87p1Dtw4AD69esHmUyGhIQE/P333wAq+8wsXbqUczrxGzZsGORyOa5du6ZUec/V1VUxSScfl169euHo0aMAKst4+/n5oU+fPvDw8IC7uzvndESMaM8MIQLx5MkTzJ8/H1lZWZg8eTLc3NwAVN6J1dbWxrx58zgnJDw4OTnB29sb7u7ucHR0RExMDDp16oTr16/jf/7nf5CTk8M7okJ6ejoKCgrg5OSEFy9eICAgABcvXoSdnR0iIiIUlfuEpG3btvDz84Onp6fS+v2EhAT0799fEMfXxMRE0YuqJvn5+e85DSH/TkZGBszNzaGtrQ0A2LNnj+I84ebmprL3i5Ca0GSGEEIEbP/+/Rg5ciTKy8vRq1cvnDx5EgCwdOlSnDt3Dr/88gvnhOKmp6eHu3fvwsrKSmkyk56ejhYtWqC4uJh3RGzfvl3xfV5eHhYvXox+/fopNc2MjY1FUFCQYk8KIUKloaGB7OxsmJmZKY3n5eXBzMwM5eXlnJIRsaI9M4QIyPnz57Fp0yakp6fjxx9/hLm5OXbu3Alra2uVJnnk4zBs2DB07doV2dnZaN26tWLc1dVVsEsySkpKkJubq9I7qar6lpA0bNgQqampKks5L1y4ABsbGz6hXvG///u/iu+HDh2KhQsXYtq0aYoxX19frF+/HqdOnaLJDBG86u6hFxQUQFdXt5bTkA8BTWYIEYgDBw5g9OjRGDVqFG7cuKG0dj8sLAw///wz54SEl4YNG6KgoAAnT55E9+7dIZPJ0KFDhzdeelRbUlJSMG7cOFy8eFFpnDEGiUQiyDuu48ePx/Tp07F161ZIJBL8+eefiI+Px8yZMxEUFMQ7norY2FgsX75cZdzNzQ1z5szhkIiQN1NV1EYikSA4OFhRbh6orCp4+fJltGnThlM6ImY0mSFEIBYvXoxvv/0Wnp6e2LNnj2K8S5cuWLx4McdkhKe8vDx88cUXOHv2LCQSCe7fvw8bGxuMGzcOJiYmWLVqFe+ICl5eXtDU1MSxY8fQqFEjwU221JkzZw4qKirg6uqKwsJCdO/eHTo6Opg5cyZ8fHx4x1NhamqKI0eOICAgQGn8yJEjMDU15ZSKkJolJCQAqLy5kZSUpNgzAwDa2tpo3bo1Zs6cySseETHaM0OIQIhh7T6pfZ6ensjNzcWWLVvg4OCg+LuIjY2Fv78/7ty5wzuigr6+Pq5fvw57e3veUd5aSUkJUlNTUVBQgBYtWsDAwIB3JLW+++47eHt7o3///ujYsSMA4PLly4iJicHmzZsxZswYvgEJqYGXlxciIyOpzxB5Z+jJDCECIYa1+6T2nThxArGxsWjSpInSuJ2dneBKM7do0UKw/WRqoq2tjRYtWvCOUaMxY8bAwcEBa9euxcGDBwEADg4OuHDhgmJyQ4iQbdu2jXcE8oGhyQwhAiG2tfukdrx48UJpbXmV/Px86OjocEik7NmzZ4rvly9fjsDAQISFhaFVq1bQ0tJSei/diX03OnbsiO+//553DEIIEQRaZkaIQDDGEBYWhqVLl6KwsBAAFGv3Fy1axDkd4WXAgAH49NNPsWjRIhgaGuLWrVuwtLTEl19+iYqKCuzfv59rPqlUqrQ3pmqz/8uEXABADF6eMNaEJoyEkI8NTWYIEYDy8nLExcXByckJenp6oli7T2rHnTt30KtXL7Rr1w5nzpzBoEGDcOfOHeTn5yMuLg7NmjXjmu+3335TfJ+ZmYmmTZtCQ0ND6T0VFRWQy+VKJYbJm3t1wqgOTRgJIR8rmswQIhC6urpITk6GtbU17yhEIEpLS+Hm5oalS5fi5MmTSExMREFBAdq1a4epU6eiUaNGvCMqoWZ478fLE8aafPbZZ+8xCSGECA/tmSFEIBwdHZGenk6TGaKgpaWFW7duwcTEBPPmzeMdp0bqlpgB1Azv33p1gvLkyRNER0cjOTkZQGXhhXHjxsHY2JhHPEII4YqezBAiEDExMZg7dy4WLVqETz/9FPr6+kqv01r4j5Ofnx90dHSwbNky3lGqVdUMLzIyEuPHj1fbDE9DQwNxcXG8In4wrl27Bjc3N+jq6sLZ2RkAcPXqVRQVFeHEiRNo164d54SEEFK7aDJDiEBIpVLF9+o2VNMSnY+Tj48PduzYATs7O7WT3IiICE7J/tGzZ08AlcuhOnXqpNIMz8rKCjNnzoSdnR2viB+Mbt26wdbWFps3b4amZuXiirKyMnh7eyM9PR3nzp3jnJAQQmoXTWYIEYjt27fT5mmiomqioI5EIsGZM2dqMc3rUTO8908mkyEhIUGlMendu3fRvn17RSVEQgj5WNBkhhCBoM3ThJCaNGjQADt37kTfvn2VxmNjY+Hp6YmHDx9ySkYIIXxIa34LIaQ20OZpQkhNPDw8MG7cOOzduxdZWVnIysrCnj174O3tjREjRvCORwghtY6qmRHCWdXmaYlEgqCgILWbp9u0acMpHSFESFauXAmJRAJPT0+UlZUBqKx6N3nyZEEXiSCEkPeFlpkRwhltniaEvK3CwkKkpaUBAJo1a6Z0E4QQQj4mNJkhRCBo8zQhhBBCyNuhyQwhhBBCCCFElKgAACGEEEIIIUSUaDJDCCGEEEIIESWazBBCCCGEEEJEiSYzhBBCCCGEEFGiyQwhhBBCCCFElGgyQwghhBBCCBElmswQQgghhBBCRIkmM4QQQgghhBBR+n942bJhUkdW0gAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1000x800 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(10,8))\n",
    "corr_df = df.corr()\n",
    "sns.heatmap(corr_df,annot=True)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    Positive Correlation:\n",
    "    \n",
    "    Specific gravity -> Red blood cell count, Packed cell volume and Hemoglobin\n",
    "    Sugar -> Blood glucose random\n",
    "    Blood Urea -> Serum creatinine\n",
    "    Hemoglobin -> Red Blood cell count <- packed cell volume\n",
    "    \n",
    "    \n",
    "    Negative Correlation:\n",
    "    Albumin, Blood urea -> Red blood cell count, packed cell volume, Hemoglobin\n",
    "    Serum creatinine -> Sodium"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "#df.groupby(['red blood cells','class'])['red blood cell count'].agg(['count','mean','median','min','max'])"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Let's check for Positive correlation and its impact on classes¶"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "import plotly.express as px"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [],
   "source": [
    "#px.violin(df,y='red blood cell count',x=\"class\", color=\"class\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [],
   "source": [
    "#px.scatter(df,'haemoglobin','packed cell volume')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'grid=sns.FacetGrid(df, hue=\"class\",aspect=2)\\ngrid.map(sns.kdeplot, \\'red blood cell count\\')\\ngrid.add_legend()'"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "### analysing distribution of 'red_blood_cell_count' in both Labels \n",
    "\n",
    "'''grid=sns.FacetGrid(df, hue=\"class\",aspect=2)\n",
    "grid.map(sns.kdeplot, 'red blood cell count')\n",
    "grid.add_legend()'''"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    Both distributions are quite different, distribution CKD is quite normal and evenly distributed but not CKD distribution is a little bit left-skewed but quite close to a normal distribution"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'def violin(col):\\n    fig = px.violin(df, y=col, x=\"class\", color=\"class\", box=True)\\n    return fig.show()\\n\\ndef scatters(col1,col2):\\n    fig = px.scatter(df, x=col1, y=col2, color=\"class\")\\n    return fig.show()'"
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Defining violin and scatter plot & kde_plot functions\n",
    "'''def violin(col):\n",
    "    fig = px.violin(df, y=col, x=\"class\", color=\"class\", box=True)\n",
    "    return fig.show()\n",
    "\n",
    "def scatters(col1,col2):\n",
    "    fig = px.scatter(df, x=col1, y=col2, color=\"class\")\n",
    "    return fig.show()'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'def kde_plot(feature):\\n    grid = sns.FacetGrid(df, hue=\"class\",aspect=2)\\n    grid.map(sns.kdeplot, feature)\\n    grid.add_legend()'"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'''def kde_plot(feature):\n",
    "    grid = sns.FacetGrid(df, hue=\"class\",aspect=2)\n",
    "    grid.map(sns.kdeplot, feature)\n",
    "    grid.add_legend()'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"kde_plot('red blood cell count')\""
      ]
     },
     "execution_count": 40,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'''kde_plot('red blood cell count')'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [],
   "source": [
    "#kde_plot('haemoglobin')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [],
   "source": [
    "#scatters('red blood cell count', 'packed cell volume')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [],
   "source": [
    "#scatters('red blood cell count', 'haemoglobin')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [],
   "source": [
    "#scatters('haemoglobin','packed cell volume')"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    1.RBC count range ~2 to <4.5 and Hemoglobin between 3 to <13 are mostly classified as positive for chronic kidney  \n",
    "    disease(i.e ckd).\n",
    "    2.RBC count range >4.5 to ~6.1 and Hemoglobin between >13 to 17.8 are classified as negative for chronic kidney \n",
    "    disease(i.e nockd)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [],
   "source": [
    "#violin('red blood cell count')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [],
   "source": [
    "#violin('packed cell volume')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "###  Now let's check for negative correlation and its impact on classes"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    Albumin, Blood urea -> Red blood cell count, packed cell volume, Haemoglobin"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [],
   "source": [
    "#scatters('red blood cell count','albumin')"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    Clearly, albumin levels of above 0 affect ckd largely"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [],
   "source": [
    "#scatters('packed cell volume','blood urea')"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    Packed cell volume >= 40 largely affects to be non ckd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'fig = px.bar(df, x=\"specific gravity\", y=\"packed cell volume\",\\n             color=\\'class\\', barmode=\\'group\\',\\n             height=400)\\nfig.show()'"
      ]
     },
     "execution_count": 49,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'''fig = px.bar(df, x=\"specific gravity\", y=\"packed cell volume\",\n",
    "             color='class', barmode='group',\n",
    "             height=400)\n",
    "fig.show()'''"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "    Clearly, specific gravity >=1.02 affects non ckd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>sex</th>\n",
       "      <th>cp</th>\n",
       "      <th>trestbps</th>\n",
       "      <th>chol</th>\n",
       "      <th>fbs</th>\n",
       "      <th>restecg</th>\n",
       "      <th>thalach</th>\n",
       "      <th>exang</th>\n",
       "      <th>oldpeak</th>\n",
       "      <th>slope</th>\n",
       "      <th>ca</th>\n",
       "      <th>thal</th>\n",
       "      <th>target</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>52</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>125</td>\n",
       "      <td>212</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>168</td>\n",
       "      <td>0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>53</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>140</td>\n",
       "      <td>203</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>155</td>\n",
       "      <td>1</td>\n",
       "      <td>3.1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>70</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>145</td>\n",
       "      <td>174</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>125</td>\n",
       "      <td>1</td>\n",
       "      <td>2.6</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>61</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>148</td>\n",
       "      <td>203</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>161</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>62</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>138</td>\n",
       "      <td>294</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>106</td>\n",
       "      <td>0</td>\n",
       "      <td>1.9</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  slope  \\\n",
       "0   52    1   0       125   212    0        1      168      0      1.0      2   \n",
       "1   53    1   0       140   203    1        0      155      1      3.1      0   \n",
       "2   70    1   0       145   174    0        1      125      1      2.6      0   \n",
       "3   61    1   0       148   203    0        1      161      0      0.0      2   \n",
       "4   62    0   0       138   294    1        1      106      0      1.9      1   \n",
       "\n",
       "   ca  thal  target  \n",
       "0   2     3       0  \n",
       "1   0     3       0  \n",
       "2   0     3       0  \n",
       "3   1     3       0  \n",
       "4   3     2       0  "
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "age         0\n",
       "sex         0\n",
       "cp          0\n",
       "trestbps    0\n",
       "chol        0\n",
       "fbs         0\n",
       "restecg     0\n",
       "thalach     0\n",
       "exang       0\n",
       "oldpeak     0\n",
       "slope       0\n",
       "ca          0\n",
       "thal        0\n",
       "target      0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.isna().sum().sort_values(ascending=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[]"
      ]
     },
     "execution_count": 52,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "cat_col"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [],
   "source": [
    "#df['red blood cells'].hist()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [],
   "source": [
    "data=df.copy()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {},
   "outputs": [],
   "source": [
    "### filling missing with Random value"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Random Value Imputation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [],
   "source": [
    "#data['red blood cells'].isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [],
   "source": [
    "#data['red blood cells'].dropna().sample()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [],
   "source": [
    "#random_sample=data['red blood cells'].dropna().sample(data['red blood cells'].isnull().sum())\n",
    "#random_sample"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [],
   "source": [
    "#random_sample.index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [],
   "source": [
    "#data[data['red blood cells'].isnull()].index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {},
   "outputs": [],
   "source": [
    "#random_sample.index=data[data['red blood cells'].isnull()].index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {},
   "outputs": [],
   "source": [
    "#random_sample.index"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {},
   "outputs": [],
   "source": [
    "#random_sample"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {},
   "outputs": [],
   "source": [
    "#data.loc[data['red blood cells'].isnull(),'red blood cells']=random_sample"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>sex</th>\n",
       "      <th>cp</th>\n",
       "      <th>trestbps</th>\n",
       "      <th>chol</th>\n",
       "      <th>fbs</th>\n",
       "      <th>restecg</th>\n",
       "      <th>thalach</th>\n",
       "      <th>exang</th>\n",
       "      <th>oldpeak</th>\n",
       "      <th>slope</th>\n",
       "      <th>ca</th>\n",
       "      <th>thal</th>\n",
       "      <th>target</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>52</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>125</td>\n",
       "      <td>212</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>168</td>\n",
       "      <td>0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>53</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>140</td>\n",
       "      <td>203</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>155</td>\n",
       "      <td>1</td>\n",
       "      <td>3.1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>70</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>145</td>\n",
       "      <td>174</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>125</td>\n",
       "      <td>1</td>\n",
       "      <td>2.6</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>61</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>148</td>\n",
       "      <td>203</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>161</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>62</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>138</td>\n",
       "      <td>294</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>106</td>\n",
       "      <td>0</td>\n",
       "      <td>1.9</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  slope  \\\n",
       "0   52    1   0       125   212    0        1      168      0      1.0      2   \n",
       "1   53    1   0       140   203    1        0      155      1      3.1      0   \n",
       "2   70    1   0       145   174    0        1      125      1      2.6      0   \n",
       "3   61    1   0       148   203    0        1      161      0      0.0      2   \n",
       "4   62    0   0       138   294    1        1      106      0      1.9      1   \n",
       "\n",
       "   ca  thal  target  \n",
       "0   2     3       0  \n",
       "1   0     3       0  \n",
       "2   0     3       0  \n",
       "3   1     3       0  \n",
       "4   3     2       0  "
      ]
     },
     "execution_count": 65,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {},
   "outputs": [],
   "source": [
    "#data['red blood cells'].hist()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [],
   "source": [
    "### lets create a function so that I can easily do it for all features\n",
    "def Random_value_imputation(feature):\n",
    "    random_sample=data[feature].dropna().sample(data[feature].isnull().sum())               \n",
    "    random_sample.index=data[data[feature].isnull()].index\n",
    "    data.loc[data[feature].isnull(),feature]=random_sample\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Series([], dtype: float64)"
      ]
     },
     "execution_count": 68,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[cat_col].isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {},
   "outputs": [],
   "source": [
    "### as rest of the features has less missing values,so I can fill it using mode concept"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {},
   "outputs": [],
   "source": [
    "def impute_mode(feature):\n",
    "    mode=data[feature].mode()[0]\n",
    "    data[feature]=data[feature].fillna(mode)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "metadata": {},
   "outputs": [],
   "source": [
    "for col in cat_col:\n",
    "    impute_mode(col)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Series([], dtype: float64)"
      ]
     },
     "execution_count": 72,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[cat_col].isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "age         0\n",
       "sex         0\n",
       "cp          0\n",
       "trestbps    0\n",
       "chol        0\n",
       "fbs         0\n",
       "restecg     0\n",
       "thalach     0\n",
       "exang       0\n",
       "oldpeak     0\n",
       "slope       0\n",
       "ca          0\n",
       "thal        0\n",
       "target      0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 73,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[num_col].isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "metadata": {},
   "outputs": [],
   "source": [
    "### lets fill missing values in Numerical features using Random value Imputation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "metadata": {},
   "outputs": [],
   "source": [
    "for col in num_col:\n",
    "    Random_value_imputation(col)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "age         0\n",
       "sex         0\n",
       "cp          0\n",
       "trestbps    0\n",
       "chol        0\n",
       "fbs         0\n",
       "restecg     0\n",
       "thalach     0\n",
       "exang       0\n",
       "oldpeak     0\n",
       "slope       0\n",
       "ca          0\n",
       "thal        0\n",
       "target      0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[num_col].isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### feature Encoding"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "metadata": {},
   "outputs": [],
   "source": [
    "for col in cat_col:\n",
    "    print('{} has {} categories'.format(col, data[col].nunique()))\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "metadata": {},
   "outputs": [],
   "source": [
    "#### as we have just 2 categories in each feature then we can consider Label Encoder as it will not cause Curse of Dimensionality"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.preprocessing import LabelEncoder"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "metadata": {},
   "outputs": [],
   "source": [
    "le = LabelEncoder()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "metadata": {},
   "outputs": [],
   "source": [
    "for col in cat_col:\n",
    "    data[col]=le.fit_transform(data[col])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>sex</th>\n",
       "      <th>cp</th>\n",
       "      <th>trestbps</th>\n",
       "      <th>chol</th>\n",
       "      <th>fbs</th>\n",
       "      <th>restecg</th>\n",
       "      <th>thalach</th>\n",
       "      <th>exang</th>\n",
       "      <th>oldpeak</th>\n",
       "      <th>slope</th>\n",
       "      <th>ca</th>\n",
       "      <th>thal</th>\n",
       "      <th>target</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>52</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>125</td>\n",
       "      <td>212</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>168</td>\n",
       "      <td>0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>53</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>140</td>\n",
       "      <td>203</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>155</td>\n",
       "      <td>1</td>\n",
       "      <td>3.1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>70</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>145</td>\n",
       "      <td>174</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>125</td>\n",
       "      <td>1</td>\n",
       "      <td>2.6</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>61</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>148</td>\n",
       "      <td>203</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>161</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>62</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>138</td>\n",
       "      <td>294</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>106</td>\n",
       "      <td>0</td>\n",
       "      <td>1.9</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  slope  \\\n",
       "0   52    1   0       125   212    0        1      168      0      1.0      2   \n",
       "1   53    1   0       140   203    1        0      155      1      3.1      0   \n",
       "2   70    1   0       145   174    0        1      125      1      2.6      0   \n",
       "3   61    1   0       148   203    0        1      161      0      0.0      2   \n",
       "4   62    0   0       138   294    1        1      106      0      1.9      1   \n",
       "\n",
       "   ca  thal  target  \n",
       "0   2     3       0  \n",
       "1   0     3       0  \n",
       "2   0     3       0  \n",
       "3   1     3       0  \n",
       "4   3     2       0  "
      ]
     },
     "execution_count": 82,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Feature Importance"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 83,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "#SelectKBest-to select k best features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "metadata": {},
   "outputs": [],
   "source": [
    "#chi2-Internally this class is going to check that whether p-value is less than 0.05 or not\n",
    "#based on that,it will actually order all the features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.feature_selection import SelectKBest#Also known as Information Gain\n",
    "from sklearn.feature_selection import chi2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "metadata": {},
   "outputs": [],
   "source": [
    "ind_col=[col for col in data.columns if col!='target']\n",
    "dep_col='target'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 87,
   "metadata": {},
   "outputs": [],
   "source": [
    "X=data[ind_col]\n",
    "y=data[dep_col]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 88,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "ordered_rank_features=SelectKBest(score_func=chi2,k=13)\n",
    "ordered_feature=ordered_rank_features.fit(X,y)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 89,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>SelectKBest(k=13, score_func=&lt;function chi2 at 0x000001FAAA44B250&gt;)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">SelectKBest</label><div class=\"sk-toggleable__content\"><pre>SelectKBest(k=13, score_func=&lt;function chi2 at 0x000001FAAA44B250&gt;)</pre></div></div></div></div></div>"
      ],
      "text/plain": [
       "SelectKBest(k=13, score_func=<function chi2 at 0x000001FAAA44B250>)"
      ]
     },
     "execution_count": 89,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ordered_feature"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 90,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 81.42536762,  24.37365008, 217.82392171,  45.97406854,\n",
       "       110.72336371,   1.47754962,   9.73934262, 650.00849349,\n",
       "       130.47092725, 253.65346109,  33.67394807, 210.62591949,\n",
       "        19.37346461])"
      ]
     },
     "execution_count": 90,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#To get scores(rank) of feature,what we can do we can use scores function\n",
    "ordered_feature.scores_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 91,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>81.425368</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>24.373650</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>217.823922</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>45.974069</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>110.723364</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>1.477550</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>9.739343</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>650.008493</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>130.470927</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>253.653461</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>33.673948</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>210.625919</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>19.373465</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "         Score\n",
       "0    81.425368\n",
       "1    24.373650\n",
       "2   217.823922\n",
       "3    45.974069\n",
       "4   110.723364\n",
       "5     1.477550\n",
       "6     9.739343\n",
       "7   650.008493\n",
       "8   130.470927\n",
       "9   253.653461\n",
       "10   33.673948\n",
       "11  210.625919\n",
       "12   19.373465"
      ]
     },
     "execution_count": 91,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "datascores=pd.DataFrame(ordered_feature.scores_,columns=[\"Score\"])\n",
    "datascores"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 92,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>age</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>sex</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>cp</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>trestbps</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>chol</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>fbs</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>restecg</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>thalach</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>exang</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>oldpeak</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>slope</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>ca</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>thal</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "           0\n",
       "0        age\n",
       "1        sex\n",
       "2         cp\n",
       "3   trestbps\n",
       "4       chol\n",
       "5        fbs\n",
       "6    restecg\n",
       "7    thalach\n",
       "8      exang\n",
       "9    oldpeak\n",
       "10     slope\n",
       "11        ca\n",
       "12      thal"
      ]
     },
     "execution_count": 92,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dfcolumns=pd.DataFrame(X.columns)\n",
    "dfcolumns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {},
   "outputs": [],
   "source": [
    "features_rank=pd.concat([dfcolumns,datascores],axis=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>Score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>age</td>\n",
       "      <td>81.425368</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>sex</td>\n",
       "      <td>24.373650</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>cp</td>\n",
       "      <td>217.823922</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>trestbps</td>\n",
       "      <td>45.974069</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>chol</td>\n",
       "      <td>110.723364</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>fbs</td>\n",
       "      <td>1.477550</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>restecg</td>\n",
       "      <td>9.739343</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>thalach</td>\n",
       "      <td>650.008493</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>exang</td>\n",
       "      <td>130.470927</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>oldpeak</td>\n",
       "      <td>253.653461</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>slope</td>\n",
       "      <td>33.673948</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>ca</td>\n",
       "      <td>210.625919</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>thal</td>\n",
       "      <td>19.373465</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "           0       Score\n",
       "0        age   81.425368\n",
       "1        sex   24.373650\n",
       "2         cp  217.823922\n",
       "3   trestbps   45.974069\n",
       "4       chol  110.723364\n",
       "5        fbs    1.477550\n",
       "6    restecg    9.739343\n",
       "7    thalach  650.008493\n",
       "8      exang  130.470927\n",
       "9    oldpeak  253.653461\n",
       "10     slope   33.673948\n",
       "11        ca  210.625919\n",
       "12      thal   19.373465"
      ]
     },
     "execution_count": 94,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "features_rank"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Higher the score is,more important feature is "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Features</th>\n",
       "      <th>Score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>age</td>\n",
       "      <td>81.425368</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>sex</td>\n",
       "      <td>24.373650</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>cp</td>\n",
       "      <td>217.823922</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>trestbps</td>\n",
       "      <td>45.974069</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>chol</td>\n",
       "      <td>110.723364</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>fbs</td>\n",
       "      <td>1.477550</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>restecg</td>\n",
       "      <td>9.739343</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>thalach</td>\n",
       "      <td>650.008493</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>exang</td>\n",
       "      <td>130.470927</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>oldpeak</td>\n",
       "      <td>253.653461</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>slope</td>\n",
       "      <td>33.673948</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>ca</td>\n",
       "      <td>210.625919</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>thal</td>\n",
       "      <td>19.373465</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    Features       Score\n",
       "0        age   81.425368\n",
       "1        sex   24.373650\n",
       "2         cp  217.823922\n",
       "3   trestbps   45.974069\n",
       "4       chol  110.723364\n",
       "5        fbs    1.477550\n",
       "6    restecg    9.739343\n",
       "7    thalach  650.008493\n",
       "8      exang  130.470927\n",
       "9    oldpeak  253.653461\n",
       "10     slope   33.673948\n",
       "11        ca  210.625919\n",
       "12      thal   19.373465"
      ]
     },
     "execution_count": 96,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "features_rank.columns=['Features','Score']\n",
    "features_rank"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Features</th>\n",
       "      <th>Score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>thalach</td>\n",
       "      <td>650.008493</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>oldpeak</td>\n",
       "      <td>253.653461</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>cp</td>\n",
       "      <td>217.823922</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>ca</td>\n",
       "      <td>210.625919</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>exang</td>\n",
       "      <td>130.470927</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>chol</td>\n",
       "      <td>110.723364</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>age</td>\n",
       "      <td>81.425368</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>trestbps</td>\n",
       "      <td>45.974069</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>slope</td>\n",
       "      <td>33.673948</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>sex</td>\n",
       "      <td>24.373650</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    Features       Score\n",
       "7    thalach  650.008493\n",
       "9    oldpeak  253.653461\n",
       "2         cp  217.823922\n",
       "11        ca  210.625919\n",
       "8      exang  130.470927\n",
       "4       chol  110.723364\n",
       "0        age   81.425368\n",
       "3   trestbps   45.974069\n",
       "10     slope   33.673948\n",
       "1        sex   24.373650"
      ]
     },
     "execution_count": 97,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#fetch largest 10 values of Score column\n",
    "features_rank.nlargest(10,'Score')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 98,
   "metadata": {},
   "outputs": [],
   "source": [
    "x_new=features_rank.nlargest(10,'Score')['Features'].values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 99,
   "metadata": {},
   "outputs": [],
   "source": [
    "sc=np.array(x_new)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 100,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "      thalach  oldpeak  cp  ca  exang  chol  age  trestbps  slope  sex\n",
      "0         168      1.0   0   2      0   212   52       125      2    1\n",
      "1         155      3.1   0   0      1   203   53       140      0    1\n",
      "2         125      2.6   0   0      1   174   70       145      0    1\n",
      "3         161      0.0   0   1      0   203   61       148      2    1\n",
      "4         106      1.9   0   3      0   294   62       138      1    0\n",
      "...       ...      ...  ..  ..    ...   ...  ...       ...    ...  ...\n",
      "1020      164      0.0   1   0      1   221   59       140      2    1\n",
      "1021      141      2.8   0   1      1   258   60       125      1    1\n",
      "1022      118      1.0   0   1      1   275   47       110      1    1\n",
      "1023      159      0.0   0   0      0   254   50       110      2    0\n",
      "1024      113      1.4   0   1      0   188   54       120      1    1\n",
      "\n",
      "[1025 rows x 10 columns]\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "thalach       int64\n",
       "oldpeak     float64\n",
       "cp            int64\n",
       "ca            int64\n",
       "exang         int64\n",
       "chol          int64\n",
       "age           int64\n",
       "trestbps      int64\n",
       "slope         int64\n",
       "sex           int64\n",
       "dtype: object"
      ]
     },
     "execution_count": 100,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "selected_columns=data[sc]\n",
    "print(selected_columns)\n",
    "selected_columns.dtypes"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Model Building"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 101,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import train_test_split\n",
    "X_train, X_test, y_train, y_test = train_test_split(selected_columns,y,train_size=0.75)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 102,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(768, 10)\n",
      "(257, 10)\n"
     ]
    }
   ],
   "source": [
    "print(X_train.shape)\n",
    "print(X_test.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 103,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "thalach  oldpeak  cp  ca  exang  chol  age  trestbps  slope  sex\n",
       "202      0.0      1   0   0      204   29   130       2      1      4\n",
       "131      1.8      2   0   1      309   64   125       1      1      4\n",
       "173      0.0      2   4   0      175   38   138       2      1      4\n",
       "118      1.0      0   1   1      275   47   110       1      1      4\n",
       "124      1.0      0   3   0      289   57   165       1      1      4\n",
       "                                                                   ..\n",
       "125      0.0      3   0   0      273   59   160       2      1      1\n",
       "161      0.0      0   1   1      255   52   128       2      1      1\n",
       "178      1.2      3   0   0      298   52   152       1      1      1\n",
       "161      0.5      0   0   0      234   59   135       1      1      1\n",
       "71       1.0      0   0   0      237   67   120       1      1      1\n",
       "Length: 299, dtype: int64"
      ]
     },
     "execution_count": 103,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train.value_counts()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 104,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1    398\n",
       "0    370\n",
       "Name: target, dtype: int64"
      ]
     },
     "execution_count": 104,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## check whether dataset is imbalance or not\n",
    "y_train.value_counts()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 105,
   "metadata": {},
   "outputs": [],
   "source": [
    "### Lets find best model using Hyperparameter optimization"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 106,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0       0\n",
      "1       0\n",
      "2       0\n",
      "3       0\n",
      "4       0\n",
      "       ..\n",
      "1020    1\n",
      "1021    0\n",
      "1022    0\n",
      "1023    1\n",
      "1024    0\n",
      "Name: target, Length: 1025, dtype: int64\n"
     ]
    }
   ],
   "source": [
    "print(y)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 107,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.ensemble import RandomForestClassifier\n",
    "model=RandomForestClassifier()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 108,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'\\nparams={\\n \"learning_rate\"    : [0.05, 0.20, 0.25 ] ,\\n \"max_depth\"        : [ 5, 8, 10, 12],\\n \"min_child_weight\" : [ 1, 3, 5, 7 ],\\n \"gamma\"            : [ 0.0, 0.1, 0.2 , 0.4 ],\\n \"colsample_bytree\" : [ 0.3, 0.4, 0.7 ]\\n    \\n}'"
      ]
     },
     "execution_count": 108,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## Hyper Parameter Optimization with respect to XGBoost\n",
    "'''\n",
    "params={\n",
    " \"learning_rate\"    : [0.05, 0.20, 0.25 ] ,\n",
    " \"max_depth\"        : [ 5, 8, 10, 12],\n",
    " \"min_child_weight\" : [ 1, 3, 5, 7 ],\n",
    " \"gamma\"            : [ 0.0, 0.1, 0.2 , 0.4 ],\n",
    " \"colsample_bytree\" : [ 0.3, 0.4, 0.7 ]\n",
    "    \n",
    "}'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 109,
   "metadata": {},
   "outputs": [],
   "source": [
    "#from sklearn.model_selection import RandomizedSearchCV"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 110,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'from xgboost import XGBClassifier\\nclassifier=XGBClassifier()'"
      ]
     },
     "execution_count": 110,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'''from xgboost import XGBClassifier\n",
    "classifier=XGBClassifier()'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 111,
   "metadata": {},
   "outputs": [],
   "source": [
    "import warnings\n",
    "from warnings import filterwarnings\n",
    "filterwarnings('ignore')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 112,
   "metadata": {},
   "outputs": [],
   "source": [
    "#random_search=RandomizedSearchCV(classifier,param_distributions=params,n_iter=5,scoring='roc_auc',n_jobs=-1,cv=5,verbose=3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 113,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomForestClassifier()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" checked><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestClassifier</label><div class=\"sk-toggleable__content\"><pre>RandomForestClassifier()</pre></div></div></div></div></div>"
      ],
      "text/plain": [
       "RandomForestClassifier()"
      ]
     },
     "execution_count": 113,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model.fit(X_train, y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 114,
   "metadata": {},
   "outputs": [],
   "source": [
    "#random_search.best_estimator_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 115,
   "metadata": {},
   "outputs": [],
   "source": [
    "#random_search.best_params_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 116,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"classifier=RandomForestClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\\n              colsample_bynode=1, colsample_bytree=0.4, gamma=0.0, gpu_id=-1,\\n              importance_type='gain', interaction_constraints='',\\n              learning_rate=0.25, max_delta_step=0, max_depth=5,\\n              min_child_weight=1, monotone_constraints='()',\\n              n_estimators=100, n_jobs=2, num_parallel_tree=1,\\n              objective='binary:logistic', random_state=0, reg_alpha=0,\\n              reg_lambda=1, scale_pos_weight=1, subsample=1,\\n              tree_method='exact', use_label_encoder=False,\\n              validate_parameters=1, verbosity=None)\\n\""
      ]
     },
     "execution_count": 116,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "'''classifier=RandomForestClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n",
    "              colsample_bynode=1, colsample_bytree=0.4, gamma=0.0, gpu_id=-1,\n",
    "              importance_type='gain', interaction_constraints='',\n",
    "              learning_rate=0.25, max_delta_step=0, max_depth=5,\n",
    "              min_child_weight=1, monotone_constraints='()',\n",
    "              n_estimators=100, n_jobs=2, num_parallel_tree=1,\n",
    "              objective='binary:logistic', random_state=0, reg_alpha=0,\n",
    "              reg_lambda=1, scale_pos_weight=1, subsample=1,\n",
    "              tree_method='exact', use_label_encoder=False,\n",
    "              validate_parameters=1, verbosity=None)\n",
    "'''\n",
    "## we have got this model on the basis of cross valudation & hyper-parameter optimization"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 117,
   "metadata": {},
   "outputs": [],
   "source": [
    "#classifier.fit(X_train,y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 118,
   "metadata": {},
   "outputs": [],
   "source": [
    "y_pred=model.predict(X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 119,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.metrics import confusion_matrix,accuracy_score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 120,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Confusion Matrix:\n",
      "[[129   0]\n",
      " [  0 128]]\n"
     ]
    }
   ],
   "source": [
    "confusion = confusion_matrix(y_test, y_pred)\n",
    "print('Confusion Matrix:')\n",
    "print(confusion)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 121,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x1faaa553e20>"
      ]
     },
     "execution_count": 121,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAGiCAYAAABjzlbWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuVklEQVR4nO3de1xVdb7/8TegbLRxg4awofBumIZgGkRTo40kmMejM51JzVJ5mJ6c7pgpc/I+Jy95ymlicjKvp/I2D9OaHNIoplORlpdJyxxxMK8bb8EWLFT4/v7o55728BUF2aDyej4e6yH7uz/ruz5rPdC3e++19gowxhgBAAAfgfXdAAAAlyMCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAu/BeSJEyc0dOhQOZ1OhYWFaeTIkSopKalynV69eikgIMBneeihh3xq9u3bp379+qlp06aKiIjQuHHjdPbsWX/tBgCggWrkr4mHDh2qw4cPa8OGDTpz5ozS09M1evRovfHGG1WuN2rUKE2bNs37uGnTpt6fy8vL1a9fP7lcLn3yySc6fPiwhg0bpsaNG+vZZ5/1164AABqgAH98WfnOnTvVuXNnffbZZ+rRo4ckKTs7W3fffbcOHDig6Oho63q9evVSQkKC5s6da33+L3/5i/7t3/5Nhw4dUmRkpCRp3rx5Gj9+vI4eParg4ODa3hUAQAPll1eQeXl5CgsL84ajJKWkpCgwMFAbN27UL37xi/Ou+/rrr+u1116Ty+VS//79NXHiRO+ryLy8PMXFxXnDUZJSU1M1ZswYffnll+rWrZt1zrKyMpWVlXkfV1RU6MSJE7r22msVEBBwqbsLAKhjxhidPHlS0dHRCgz0z6eFfglIt9utiIgI3w01aqQWLVrI7Xafd7377rtPrVu3VnR0tL744guNHz9eu3bt0urVq73z/jgcJXkfVzXvjBkzNHXq1JruDgDgMrV//35df/31fpm7WgE5YcIEzZo1q8qanTt31riZ0aNHe3+Oi4tTVFSUevfurT179qh9+/Y1njczM1MZGRnex8XFxWrVqpW+2dJGzp9wIi+uTr+4Ia6+WwD85qzO6COtU7Nmzfy2jWoF5NixYzVixIgqa9q1ayeXy6UjR474jJ89e1YnTpyQy+W66O0lJSVJkvLz89W+fXu5XC5t2rTJp6awsFCSqpzX4XDI4XBUGnf+JFDOZgQkrk6NAhrXdwuA//z/s2f8+TFZtQKyZcuWatmy5QXrkpOTVVRUpM2bN6t79+6SpPfff18VFRXe0LsY27ZtkyRFRUV55/3v//5vHTlyxPsW7oYNG+R0OtW5c+fq7AoAAFXyy8unG2+8UWlpaRo1apQ2bdqkjz/+WI888ogGDx7sPYP14MGD6tSpk/cV4Z49ezR9+nRt3rxZe/fu1VtvvaVhw4bpZz/7mbp27SpJ6tOnjzp37qwHHnhAf/vb3/Tuu+/qmWee0cMPP2x9hQgAQE357f3F119/XZ06dVLv3r1199136/bbb9crr7ziff7MmTPatWuXTp06JUkKDg7We++9pz59+qhTp04aO3as7rnnHr399tvedYKCgvTnP/9ZQUFBSk5O1v33369hw4b5XDcJAEBt8Mt1kJc7j8ej0NBQffv3dnwGiatWanRCfbcA+M1Zc0a5Wqvi4mI5nU6/bIN0AADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMDCbwF54sQJDR06VE6nU2FhYRo5cqRKSkqqrH/00UcVGxurJk2aqFWrVnrsscdUXFzsUxcQEFBpWb58ub92AwDQQDXy18RDhw7V4cOHtWHDBp05c0bp6ekaPXq03njjDWv9oUOHdOjQIc2ZM0edO3fWN998o4ceekiHDh3Sn/70J5/aRYsWKS0tzfs4LCzMX7sBAGigAowxprYn3blzpzp37qzPPvtMPXr0kCRlZ2fr7rvv1oEDBxQdHX1R86xatUr333+/SktL1ajRD1keEBCgN998UwMHDqxxfx6PR6Ghofr27+3kbMa7zLg6pUYn1HcLgN+cNWeUq7UqLi6W0+n0yzb8kg55eXkKCwvzhqMkpaSkKDAwUBs3brzoec7t+LlwPOfhhx9WeHi4EhMTtXDhQl0o48vKyuTxeHwWAACq4pe3WN1utyIiInw31KiRWrRoIbfbfVFzHDt2TNOnT9fo0aN9xqdNm6af//znatq0qdavX69f//rXKikp0WOPPXbeuWbMmKGpU6dWf0cAAA1WtV5BTpgwwXqSzI+Xr7/++pKb8ng86tevnzp37qwpU6b4PDdx4kT99Kc/Vbdu3TR+/Hg9/fTTeu6556qcLzMzU8XFxd5l//79l9wjAODqVq1XkGPHjtWIESOqrGnXrp1cLpeOHDniM3727FmdOHFCLperyvVPnjyptLQ0NWvWTG+++aYaN25cZX1SUpKmT5+usrIyORwOa43D4TjvcwAA2FQrIFu2bKmWLVtesC45OVlFRUXavHmzunfvLkl6//33VVFRoaSkpPOu5/F4lJqaKofDobfeekshISEX3Na2bdvUvHlzAhAAUKv88hnkjTfeqLS0NI0aNUrz5s3TmTNn9Mgjj2jw4MHeM1gPHjyo3r17a+nSpUpMTJTH41GfPn106tQpvfbaaz4n07Rs2VJBQUF6++23VVhYqFtvvVUhISHasGGDnn32WT311FP+2A0AQAPmt+sgX3/9dT3yyCPq3bu3AgMDdc899+jFF1/0Pn/mzBnt2rVLp06dkiRt2bLFe4Zrhw4dfOYqKChQmzZt1LhxY2VlZenJJ5+UMUYdOnTQ888/r1GjRvlrNwAADZRfroO83HEdJBoCroPE1eyKvQ4SAIArHQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIBFnQRkVlaW2rRpo5CQECUlJWnTpk1V1q9atUqdOnVSSEiI4uLitG7dOp/njTGaNGmSoqKi1KRJE6WkpGj37t3+3AUAQAPj94BcsWKFMjIyNHnyZG3ZskXx8fFKTU3VkSNHrPWffPKJhgwZopEjR2rr1q0aOHCgBg4cqB07dnhrZs+erRdffFHz5s3Txo0bdc011yg1NVXff/+9v3cHANBABBhjjD83kJSUpFtuuUUvvfSSJKmiokIxMTF69NFHNWHChEr1gwYNUmlpqf785z97x2699VYlJCRo3rx5MsYoOjpaY8eO1VNPPSVJKi4uVmRkpBYvXqzBgwdfsCePx6PQ0FB9+/d2cjbjXWZcnVKjE+q7BcBvzpozytVaFRcXy+l0+mUbfk2H06dPa/PmzUpJSfnnBgMDlZKSory8POs6eXl5PvWSlJqa6q0vKCiQ2+32qQkNDVVSUtJ55ywrK5PH4/FZAACoil8D8tixYyovL1dkZKTPeGRkpNxut3Udt9tdZf25P6sz54wZMxQaGupdYmJiarQ/AICGo0G8v5iZmani4mLvsn///vpuCQBwmfNrQIaHhysoKEiFhYU+44WFhXK5XNZ1XC5XlfXn/qzOnA6HQ06n02cBAKAqfg3I4OBgde/eXTk5Od6xiooK5eTkKDk52bpOcnKyT70kbdiwwVvftm1buVwunxqPx6ONGzeed04AAKqrkb83kJGRoeHDh6tHjx5KTEzU3LlzVVpaqvT0dEnSsGHDdN1112nGjBmSpMcff1w9e/bU//zP/6hfv35avny5Pv/8c73yyiuSpICAAD3xxBP67W9/q44dO6pt27aaOHGioqOjNXDgQH/vDgCggfB7QA4aNEhHjx7VpEmT5Ha7lZCQoOzsbO9JNvv27VNg4D9fyN52221644039Mwzz+g3v/mNOnbsqDVr1uimm27y1jz99NMqLS3V6NGjVVRUpNtvv13Z2dkKCQnx9+4AABoIv18HeTniOkg0BFwHiavZFX8dJAAAVyoCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAACLOgnIrKwstWnTRiEhIUpKStKmTZvOWzt//nzdcccdat68uZo3b66UlJRK9SNGjFBAQIDPkpaW5u/dAAA0IH4PyBUrVigjI0OTJ0/Wli1bFB8fr9TUVB05csRan5ubqyFDhuiDDz5QXl6eYmJi1KdPHx08eNCnLi0tTYcPH/Yuy5Yt8/euAAAakABjjPHnBpKSknTLLbfopZdekiRVVFQoJiZGjz76qCZMmHDB9cvLy9W8eXO99NJLGjZsmKQfXkEWFRVpzZo1F9VDWVmZysrKvI89Ho9iYmL07d/bydmMd5lxdUqNTqjvFgC/OWvOKFdrVVxcLKfT6Zdt+DUdTp8+rc2bNyslJeWfGwwMVEpKivLy8i5qjlOnTunMmTNq0aKFz3hubq4iIiIUGxurMWPG6Pjx4+edY8aMGQoNDfUuMTExNdshAECD4deAPHbsmMrLyxUZGekzHhkZKbfbfVFzjB8/XtHR0T4hm5aWpqVLlyonJ0ezZs3SX//6V/Xt21fl5eXWOTIzM1VcXOxd9u/fX/OdAgA0CI3qu4GqzJw5U8uXL1dubq5CQkK844MHD/b+HBcXp65du6p9+/bKzc1V7969K83jcDjkcDjqpGcAwNXBr68gw8PDFRQUpMLCQp/xwsJCuVyuKtedM2eOZs6cqfXr16tr165V1rZr107h4eHKz8+/5J4BAJD8HJDBwcHq3r27cnJyvGMVFRXKyclRcnLyedebPXu2pk+fruzsbPXo0eOC2zlw4ICOHz+uqKioWukbAAC/n8KZkZGh+fPna8mSJdq5c6fGjBmj0tJSpaenS5KGDRumzMxMb/2sWbM0ceJELVy4UG3atJHb7Zbb7VZJSYkkqaSkROPGjdOnn36qvXv3KicnRwMGDFCHDh2Umprq790BADQQfv8MctCgQTp69KgmTZokt9uthIQEZWdne0/c2bdvnwID/5nTL7/8sk6fPq3/+I//8Jln8uTJmjJlioKCgvTFF19oyZIlKioqUnR0tPr06aPp06fzOSMAoNb4/TrIy5HH41FoaCjXQeKqxnWQuJpd8ddBAgBwpSIgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwICABALAgIAEAsCAgAQCwqJOAzMrKUps2bRQSEqKkpCRt2rTpvLWLFy9WQECAzxISEuJTY4zRpEmTFBUVpSZNmiglJUW7d+/2924AABoQvwfkihUrlJGRocmTJ2vLli2Kj49Xamqqjhw5ct51nE6nDh8+7F2++eYbn+dnz56tF198UfPmzdPGjRt1zTXXKDU1Vd9//72/dwcA0ED4PSCff/55jRo1Sunp6ercubPmzZunpk2bauHCheddJyAgQC6Xy7tERkZ6nzPGaO7cuXrmmWc0YMAAde3aVUuXLtWhQ4e0Zs0a63xlZWXyeDw+CwAAVWnkz8lPnz6tzZs3KzMz0zsWGBiolJQU5eXlnXe9kpIStW7dWhUVFbr55pv17LPPqkuXLpKkgoICud1upaSkeOtDQ0OVlJSkvLw8DR48uNJ8M2bM0NSpUyuN/+KGODUKaHwpuwhcttYd3FLfLQB+4zlZofBY/27Dr68gjx07pvLycp9XgJIUGRkpt9ttXSc2NlYLFy7U2rVr9dprr6miokK33XabDhw4IEne9aozZ2ZmpoqLi73L/v37L3XXAABXOb++gqyJ5ORkJScnex/fdtttuvHGG/XHP/5R06dPr9GcDodDDoejtloEADQAfn0FGR4erqCgIBUWFvqMFxYWyuVyXdQcjRs3Vrdu3ZSfny9J3vUuZU4AAC7ErwEZHBys7t27KycnxztWUVGhnJwcn1eJVSkvL9f27dsVFRUlSWrbtq1cLpfPnB6PRxs3brzoOQEAuBC/v8WakZGh4cOHq0ePHkpMTNTcuXNVWlqq9PR0SdKwYcN03XXXacaMGZKkadOm6dZbb1WHDh1UVFSk5557Tt98840efPBBST+c4frEE0/ot7/9rTp27Ki2bdtq4sSJio6O1sCBA/29OwCABsLvATlo0CAdPXpUkyZNktvtVkJCgrKzs70n2ezbt0+Bgf98Ifvtt99q1KhRcrvdat68ubp3765PPvlEnTt39tY8/fTTKi0t1ejRo1VUVKTbb79d2dnZlb5QAACAmgowxpj6bqKueTwehYaGqpcGcJkHrlpc5oGr2Q+XeexVcXGxnE6nX7bBd7ECAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYEFAAgBgQUACAGBBQAIAYFEnAZmVlaU2bdooJCRESUlJ2rRp03lre/XqpYCAgEpLv379vDUjRoyo9HxaWlpd7AoAoIFo5O8NrFixQhkZGZo3b56SkpI0d+5cpaamateuXYqIiKhUv3r1ap0+fdr7+Pjx44qPj9evfvUrn7q0tDQtWrTI+9jhcPhvJwAADY7fX0E+//zzGjVqlNLT09W5c2fNmzdPTZs21cKFC631LVq0kMvl8i4bNmxQ06ZNKwWkw+HwqWvevLm/dwUA0ID4NSBPnz6tzZs3KyUl5Z8bDAxUSkqK8vLyLmqOBQsWaPDgwbrmmmt8xnNzcxUREaHY2FiNGTNGx48fP+8cZWVl8ng8PgsAAFXxa0AeO3ZM5eXlioyM9BmPjIyU2+2+4PqbNm3Sjh079OCDD/qMp6WlaenSpcrJydGsWbP017/+VX379lV5ebl1nhkzZig0NNS7xMTE1HynAAANgt8/g7wUCxYsUFxcnBITE33GBw8e7P05Li5OXbt2Vfv27ZWbm6vevXtXmiczM1MZGRnexx6Ph5AEAFTJr68gw8PDFRQUpMLCQp/xwsJCuVyuKtctLS3V8uXLNXLkyAtup127dgoPD1d+fr71eYfDIafT6bMAAFAVvwZkcHCwunfvrpycHO9YRUWFcnJylJycXOW6q1atUllZme6///4LbufAgQM6fvy4oqKiLrlnAACkOjiLNSMjQ/Pnz9eSJUu0c+dOjRkzRqWlpUpPT5ckDRs2TJmZmZXWW7BggQYOHKhrr73WZ7ykpETjxo3Tp59+qr179yonJ0cDBgxQhw4dlJqa6u/dAQA0EH7/DHLQoEE6evSoJk2aJLfbrYSEBGVnZ3tP3Nm3b58CA31zeteuXfroo4+0fv36SvMFBQXpiy++0JIlS1RUVKTo6Gj16dNH06dP51pIAECtCTDGmPpuoq55PB6FhoaqlwaoUUDj+m4H8It1B7fUdwuA33hOVig8dq+Ki4v9dl4J38UKAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgAUBCQCABQEJAIAFAQkAgIVfA/LDDz9U//79FR0drYCAAK1Zs+aC6+Tm5urmm2+Ww+FQhw4dtHjx4ko1WVlZatOmjUJCQpSUlKRNmzbVfvMAgAbNrwFZWlqq+Ph4ZWVlXVR9QUGB+vXrpzvvvFPbtm3TE088oQcffFDvvvuut2bFihXKyMjQ5MmTtWXLFsXHxys1NVVHjhzx124AABqgAGOMqZMNBQTozTff1MCBA89bM378eL3zzjvasWOHd2zw4MEqKipSdna2JCkpKUm33HKLXnrpJUlSRUWFYmJi9Oijj2rChAkX1YvH41FoaKh6aYAaBTSu+U4Bl7F1B7fUdwuA33hOVig8dq+Ki4vldDr9so3L6jPIvLw8paSk+IylpqYqLy9PknT69Glt3rzZpyYwMFApKSneGpuysjJ5PB6fBQCAqlxWAel2uxUZGekzFhkZKY/Ho++++07Hjh1TeXm5tcbtdp933hkzZig0NNS7xMTE+KV/AMDV47IKSH/JzMxUcXGxd9m/f399twQAuMw1qu8GfszlcqmwsNBnrLCwUE6nU02aNFFQUJCCgoKsNS6X67zzOhwOORwOv/QMALg6XVavIJOTk5WTk+MztmHDBiUnJ0uSgoOD1b17d5+aiooK5eTkeGsAAKgNfg3IkpISbdu2Tdu2bZP0w2Uc27Zt0759+yT98NbnsGHDvPUPPfSQ/vGPf+jpp5/W119/rT/84Q9auXKlnnzySW9NRkaG5s+fryVLlmjnzp0aM2aMSktLlZ6e7s9dAQA0MH59i/Xzzz/XnXfe6X2ckZEhSRo+fLgWL16sw4cPe8NSktq2bat33nlHTz75pH73u9/p+uuv16uvvqrU1FRvzaBBg3T06FFNmjRJbrdbCQkJys7OrnTiDgAAl6LOroO8nHAdJBoCroPE1azBXQcJAMDlgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMCCgAQAwIKABADAgoAEAMDCrwH54Ycfqn///oqOjlZAQIDWrFlTZf3q1at11113qWXLlnI6nUpOTta7777rUzNlyhQFBAT4LJ06dfLjXgAAGiK/BmRpaani4+OVlZV1UfUffvih7rrrLq1bt06bN2/WnXfeqf79+2vr1q0+dV26dNHhw4e9y0cffeSP9gEADVgjf07et29f9e3b96Lr586d6/P42Wef1dq1a/X222+rW7du3vFGjRrJ5XLVVpsAAFRyWX8GWVFRoZMnT6pFixY+47t371Z0dLTatWunoUOHat++fVXOU1ZWJo/H47MAAFCVyzog58yZo5KSEt17773esaSkJC1evFjZ2dl6+eWXVVBQoDvuuEMnT5487zwzZsxQaGiod4mJiamL9gEAV7DLNiDfeOMNTZ06VStXrlRERIR3vG/fvvrVr36lrl27KjU1VevWrVNRUZFWrlx53rkyMzNVXFzsXfbv318XuwAAuIL59TPImlq+fLkefPBBrVq1SikpKVXWhoWF6YYbblB+fv55axwOhxwOR223CQC4il12ryCXLVum9PR0LVu2TP369btgfUlJifbs2aOoqKg66A4A0FD49RVkSUmJzyu7goICbdu2TS1atFCrVq2UmZmpgwcPaunSpZJ+eFt1+PDh+t3vfqekpCS53W5JUpMmTRQaGipJeuqpp9S/f3+1bt1ahw4d0uTJkxUUFKQhQ4b4c1cAAA2MX19Bfv755+rWrZv3Eo2MjAx169ZNkyZNkiQdPnzY5wzUV155RWfPntXDDz+sqKgo7/L44497aw4cOKAhQ4YoNjZW9957r6699lp9+umnatmypT93BQDQwAQYY0x9N1HXPB6PQkND1UsD1CigcX23A/jFuoNb6rsFwG88JysUHrtXxcXFcjqdftnGZfcZJAAAlwMCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALAhIAAAsCEgAACwISAAALvwbkhx9+qP79+ys6OloBAQFas2ZNlfW5ubkKCAiotLjdbp+6rKwstWnTRiEhIUpKStKmTZv8uBcAgIbIrwFZWlqq+Ph4ZWVlVWu9Xbt26fDhw94lIiLC+9yKFSuUkZGhyZMna8uWLYqPj1dqaqqOHDlS2+0DABqwRv6cvG/fvurbt2+114uIiFBYWJj1ueeff16jRo1Senq6JGnevHl65513tHDhQk2YMMG6TllZmcrKyryPi4uLJUlndUYy1W4PuCJ4TlbUdwuA35ws+eH32xj//SPu14CsqYSEBJWVlemmm27SlClT9NOf/lSSdPr0aW3evFmZmZne2sDAQKWkpCgvL++8882YMUNTp06tNP6R1tV+88BlIjy2vjsA/O/48eMKDQ31y9yXVUBGRUVp3rx56tGjh8rKyvTqq6+qV69e2rhxo26++WYdO3ZM5eXlioyM9FkvMjJSX3/99XnnzczMVEZGhvdxUVGRWrdurX379vntwPqDx+NRTEyM9u/fL6fTWd/tXLQrtW/pyu2dvusWfde94uJitWrVSi1atPDbNi6rgIyNjVVs7D//23vbbbdpz549euGFF/S///u/NZ7X4XDI4XBUGg8NDb3ifikkyel00ncdu1J7p++6Rd91LzDQf6fSXPaXeSQmJio/P1+SFB4erqCgIBUWFvrUFBYWyuVy1Ud7AICr1GUfkNu2bVNUVJQkKTg4WN27d1dOTo73+YqKCuXk5Cg5Obm+WgQAXIX8+hZrSUmJ99WfJBUUFGjbtm1q0aKFWrVqpczMTB08eFBLly6VJM2dO1dt27ZVly5d9P333+vVV1/V+++/r/Xr13vnyMjI0PDhw9WjRw8lJiZq7ty5Ki0t9Z7VejEcDocmT55sfdv1ckbfde9K7Z2+6xZ917266D3A+PEc2dzcXN15552VxocPH67FixdrxIgR2rt3r3JzcyVJs2fP1iuvvKKDBw+qadOm6tq1qyZNmlRpjpdeeknPPfec3G63EhIS9OKLLyopKclfuwEAaID8GpAAAFypLvvPIAEAqA8EJAAAFgQkAAAWBCQAABZXZUCeOHFCQ4cOldPpVFhYmEaOHKmSkpIq1+nVq1el22w99NBDPjX79u1Tv3791LRpU0VERGjcuHE6e/ZsvfZ+4sQJPfroo4qNjVWTJk3UqlUrPfbYY94vZD/Hdhux5cuX17jP6t5ybNWqVerUqZNCQkIUFxendet8vwfXGKNJkyYpKipKTZo0UUpKinbv3l3j/mqj7/nz5+uOO+5Q8+bN1bx5c6WkpFSqHzFiRKXjmpaWVq99L168uFJPISEhPjV1dbyr27vt72FAQID69evnrfH3Ma/ubfqkH87Yv/nmm+VwONShQwctXry4Uk1d3Kavur2vXr1ad911l1q2bCmn06nk5GS9++67PjVTpkypdLw7depUr33X2a0RzVUoLS3NxMfHm08//dT83//9n+nQoYMZMmRIlev07NnTjBo1yhw+fNi7FBcXe58/e/asuemmm0xKSorZunWrWbdunQkPDzeZmZn12vv27dvNL3/5S/PWW2+Z/Px8k5OTYzp27GjuuecenzpJZtGiRT77991339Wox+XLl5vg4GCzcOFC8+WXX5pRo0aZsLAwU1hYaK3/+OOPTVBQkJk9e7b56quvzDPPPGMaN25stm/f7q2ZOXOmCQ0NNWvWrDF/+9vfzL//+7+btm3b1rjH2uj7vvvuM1lZWWbr1q1m586dZsSIESY0NNQcOHDAWzN8+HCTlpbmc1xPnDhRaz3XpO9FixYZp9Pp05Pb7fapqYvjXZPejx8/7tP3jh07TFBQkFm0aJG3xt/HfN26dea//uu/zOrVq40k8+abb1ZZ/49//MM0bdrUZGRkmK+++sr8/ve/N0FBQSY7O9tbU93jUFe9P/7442bWrFlm06ZN5u9//7vJzMw0jRs3Nlu2bPHWTJ482XTp0sXneB89erRe+/7ggw+MJLNr1y6fvsrLy701tXHMr7qA/Oqrr4wk89lnn3nH/vKXv5iAgABz8ODB867Xs2dP8/jjj5/3+XXr1pnAwECff2hefvll43Q6TVlZWb32/q9WrlxpgoODzZkzZ7xjF/NLd7ESExPNww8/7H1cXl5uoqOjzYwZM6z19957r+nXr5/PWFJSkvnP//xPY4wxFRUVxuVymeeee877fFFRkXE4HGbZsmW10nNN+v5XZ8+eNc2aNTNLlizxjg0fPtwMGDCg1nq0qW7fixYtMqGhoeedr66OtzGXfsxfeOEF06xZM1NSUuIdq4tjfs7F/L15+umnTZcuXXzGBg0aZFJTU72PL/U41ERN/8537tzZTJ061ft48uTJJj4+vvYau4DqBOS333573praOOZX3VuseXl5CgsLU48ePbxjKSkpCgwM1MaNG6tc9/XXX1d4eLhuuukmZWZm6tSpUz7zxsXF+dxJJDU1VR6PR19++WW99/5jxcXFcjqdatTI94uSHn74YYWHhysxMVELFy6s0X3Uzt1yLCUlxTt2oVuO5eXl+dRLPxy7c/UFBQVyu90+NaGhoUpKSqryNmb+7vtfnTp1SmfOnKl094Dc3FxFREQoNjZWY8aM0fHjx2ul50vpu6SkRK1bt1ZMTIwGDBjg8ztaF8f7Unr/sQULFmjw4MG65pprfMb9ecyr60K/37VxHOpKRUWFTp48Wel3fPfu3YqOjla7du00dOhQ7du3r5469JWQkKCoqCjddddd+vjjj73jtXXML6u7edQGt9utiIgIn7FGjRqpRYsWld6f/rH77rtPrVu3VnR0tL744guNHz9eu3bt0urVq73z2m6zde65+uz9x44dO6bp06dr9OjRPuPTpk3Tz3/+czVt2lTr16/Xr3/9a5WUlOixxx6rVo81ueXY+Y7duX0692dVNZeqprdK+7Hx48crOjra5y9dWlqafvnLX6pt27bas2ePfvOb36hv377Ky8tTUFBQvfQdGxurhQsXqmvXriouLtacOXN022236csvv9T1119fJ8e7pr3/2KZNm7Rjxw4tWLDAZ9zfx7y6zvf77fF49N133+nbb7+95N+9ujJnzhyVlJTo3nvv9Y4lJSVp8eLFio2N1eHDhzV16lTdcccd2rFjh5o1a1Yvffrr1oj/6ooJyAkTJmjWrFlV1uzcubPG8/84UOLi4hQVFaXevXtrz549at++fY3nlfzf+zkej0f9+vVT586dNWXKFJ/nJk6c6P25W7duKi0t1XPPPVftgGyoZs6cqeXLlys3N9fnhJfBgwd7f46Li1PXrl3Vvn175ebmqnfv3vXRqpKTk32+vP+2227TjTfeqD/+8Y+aPn16vfRUEwsWLFBcXJwSExN9xi/HY341eOONNzR16lStXbvW5z/qffv29f7ctWtXJSUlqXXr1lq5cqVGjhxZH6367daI/+qKCcixY8dqxIgRVda0a9dOLpdLR44c8Rk/e/asTpw4Ua1bYp37btf8/Hy1b99eLper0hlQ5267daF566L3kydPKi0tTc2aNdObb76pxo0bV1mflJSk6dOnq6ysrFpf9luTW465XK4q68/9WVhY6L1zy7nHCQkJF91bbfd9zpw5czRz5ky999576tq1a5W17dq1U3h4uPLz82vlH+vauMVb48aN1a1bN++NA+rieEuX1ntpaamWL1+uadOmXXA7tX3Mq+t8v99Op1NNmjRRUFDQZX+bvuXLl+vBBx/UqlWrKr1d/K/CwsJ0ww03+NyI4nKQmJiojz76SFLt3RrxivkMsmXLlurUqVOVS3BwsJKTk1VUVKTNmzd7133//fdVUVFRrS8037ZtmyR5/wFJTk7W9u3bfQJsw4YNcjqd6ty5c7327vF41KdPHwUHB+utt96qdEr/+favefPm1f4m/Jrcciw5OdmnXvrh2J2rb9u2rVwul0+Nx+PRxo0ba+02ZjW9Vdrs2bM1ffp0ZWdn+3w2fD4HDhzQ8ePHfYKnPvr+sfLycm3fvt3bU10c70vtfdWqVSorK9P9999/we3U9jGvrgv9fl/ut+lbtmyZ0tPTtWzZMp/Lac6npKREe/bsqbfjfT5+uTXiRZ/OcwVJS0sz3bp1Mxs3bjQfffSR6dixo8+lEgcOHDCxsbFm48aNxhhj8vPzzbRp08znn39uCgoKzNq1a027du3Mz372M+865y7z6NOnj9m2bZvJzs42LVu29MtlHtXpvbi42CQlJZm4uDiTn5/vc8rz2bNnjTHGvPXWW2b+/Plm+/btZvfu3eYPf/iDadq0qZk0aVKNely+fLlxOBxm8eLF5quvvjKjR482YWFh3jN8H3jgATNhwgRv/ccff2waNWpk5syZY3bu3GkmT55svcwjLCzMrF271nzxxRdmwIABfrnMozp9z5w50wQHB5s//elPPsf15MmTxhhjTp48aZ566imTl5dnCgoKzHvvvWduvvlm07FjR/P999/XW99Tp0417777rtmzZ4/ZvHmzGTx4sAkJCTFffvmlz775+3jXpPdzbr/9djNo0KBK43VxzE+ePGm2bt1qtm7daiSZ559/3mzdutV88803xhhjJkyYYB544AFv/bnLPMaNG2d27txpsrKyrJd5VHUcakt1e3/99ddNo0aNTFZWls/veFFRkbdm7NixJjc31xQUFJiPP/7YpKSkmPDwcHPkyJF66/uFF14wa9asMbt37zbbt283jz/+uAkMDDTvvfeet6Y2jvlVGZDHjx83Q4YMMT/5yU+M0+k06enp3n/UjDGmoKDASDIffPCBMcaYffv2mZ/97GemRYsWxuFwmA4dOphx48b5XAdpjDF79+41ffv2NU2aNDHh4eFm7NixPpdS1Efv5053ti0FBQXGmB8uFUlISDA/+clPzDXXXGPi4+PNvHnzfK4Zqq7f//73plWrViY4ONgkJiaaTz/91Ptcz549zfDhw33qV65caW644QYTHBxsunTpYt555x2f5ysqKszEiRNNZGSkcTgcpnfv3mbXrl017q82+m7durX1uE6ePNkYY8ypU6dMnz59TMuWLU3jxo1N69atzahRo2r9H73q9v3EE094ayMjI83dd9/tc12bMXV3vKvbuzHGfP3110aSWb9+faW56uKYn+/v1Lk+hw8fbnr27FlpnYSEBBMcHGzatWvnc93mOVUdh/rqvWfPnlXWG/PDJStRUVEmODjYXHfddWbQoEEmPz+/XvueNWuWad++vQkJCTEtWrQwvXr1Mu+//36leS/1mHO7KwAALK6YzyABAKhLBCQAABYEJAAAFgQkAAAWBCQAABYEJAAAFgQkAAAWBCQAABYEJAAAFgQkAAAWBCQAABb/DwjRyA0wVJPOAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "### to make confusion matrix user-friendly\n",
    "plt.imshow(confusion)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 122,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1.0"
      ]
     },
     "execution_count": 122,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "accuracy_score(y_test, y_pred)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 123,
   "metadata": {},
   "outputs": [],
   "source": [
    "from joblib import dump"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 124,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['./../savedModels/model2.joblib']"
      ]
     },
     "execution_count": 124,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dump(model,'./../savedModels/model2.joblib')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}