a b/influx.py
1
import numpy as np
2
import pandas as pd
3
import tensorflow as tf
4
from tensorflow.keras.models import Sequential
5
from tensorflow.keras.layers import LSTM, Dense, Dropout
6
from sklearn.model_selection import train_test_split
7
from sklearn.preprocessing import StandardScaler
8
9
# Load dataset
10
file_path = "/mnt/data/PPG_Dataset.csv"
11
df = pd.read_csv(file_path)
12
13
# Select only PPG-related fields (HR, SpO2) as features
14
X = df[['Heart_Rate', 'SpO2']].values  # Only HR & SpO2
15
y = df['Label'].values  # Binary classification (0 = Normal, 1 = Abnormal)
16
17
# Normalize features
18
scaler = StandardScaler()
19
X = scaler.fit_transform(X)
20
21
# Reshape X to fit LSTM input shape (samples, timesteps=1, features)
22
X = X.reshape(X.shape[0], 1, X.shape[1])  # (samples, 1 time step, 2 features)
23
24
# Split data into training and testing sets (80% train, 20% test)
25
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
26
27
# Define the LSTM model
28
model = Sequential([
29
    LSTM(64, input_shape=(1, X.shape[2])),  # Single timestep
30
    Dropout(0.2),
31
    Dense(32, activation='relu'),
32
    Dense(1, activation='sigmoid')  # Binary classification
33
])
34
35
# Compile the model
36
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
37
38
# Train the model
39
model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test))
40
41
# Save the trained model
42
model.save("heart_monitor_lstm_no_timesteps.h5")
43
print("✅ Model training complete without time steps!")