import argparse
import inspect
import os
import sys
# import warnings
from datetime import datetime
import numpy as np
import pandas as pd
import shap
from joblib import delayed
from sklearn.base import clone
from sklearn.model_selection import StratifiedKFold
from tqdm import tqdm
from _init_scripts import PredictionTask
from _utils import read_yaml, write_yaml, ProgressParallel
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
from multipit.multi_model.latefusion import LateFusionClassifier
def main(params):
""" """
# 0. Read config file and save it in the results
config = read_yaml(params.config)
save_name = config["save_name"]
if save_name is None:
run_id = datetime.now().strftime(r"%m%d_%H%M%S")
save_name = "exp_" + run_id
save_dir = os.path.join(params.save_path, save_name)
os.mkdir(save_dir)
write_yaml(config, os.path.join(save_dir, "config.yaml"))
# 1. fix random seeds for reproducibility
seed = config["latefusion"]["seed"]
np.random.seed(seed)
# 2. Load data and define pipelines for each modality
ptask = PredictionTask(config, survival=False, integration="late")
ptask.load_data()
X, y = ptask.data_concat.values, ptask.labels.loc[ptask.data_concat.index].values
ptask.init_pipelines_latefusion()
parallel = ProgressParallel(
n_jobs=config["parallelization"]["n_jobs_repeats"],
total=config["latefusion"]["n_repeats"],
)
list_shap = parallel(
delayed(_fun_parallel)(
ptask,
X,
y,
r,
disable_infos=(config["parallelization"]["n_jobs_repeats"] is not None)
and (config["parallelization"]["n_jobs_repeats"] > 1),
)
for r in range(config["latefusion"]["n_repeats"])
)
shap_explain = {"clinical": [], "radiomics": [], "pathomics": [], "RNA": []}
coefs_LR = {"clinical": [], "radiomics": [], "pathomics": [], "RNA": []}
for results in list_shap:
for moda, shapley in results[0].items():
shap_explain[moda].append(shapley)
for key, val in shap_explain.items():
df_shap = pd.concat(val, axis=0, join="outer")
df_shap.to_csv(os.path.join(save_dir, "Shap_" + key + ".csv"))
if config["classifier"]["type"] == "LR":
for results in list_shap:
for moda, coefs in results[1].items():
coefs_LR[moda].append(coefs)
for key, val in coefs_LR.items():
coefficients = np.stack(val, axis=-1)
np.save(os.path.join(save_dir, "coef_LR_" + key + ".npy"), coefficients)
def _fun_parallel(prediction_task, X, y, r, disable_infos):
"""
Collect SHAP values for several unimodal classifiers with cross-validation
Parameters
----------
prediction_task: PredictionTask object
X: 2D array of shape (n_samples, n_features)
Concatenation of the different modalities
y: 1D array of shape (n_samples,)
Binary outcome
r: int
Repeat number
disable_infos: bool
Returns
-------
shap_dict: dictionary
Dictionary whose keys correspond to the different modalities (e.g., "RNA", "clinical") and the items correspond
to pandas dataframe of size (n_samples, n_features) that contain the SHAP values collected across the test sets
of the cross-validation scheme.
coefs_dict: dictionary or None
Dictionary whose keys correspond to the different modalities (e.g., "RNA", "clinical") and the items correspond
to arrays of size (n_folds, n_features) that contain the linear coefficients collected across the different
folds of the cross-validation scheme. None if the classifier type is not linear.
"""
cv = StratifiedKFold(n_splits=10, shuffle=True)
late_clf = LateFusionClassifier(
estimators=prediction_task.late_estimators,
cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=np.random.seed(r)),
**prediction_task.config["latefusion"]["args"]
)
shap_dict = {name: [] for name, *_ in late_clf.estimators}
if prediction_task.config["classifier"]["type"] == "LR":
coef_dict = {name: [] for name, *_ in late_clf.estimators}
for fold_index, (train_index, test_index) in tqdm(
enumerate(cv.split(np.zeros(len(y)), y)),
leave=False,
total=cv.get_n_splits(np.zeros(len(y))),
disable=disable_infos,
):
X_train, y_train, X_test, y_test = (
X[train_index, :],
y[train_index],
X[test_index, :],
y[test_index],
)
# Fit late fusion on the training set of the fold
clf = clone(late_clf)
clf.fit(X_train, y_train)
# Collect SHAP values on the test set of the fold for each unimodal classifier
for ind, (name, estim, features) in enumerate(clf.fitted_estimators_):
X_background = X_train[:, features]
bool_mask = ~(
np.sum(np.isnan(X_background), axis=1)
> clf.missing_threshold * len(features)
)
X_explain = X_test[:, features]
bool_mask_explain = ~(
np.sum(np.isnan(X_explain), axis=1)
> clf.missing_threshold * len(features)
)
if clf.calibration is not None:
explainer = shap.Explainer(
lambda x: (
clf.fitted_meta_estimators_[(ind,)].predict_proba(
estim.predict_proba(x)[:, 1].reshape(-1, 1)
)
),
X_background[bool_mask, :],
)
else:
explainer = shap.Explainer(
lambda x: estim.predict_proba(x), X_background[bool_mask, :]
)
shap_values = explainer(X_explain[bool_mask_explain, :])
shap_df = pd.DataFrame(
shap_values.values[:, :, 1],
columns=prediction_task.data_concat.columns[features],
index=prediction_task.data_concat.index.values[
test_index[bool_mask_explain]
],
)
shap_df["fold_index"] = fold_index
shap_df["repeat"] = r
shap_dict[name].append(shap_df)
# Also collect coefficients for logistic regreression
if prediction_task.config["classifier"]["type"] == "LR":
if name == "RNA":
temp = np.zeros((1, 40))
temp[:, : estim[-1].coef_.shape[1]] = estim[-1].coef_
coef_dict[name].append(temp)
else:
coef_dict[name].append(estim[-1].coef_)
if prediction_task.config["classifier"]["type"] == "LR":
coefs_dict = {name: np.vstack(value) for name, value in coef_dict.items()}
else:
coefs_dict = None
shap_dict = {
name: pd.concat(value, axis=0, join="outer")
for name, value in shap_dict.items()
}
return shap_dict, coefs_dict
if __name__ == "__main__":
args = argparse.ArgumentParser(description="Collect Shap")
args.add_argument(
"-c",
"--config",
type=str,
help="config file path",
)
args.add_argument(
"-s",
"--save_path",
type=str,
help="save path",
)
main(params=args.parse_args())