save_name: "RF_PFS"
target: "PFS"
#### Data paths + pre-processing for each modality (e.g. simple imputation)
clinical_data:
clinical_file: "data/clinicals.csv"
imputation:
numericals: [1, 3, 4, 13, 14, 15, 16, 17, 18, 19, -4]
categoricals: [20, -5, -3]
radiomics_data:
radiomics_file: "data/radiomics.csv"
preprocessing:
f_log_transform: ['TMTV', 'T_TMTV', 'N1_TMTV', 'N2_TMTV', 'N3_TMTV', 'M1a_TMTV', 'M1bc_TMTV']
imputation:
numericals: [2]
categoricals: null
pathomics_data:
pathomics_file: "data/pathomics.csv"
imputation:
numericals: [ 27, 28, 29, 31, 33, 35, 38, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133 ]
categoricals: null
RNA_data:
RNA_file: "data/omics.csv"
imputation:
numericals: [32]
categoricals: null
#### Define survival model + hyperparameters
survival_model:
# type: "Cox"
# args:
# n_alphas: 100
# alpha_min_ratio: 0.01
# l1_ratio: 0.5
type: "RF"
args:
max_features: "sqrt"
max_depth: 6
optim_params: # Uncomment and modify for parameter optimization
# n_iter_randomcv: 80 # number of iterations/samples for randomsearch
#### Define latefusion parameters (see multipit.multi_model.latefusion)
latefusion:
n_repeats: 100 # number of repeats for 10-fold cross-validation
seed: 3 # random seed
args:
sup_weights: False # learn weights with inner cross-validation for weighted late fusion
calibration: True # if True 'calibrate' (i.e. learn standardization) each unimodal model before fusion
n_jobs: 1
# tuning: "gridsearch" # uncomment for parameter optimization
# score: null # uncomment for parameter optimization
##### Additionnal parameters
parallelization: # number of jobs for dealing with several repeats in parallel (conflict with n_jobs of latefusion)
n_jobs_repeats: 1
collect_thresholds: False # collect threshold that optimizes log-rank test on the training set
permutation_test: False # perform permutation test
n_permutations: 1