[1f058f]: / tf_pose / eval.py

Download this file

167 lines (134 with data), 6.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import sys
import os
import time
from collections import OrderedDict
import numpy as np
import logging
import argparse
import json, re
from tqdm import tqdm
from tf_pose.common import read_imgfile
from tf_pose.estimator import TfPoseEstimator
from tf_pose.networks import model_wh, get_graph_path
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s')
logger = logging.getLogger('TfPoseEstimator-Video')
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
eval_size = -1
def round_int(val):
return int(round(val))
def write_coco_json(human, image_w, image_h):
keypoints = []
coco_ids = [0, 15, 14, 17, 16, 5, 2, 6, 3, 7, 4, 11, 8, 12, 9, 13, 10]
for coco_id in coco_ids:
if coco_id not in human.body_parts.keys():
keypoints.extend([0, 0, 0])
continue
body_part = human.body_parts[coco_id]
keypoints.extend([round_int(body_part.x * image_w), round_int(body_part.y * image_h), 2])
return keypoints
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Tensorflow Openpose Inference')
parser.add_argument('--resize', type=str, default='0x0', help='if provided, resize images before they are processed. default=0x0, Recommends : 432x368 or 656x368 or 1312x736 ')
parser.add_argument('--resize-out-ratio', type=float, default=8.0, help='if provided, resize heatmaps before they are post-processed. default=8.0')
parser.add_argument('--model', type=str, default='cmu', help='cmu / mobilenet_thin / mobilenet_v2_large')
parser.add_argument('--cocoyear', type=str, default='2014')
parser.add_argument('--coco-dir', type=str, default='/data/public/rw/coco/')
parser.add_argument('--data-idx', type=int, default=-1)
parser.add_argument('--multi-scale', type=bool, default=False)
args = parser.parse_args()
cocoyear_list = ['2014', '2017']
if args.cocoyear not in cocoyear_list:
logger.error('cocoyear should be one of %s' % str(cocoyear_list))
sys.exit(-1)
# TODO : Scales
image_dir = args.coco_dir + 'val%s/' % args.cocoyear
coco_json_file = args.coco_dir + 'annotations/person_keypoints_val%s.json' % args.cocoyear
cocoGt = COCO(coco_json_file)
catIds = cocoGt.getCatIds(catNms=['person'])
keys = cocoGt.getImgIds(catIds=catIds)
if args.data_idx < 0:
if eval_size > 0:
keys = keys[:eval_size] # only use the first #eval_size elements.
pass
else:
keys = [keys[args.data_idx]]
logger.info('validation %s set size=%d' % (coco_json_file, len(keys)))
write_json = '../etcs/%s_%s_%0.1f.json' % (args.model, args.resize, args.resize_out_ratio)
logger.debug('initialization %s : %s' % (args.model, get_graph_path(args.model)))
w, h = model_wh(args.resize)
if w == 0 or h == 0:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(432, 368))
else:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h))
print('FLOPs: ', e.get_flops())
result = []
tqdm_keys = tqdm(keys)
for i, k in enumerate(tqdm_keys):
img_meta = cocoGt.loadImgs(k)[0]
img_idx = img_meta['id']
img_name = os.path.join(image_dir, img_meta['file_name'])
image = read_imgfile(img_name, None, None)
if image is None:
logger.error('image not found, path=%s' % img_name)
sys.exit(-1)
# inference the image with the specified network
t = time.time()
humans = e.inference(image, resize_to_default=(w > 0 and h > 0), upsample_size=args.resize_out_ratio)
elapsed = time.time() - t
scores = 0
ann_idx = cocoGt.getAnnIds(imgIds=[img_idx], catIds=[1])
anns = cocoGt.loadAnns(ann_idx)
for human in humans:
item = {
'image_id': img_idx,
'category_id': 1,
'keypoints': write_coco_json(human, img_meta['width'], img_meta['height']),
'score': human.score
}
result.append(item)
scores += item['score']
avg_score = scores / len(humans) if len(humans) > 0 else 0
tqdm_keys.set_postfix(OrderedDict({'inference time': elapsed, 'score': avg_score}))
if args.data_idx >= 0:
logger.info('score:', k, len(humans), len(anns), avg_score)
import matplotlib.pyplot as plt
fig = plt.figure()
a = fig.add_subplot(2, 3, 1)
plt.imshow(e.draw_humans(image, humans, True))
a = fig.add_subplot(2, 3, 2)
# plt.imshow(cv2.resize(image, (e.heatMat.shape[1], e.heatMat.shape[0])), alpha=0.5)
tmp = np.amax(e.heatMat[:, :, :-1], axis=2)
plt.imshow(tmp, cmap=plt.cm.gray, alpha=0.5)
plt.colorbar()
tmp2 = e.pafMat.transpose((2, 0, 1))
tmp2_odd = np.amax(np.absolute(tmp2[::2, :, :]), axis=0)
tmp2_even = np.amax(np.absolute(tmp2[1::2, :, :]), axis=0)
a = fig.add_subplot(2, 3, 4)
a.set_title('Vectormap-x')
# plt.imshow(CocoPose.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5)
plt.imshow(tmp2_odd, cmap=plt.cm.gray, alpha=0.5)
plt.colorbar()
a = fig.add_subplot(2, 3, 5)
a.set_title('Vectormap-y')
# plt.imshow(CocoPose.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5)
plt.imshow(tmp2_even, cmap=plt.cm.gray, alpha=0.5)
plt.colorbar()
plt.show()
fp = open(write_json, 'w')
json.dump(result, fp)
fp.close()
cocoDt = cocoGt.loadRes(write_json)
cocoEval = COCOeval(cocoGt, cocoDt, 'keypoints')
cocoEval.params.imgIds = keys
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
print(''.join(["%11.4f |" % x for x in cocoEval.stats]))
pred = json.load(open(write_json, 'r'))