[efd906]: / scripts / earlyfusion.py

Download this file

204 lines (176 with data), 6.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import inspect
import os
import sys
from datetime import datetime
import numpy as np
import pandas as pd
from joblib import delayed
from sklearn.model_selection import StratifiedKFold
from tqdm import tqdm
from _init_scripts import PredictionTask
from _utils import read_yaml, write_yaml, ProgressParallel
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
from multipit.multi_model.earlyfusion import EarlyFusionClassifier
def main(params):
"""
Repeated cross-validation experiment for classification with late fusion
"""
# 0. Read config file and save it in the results
config = read_yaml(params.config)
save_name = config["save_name"]
if save_name is None:
run_id = datetime.now().strftime(r"%m%d_%H%M%S")
save_name = "exp_" + run_id
save_dir = os.path.join(params.save_path, save_name)
os.mkdir(save_dir)
write_yaml(config, os.path.join(save_dir, "config.yaml"))
# 1. fix random seeds for reproducibility
seed = config["earlyfusion"]["seed"]
np.random.seed(seed)
config = read_yaml(params.config)
# 2. Load data and define pipeline
ptask = PredictionTask(config, survival=False, integration="early")
ptask.load_data()
X, y = ptask.data_concat.values, ptask.labels.loc[ptask.data_concat.index].values
ptask.init_pipelines_earlyfusion()
# 3. Perform repeated cross-validation
parallel = ProgressParallel(
n_jobs=config["parallelization"]["n_jobs_repeats"],
total=config["earlyfusion"]["n_repeats"],
)
results_parallel = parallel(
delayed(_fun_repeats)(
ptask,
X,
y,
r,
disable_infos=(config["parallelization"]["n_jobs_repeats"] is not None)
and (config["parallelization"]["n_jobs_repeats"] > 1),
)
for r in range(config["earlyfusion"]["n_repeats"])
)
# 4. Save results
list_data_preds, list_data_thrs = [], []
for p, res in enumerate(results_parallel):
list_data_preds.append(res[0])
list_data_thrs.append(res[1])
data_preds = pd.concat(list_data_preds, axis=0)
data_preds.to_csv(os.path.join(save_dir, "predictions.csv"))
if config["collect_thresholds"]:
data_thrs = pd.concat(list_data_thrs, axis=0)
data_thrs.to_csv(os.path.join(save_dir, "thresholds.csv"))
def _fun_repeats(prediction_task, X, y, r, disable_infos):
"""
Train and test an early fusion model for classification with cross-validation
Parameters
----------
prediction_task: PredictionTask object
X: 2D array of shape (n_samples, n_features)
Concatenation of the different modalities
y: 1D array of shape (n_samples,)
Binary outcome
r: int
Repeat number
disable_infos: bool
Returns
-------
df_pred: pd.DataFrame of shape (n_samples, n_models+3)
Predictions collected over the test sets of the cross-validation scheme for each multimodal combination
df_thrs: pd.DataFrame of shape (n_samples, n_models+2), None
Thresholds that optimize the log-rank test on the training set for each fold and each multimodal combination.
"""
cv = StratifiedKFold(n_splits=10, shuffle=True)
X_preds = np.zeros((len(y), 3 + len(prediction_task.names)))
X_thresholds = (
np.zeros((len(y), 2 + len(prediction_task.names)))
if prediction_task.config["collect_thresholds"]
else None
)
for fold_index, (train_index, test_index) in tqdm(
enumerate(cv.split(np.zeros(len(y)), y)),
leave=False,
total=cv.get_n_splits(np.zeros(len(y))),
disable=disable_infos,
):
X_train, y_train, X_test, y_test = (
X[train_index, :],
y[train_index],
X[test_index, :],
y[test_index],
)
target_surv_train = prediction_task.target_surv[train_index]
cv_inner = StratifiedKFold(
n_splits=10, shuffle=True, random_state=np.random.seed(r)
)
for c, models in enumerate(prediction_task.names):
t = {
model: prediction_task.early_transformers[model]
for model in models.split("+")
}
early_clf = EarlyFusionClassifier(
estimator=prediction_task.early_estimator,
transformers=t,
modalities={
model: prediction_task.dic_modalities[model]
for model in models.split("+")
},
cv=cv_inner,
**prediction_task.config["earlyfusion"]["classifier_args"]
)
if len(models.split("+")) == 1:
early_clf.set_params(**{"select_features": False})
early_clf.fit(X_train, y_train)
X_preds[test_index, c] = early_clf.predict_proba(X_test)[:, 1]
if prediction_task.config["collect_thresholds"]:
X_thresholds[test_index, c] = early_clf.find_logrank_threshold(
X_train, target_surv_train
)
X_preds[test_index, -3] = fold_index
if prediction_task.config["collect_thresholds"]:
X_thresholds[test_index, -2] = fold_index
X_preds[:, -2] = r
if prediction_task.config["collect_thresholds"]:
X_thresholds[:, -1] = r
X_preds[:, -1] = y
df_pred = (
pd.DataFrame(
X_preds,
columns=prediction_task.names + ["fold_index", "repeat", "label"],
index=prediction_task.data_concat.index,
)
.reset_index()
.rename(columns={"index": "samples"})
.set_index(["repeat", "samples"])
)
if prediction_task.config["collect_thresholds"]:
df_thrs = (
pd.DataFrame(
X_thresholds,
columns=prediction_task.names + ["fold_index", "repeat"],
index=prediction_task.data_concat.index,
)
.reset_index()
.rename(columns={"index": "samples"})
.set_index(["repeat", "samples"])
)
else:
df_thrs = None
return df_pred, df_thrs
if __name__ == "__main__":
args = argparse.ArgumentParser(description="Early fusion")
args.add_argument(
"-c",
"--config",
type=str,
help="config file path",
)
args.add_argument(
"-s",
"--save_path",
type=str,
help="save path",
)
main(params=args.parse_args())