--- a +++ b/influx.py @@ -0,0 +1,43 @@ +import numpy as np +import pandas as pd +import tensorflow as tf +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import LSTM, Dense, Dropout +from sklearn.model_selection import train_test_split +from sklearn.preprocessing import StandardScaler + +# Load dataset +file_path = "/mnt/data/PPG_Dataset.csv" +df = pd.read_csv(file_path) + +# Select only PPG-related fields (HR, SpO2) as features +X = df[['Heart_Rate', 'SpO2']].values # Only HR & SpO2 +y = df['Label'].values # Binary classification (0 = Normal, 1 = Abnormal) + +# Normalize features +scaler = StandardScaler() +X = scaler.fit_transform(X) + +# Reshape X to fit LSTM input shape (samples, timesteps=1, features) +X = X.reshape(X.shape[0], 1, X.shape[1]) # (samples, 1 time step, 2 features) + +# Split data into training and testing sets (80% train, 20% test) +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# Define the LSTM model +model = Sequential([ + LSTM(64, input_shape=(1, X.shape[2])), # Single timestep + Dropout(0.2), + Dense(32, activation='relu'), + Dense(1, activation='sigmoid') # Binary classification +]) + +# Compile the model +model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) + +# Train the model +model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test)) + +# Save the trained model +model.save("heart_monitor_lstm_no_timesteps.h5") +print("✅ Model training complete without time steps!")