import argparse
import inspect
import os
import sys
from datetime import datetime
import numpy as np
import pandas as pd
from joblib import delayed
from sksurv.util import Surv
from tqdm import tqdm
from _init_scripts import PredictionTask
from _utils import read_yaml, write_yaml, ProgressParallel
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
from multipit.multi_model.earlyfusion import EarlyFusionSurvival
from multipit.utils.custom.cv import CensoredKFold
def main(params):
"""
Repeated cross-validation experiment for survival prediction with early fusion
"""
# 0. Read config file and save it in the results
config = read_yaml(params.config)
save_name = config["save_name"]
if save_name is None:
run_id = datetime.now().strftime(r"%m%d_%H%M%S")
save_name = "exp_" + run_id
save_dir = os.path.join(params.save_path, save_name)
os.mkdir(save_dir)
write_yaml(config, os.path.join(save_dir, "config.yaml"))
# 1. fix random seeds for reproducibility
seed = config["earlyfusion"]["seed"]
np.random.seed(seed)
# 2. Load data and define pipelines for each modality
ptask = PredictionTask(config, survival=True, integration="early")
ptask.load_data()
X = ptask.data_concat.values
y = Surv().from_arrays(
event=ptask.labels.loc[ptask.data_concat.index, "event"].values,
time=ptask.labels.loc[ptask.data_concat.index, "time"].values,
)
ptask.init_pipelines_earlyfusion()
# 5. Define function to apply for each cross-validation scheme
# 6. Perform repeated cross-validation
parallel = ProgressParallel(
n_jobs=config["parallelization"]["n_jobs_repeats"],
total=config["earlyfusion"]["n_repeats"],
)
results_parallel = parallel(
delayed(_fun_repeats)(
ptask,
X,
y,
r,
disable_infos=(config["parallelization"]["n_jobs_repeats"] is not None)
and (config["parallelization"]["n_jobs_repeats"] > 1),
)
for r in range(config["earlyfusion"]["n_repeats"])
)
# 7. Save results
list_data_preds, list_data_thrs = [], []
for res in results_parallel:
list_data_preds.append(res[0])
list_data_thrs.append(res[1])
data_preds = pd.concat(list_data_preds, axis=0)
data_preds.to_csv(os.path.join(save_dir, "predictions.csv"))
if config["collect_thresholds"]:
data_thrs = pd.concat(list_data_thrs, axis=0)
data_thrs.to_csv(os.path.join(save_dir, "thresholds.csv"))
def _fun_repeats(prediction_task, X, y, r, disable_infos):
"""
Train and test an early fusion model for survival task with cross-validation
Parameters
----------
prediction_task: PredictionTask object
X: 2D array of shape (n_samples, n_features)
Concatenation of the different modalities
y: Structured array of size (n_samples,)
Event indicator and observed time for each sample
r: int
Repeat number
disable_infos: bool
Returns
-------
df_pred: pd.DataFrame of shape (n_samples, n_models+4)
Predictions collected over the test sets of the cross-validation scheme for each multimodal combination
df_thrs: pd.DataFrame of shape (n_samples, n_models+2), None
Thresholds that optimize the log-rank test on the training set for each fold and each multimodal combination.
"""
cv = CensoredKFold(n_splits=10, shuffle=True) # , random_state=np.random.seed(i))
X_preds = np.zeros((len(y), 4 + len(prediction_task.names)))
X_thresholds = (
np.zeros((len(y), 2 + len(prediction_task.names)))
if prediction_task.config["collect_thresholds"]
else None
)
for fold_index, (train_index, test_index) in tqdm(
enumerate(cv.split(np.zeros(len(y)), y)),
leave=False,
total=cv.get_n_splits(np.zeros(len(y))),
disable=disable_infos,
):
X_train, y_train, X_test, y_test = (
X[train_index, :],
y[train_index],
X[test_index, :],
y[test_index],
)
cv_inner = CensoredKFold(
n_splits=10, shuffle=True, random_state=np.random.seed(r)
)
for c, models in enumerate(prediction_task.names):
t = {
model: prediction_task.early_transformers[model]
for model in models.split("+")
}
early_surv = EarlyFusionSurvival(
estimator=prediction_task.early_estimator,
transformers=t,
modalities={
model: prediction_task.dic_modalities[model]
for model in models.split("+")
},
cv=cv_inner,
**prediction_task.config["earlyfusion"]["args"]
)
if len(models.split("+")) == 1:
early_surv.set_params(**{"select_features": False})
early_surv.fit(X_train, y_train)
X_preds[test_index, c] = early_surv.predict(X_test)
if prediction_task.config["collect_thresholds"]:
X_thresholds[test_index, c] = early_surv.find_logrank_threshold(
X_train, y_train
)
X_preds[test_index, -4] = fold_index
if prediction_task.config["collect_thresholds"]:
X_thresholds[test_index, -2] = fold_index
X_preds[:, -3] = r
if prediction_task.config["collect_thresholds"]:
X_thresholds[:, -1] = r
X_preds[:, -2] = y["time"]
X_preds[:, -1] = y["event"]
df_pred = (
pd.DataFrame(
X_preds,
columns=prediction_task.names
+ ["fold_index", "repeat", "label.time", "label.event"],
index=prediction_task.data_concat.index,
)
.reset_index()
.rename(columns={"index": "samples"})
.set_index(["repeat", "samples"])
)
if prediction_task.config["collect_thresholds"]:
df_thrs = (
pd.DataFrame(
X_thresholds,
columns=prediction_task.names + ["fold_index", "repeat"],
index=prediction_task.data_concat.index,
)
.reset_index()
.rename(columns={"index": "samples"})
.set_index(["repeat", "samples"])
)
else:
df_thrs = None
return df_pred, df_thrs
if __name__ == "__main__":
args = argparse.ArgumentParser(description="Early fusion")
args.add_argument(
"-c",
"--config",
type=str,
help="config file path",
)
args.add_argument(
"-s",
"--save_path",
type=str,
help="save path",
)
main(params=args.parse_args())