--- a +++ b/README.md @@ -0,0 +1,53 @@ +## Pneumonia Detection from Chest X-Ray Images + +<pre> +Domain : Computer Vision, Machine Learning +Sub-Domain : Deep Learning, Image Recognition +Techniques : Deep Convolutional Neural Network, ImageNet, Inception +Application : Image Recognition, Image Classification, Medical Imaging +</pre> + +### Description +<pre> +1. Detected Pneumonia from Chest X-Ray images using Custom Deep Convololutional Neural Network and by retraining pretrained model “InceptionV3” with 5856 images of X-ray (1.15GB). +2. For retraining removed output layers, freezed first few layers and fine-tuned model for two new label classes (Pneumonia and Normal). +3. With Custom Deep Convololutional Neural Network attained testing accuracy 89.53% and loss 0.41. +</pre> + + + +<b>Model Parameters</b> +Machine Learning Library: Keras +Base Model : InceptionV3 && Custom Deep Convolutional Neural Network +Optimizers : Adam +Loss Function : categorical_crossentropy + +<b>For Custom Deep Convolutional Neural Network : </b> +<b>Training Parameters</b> +Batch Size : 64 +Number of Epochs : 30 +Training Time : 2 Hours + +<b>Output (Prediction/ Recognition / Classification Metrics)</b> +<b>Testing</b> +Accuracy (F-1) Score : 89.53% +Loss : 0.41 +Precision : 88.37% +Recall (Pneumonia) : 95.48% (For positive class) +<!--Specificity : --> +</pre> + + +<kbd> +<a href="[https://i.imgur.com/km4MF3J.png](https://imgur.com/km4MF3J)"></a> +</kbd> + + + +#### Tools / Libraries +<pre> +Languages : Python +Tools/IDE : Google Colab +Libraries : Keras, TensorFlow, Inception, ImageNet +</pre> +