import argparse
import inspect
import os
import sys
# import warnings
from datetime import datetime
import numpy as np
import pandas as pd
from joblib import delayed
from sklearn.base import clone
from sklearn.model_selection import StratifiedKFold
from sklearn.utils import check_random_state
from tqdm import tqdm
from _init_scripts import PredictionTask
from _utils import read_yaml, write_yaml, ProgressParallel
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
from multipit.multi_model.latefusion import LateFusionClassifier
def main(params):
"""
Repeated cross-validation experiment for classification with late fusion
"""
# Uncomment for disabling ConvergenceWarning
# warnings.simplefilter("ignore")
# os.environ["PYTHONWARNINGS"] = 'ignore'
# 0. Read config file and save it in the results
config = read_yaml(params.config)
save_name = config["save_name"]
if save_name is None:
run_id = datetime.now().strftime(r"%m%d_%H%M%S")
save_name = "exp_" + run_id
save_dir = os.path.join(params.save_path, save_name)
os.mkdir(save_dir)
write_yaml(config, os.path.join(save_dir, "config.yaml"))
# 1. fix random seeds for reproducibility
seed = config["latefusion"]["seed"]
np.random.seed(seed)
# 2. Load data and define pipelines for each modality
ptask = PredictionTask(config, survival=False, integration="late")
ptask.load_data()
X, y = ptask.data_concat.values, ptask.labels.loc[ptask.data_concat.index].values
ptask.init_pipelines_latefusion()
# 3. Perform repeated cross-validation
parallel = ProgressParallel(
n_jobs=config["parallelization"]["n_jobs_repeats"],
total=config["latefusion"]["n_repeats"],
)
results_parallel = parallel(
delayed(_fun_repeats)(
ptask,
X,
y,
r,
disable_infos=(config["parallelization"]["n_jobs_repeats"] is not None)
and (config["parallelization"]["n_jobs_repeats"] > 1),
)
for r in range(config["latefusion"]["n_repeats"])
)
# 4. Save results
if config["permutation_test"]:
perm_predictions = np.zeros(
(
len(y),
len(ptask.names),
config["n_permutations"],
config["latefusion"]["n_repeats"],
)
)
list_data_preds, list_data_thrs = [], []
for p, res in enumerate(results_parallel):
list_data_preds.append(res[0])
list_data_thrs.append(res[1])
perm_predictions[:, :, :, p] = res[2]
perm_labels = results_parallel[-1][3]
np.save(os.path.join(save_dir, "permutation_labels.npy"), perm_labels)
np.save(os.path.join(save_dir, "permutation_predictions.npy"), perm_predictions)
data_preds = pd.concat(list_data_preds, axis=0)
data_preds.to_csv(os.path.join(save_dir, "predictions.csv"))
if config["collect_thresholds"]:
data_thrs = pd.concat(list_data_thrs, axis=0)
data_thrs.to_csv(os.path.join(save_dir, "thresholds.csv"))
else:
list_data_preds, list_data_thrs = [], []
for p, res in enumerate(results_parallel):
list_data_preds.append(res[0])
list_data_thrs.append(res[1])
data_preds = pd.concat(list_data_preds, axis=0)
data_preds.to_csv(os.path.join(save_dir, "predictions.csv"))
if config["collect_thresholds"]:
data_thrs = pd.concat(list_data_thrs, axis=0)
data_thrs.to_csv(os.path.join(save_dir, "thresholds.csv"))
def _fun_repeats(prediction_task, X, y, r, disable_infos):
"""
Train and test a late fusion model for classification with cross-validation
Parameters
----------
prediction_task: PredictionTask object
X: 2D array of shape (n_samples, n_features)
Concatenation of the different modalities
y: 1D array of shape (n_samples,)
Binary outcome
r: int
Repeat number
disable_infos: bool
Returns
-------
df_pred: pd.DataFrame of shape (n_samples, n_models+3)
Predictions collected over the test sets of the cross-validation scheme for each multimodal combination
df_thrs: pd.DataFrame of shape (n_samples, n_models+2), None
Thresholds that optimize the log-rank test on the training set for each fold and each multimodal combination.
permut_predictions: 3D array of shape (n_samples, n_models, n_permutations)
Predictions collected over the test sets of the cross_validation scheme for each multimodal combination and each random permutation of the labels.
permut_labels: 2D array of shape (n_samples, n_permutations)
Permuted labels
"""
cv = StratifiedKFold(n_splits=10, shuffle=True) # , random_state=np.random.seed(i))
X_preds = np.zeros((len(y), 3 + len(prediction_task.names)))
X_thresholds = (
np.zeros((len(y), 2 + len(prediction_task.names)))
if prediction_task.config["collect_thresholds"]
else None
)
late_clf = LateFusionClassifier(
estimators=prediction_task.late_estimators,
cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=np.random.seed(r)),
**prediction_task.config["latefusion"]["args"]
)
# 1. Cross-validation scheme
for fold_index, (train_index, test_index) in tqdm(
enumerate(cv.split(np.zeros(len(y)), y)),
leave=False,
total=cv.get_n_splits(np.zeros(len(y))),
disable=disable_infos,
):
X_train, y_train, X_test = (
X[train_index, :],
y[train_index],
X[test_index, :],
)
target_surv_train = prediction_task.target_surv[train_index]
# Fit late fusion on the training set of the fold
clf = clone(late_clf)
clf.fit(X_train, y_train)
# Collect predictions on the test set of the fold for each multimodal combination
for c, idx in enumerate(prediction_task.indices):
X_preds[test_index, c] = clf.predict_proba(X_test, estim_ind=idx)[:, 1]
# Collect the threshold that optimizes log-rank test on the training set
if prediction_task.config["collect_thresholds"]:
X_thresholds[test_index, c] = clf.find_logrank_threshold(
X_train, target_surv_train, estim_ind=idx
)
X_preds[test_index, -3] = fold_index
if prediction_task.config["collect_thresholds"]:
X_thresholds[test_index, -2] = fold_index
X_preds[:, -2] = r
if prediction_task.config["collect_thresholds"]:
X_thresholds[:, -1] = r
X_preds[:, -1] = y
df_pred = (
pd.DataFrame(
X_preds,
columns=prediction_task.names + ["fold_index", "repeat", "label"],
index=prediction_task.data_concat.index,
)
.reset_index()
.rename(columns={"index": "samples"})
.set_index(["repeat", "samples"])
)
if prediction_task.config["collect_thresholds"]:
df_thrs = (
pd.DataFrame(
X_thresholds,
columns=prediction_task.names + ["fold_index", "repeat"],
index=prediction_task.data_concat.index,
)
.reset_index()
.rename(columns={"index": "samples"})
.set_index(["repeat", "samples"])
)
else:
df_thrs = None
# 2. Perform permutation test
permut_predictions = None
permut_labels = None
if prediction_task.config["permutation_test"]:
permut_labels = np.zeros((len(y), prediction_task.config["n_permutations"]))
permut_predictions = np.zeros(
(
len(y),
len(prediction_task.names),
prediction_task.config["n_permutations"],
)
)
for prm in range(prediction_task.config["n_permutations"]):
X_perm = np.zeros((len(y), len(prediction_task.names)))
random_state = check_random_state(prm)
sh_ind = random_state.permutation(len(y))
yshuffle = np.copy(y)[sh_ind]
permut_labels[:, prm] = yshuffle
for fold_index, (train_index, test_index) in tqdm(
enumerate(cv.split(np.zeros(len(y)), y)),
leave=False,
total=cv.get_n_splits(np.zeros(len(y))),
disable=disable_infos,
):
X_train, yshuffle_train, X_test = (
X[train_index, :],
yshuffle[train_index],
X[test_index, :],
)
clf = clone(late_clf)
clf.fit(X_train, yshuffle_train)
for c, idx in enumerate(prediction_task.indices):
X_perm[test_index, c] = clf.predict_proba(X_test, estim_ind=idx)[
:, 1
]
permut_predictions[:, :, prm] = X_perm
return df_pred, df_thrs, permut_predictions, permut_labels
if __name__ == "__main__":
args = argparse.ArgumentParser(description="Late fusion")
args.add_argument(
"-c",
"--config",
type=str,
help="config file path",
)
args.add_argument(
"-s",
"--save_path",
type=str,
help="save path",
)
main(params=args.parse_args())