[efd906]: / scripts / collect_shap.py

Download this file

219 lines (184 with data), 7.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import argparse
import inspect
import os
import sys
# import warnings
from datetime import datetime
import numpy as np
import pandas as pd
import shap
from joblib import delayed
from sklearn.base import clone
from sklearn.model_selection import StratifiedKFold
from tqdm import tqdm
from _init_scripts import PredictionTask
from _utils import read_yaml, write_yaml, ProgressParallel
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
from multipit.multi_model.latefusion import LateFusionClassifier
def main(params):
""" """
# 0. Read config file and save it in the results
config = read_yaml(params.config)
save_name = config["save_name"]
if save_name is None:
run_id = datetime.now().strftime(r"%m%d_%H%M%S")
save_name = "exp_" + run_id
save_dir = os.path.join(params.save_path, save_name)
os.mkdir(save_dir)
write_yaml(config, os.path.join(save_dir, "config.yaml"))
# 1. fix random seeds for reproducibility
seed = config["latefusion"]["seed"]
np.random.seed(seed)
# 2. Load data and define pipelines for each modality
ptask = PredictionTask(config, survival=False, integration="late")
ptask.load_data()
X, y = ptask.data_concat.values, ptask.labels.loc[ptask.data_concat.index].values
ptask.init_pipelines_latefusion()
parallel = ProgressParallel(
n_jobs=config["parallelization"]["n_jobs_repeats"],
total=config["latefusion"]["n_repeats"],
)
list_shap = parallel(
delayed(_fun_parallel)(
ptask,
X,
y,
r,
disable_infos=(config["parallelization"]["n_jobs_repeats"] is not None)
and (config["parallelization"]["n_jobs_repeats"] > 1),
)
for r in range(config["latefusion"]["n_repeats"])
)
shap_explain = {"clinical": [], "radiomics": [], "pathomics": [], "RNA": []}
coefs_LR = {"clinical": [], "radiomics": [], "pathomics": [], "RNA": []}
for results in list_shap:
for moda, shapley in results[0].items():
shap_explain[moda].append(shapley)
for key, val in shap_explain.items():
df_shap = pd.concat(val, axis=0, join="outer")
df_shap.to_csv(os.path.join(save_dir, "Shap_" + key + ".csv"))
if config["classifier"]["type"] == "LR":
for results in list_shap:
for moda, coefs in results[1].items():
coefs_LR[moda].append(coefs)
for key, val in coefs_LR.items():
coefficients = np.stack(val, axis=-1)
np.save(os.path.join(save_dir, "coef_LR_" + key + ".npy"), coefficients)
def _fun_parallel(prediction_task, X, y, r, disable_infos):
"""
Collect SHAP values for several unimodal classifiers with cross-validation
Parameters
----------
prediction_task: PredictionTask object
X: 2D array of shape (n_samples, n_features)
Concatenation of the different modalities
y: 1D array of shape (n_samples,)
Binary outcome
r: int
Repeat number
disable_infos: bool
Returns
-------
shap_dict: dictionary
Dictionary whose keys correspond to the different modalities (e.g., "RNA", "clinical") and the items correspond
to pandas dataframe of size (n_samples, n_features) that contain the SHAP values collected across the test sets
of the cross-validation scheme.
coefs_dict: dictionary or None
Dictionary whose keys correspond to the different modalities (e.g., "RNA", "clinical") and the items correspond
to arrays of size (n_folds, n_features) that contain the linear coefficients collected across the different
folds of the cross-validation scheme. None if the classifier type is not linear.
"""
cv = StratifiedKFold(n_splits=10, shuffle=True)
late_clf = LateFusionClassifier(
estimators=prediction_task.late_estimators,
cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=np.random.seed(r)),
**prediction_task.config["latefusion"]["args"]
)
shap_dict = {name: [] for name, *_ in late_clf.estimators}
if prediction_task.config["classifier"]["type"] == "LR":
coef_dict = {name: [] for name, *_ in late_clf.estimators}
for fold_index, (train_index, test_index) in tqdm(
enumerate(cv.split(np.zeros(len(y)), y)),
leave=False,
total=cv.get_n_splits(np.zeros(len(y))),
disable=disable_infos,
):
X_train, y_train, X_test, y_test = (
X[train_index, :],
y[train_index],
X[test_index, :],
y[test_index],
)
# Fit late fusion on the training set of the fold
clf = clone(late_clf)
clf.fit(X_train, y_train)
# Collect SHAP values on the test set of the fold for each unimodal classifier
for ind, (name, estim, features) in enumerate(clf.fitted_estimators_):
X_background = X_train[:, features]
bool_mask = ~(
np.sum(np.isnan(X_background), axis=1)
> clf.missing_threshold * len(features)
)
X_explain = X_test[:, features]
bool_mask_explain = ~(
np.sum(np.isnan(X_explain), axis=1)
> clf.missing_threshold * len(features)
)
if clf.calibration is not None:
explainer = shap.Explainer(
lambda x: (
clf.fitted_meta_estimators_[(ind,)].predict_proba(
estim.predict_proba(x)[:, 1].reshape(-1, 1)
)
),
X_background[bool_mask, :],
)
else:
explainer = shap.Explainer(
lambda x: estim.predict_proba(x), X_background[bool_mask, :]
)
shap_values = explainer(X_explain[bool_mask_explain, :])
shap_df = pd.DataFrame(
shap_values.values[:, :, 1],
columns=prediction_task.data_concat.columns[features],
index=prediction_task.data_concat.index.values[
test_index[bool_mask_explain]
],
)
shap_df["fold_index"] = fold_index
shap_df["repeat"] = r
shap_dict[name].append(shap_df)
# Also collect coefficients for logistic regreression
if prediction_task.config["classifier"]["type"] == "LR":
if name == "RNA":
temp = np.zeros((1, 40))
temp[:, : estim[-1].coef_.shape[1]] = estim[-1].coef_
coef_dict[name].append(temp)
else:
coef_dict[name].append(estim[-1].coef_)
if prediction_task.config["classifier"]["type"] == "LR":
coefs_dict = {name: np.vstack(value) for name, value in coef_dict.items()}
else:
coefs_dict = None
shap_dict = {
name: pd.concat(value, axis=0, join="outer")
for name, value in shap_dict.items()
}
return shap_dict, coefs_dict
if __name__ == "__main__":
args = argparse.ArgumentParser(description="Collect Shap")
args.add_argument(
"-c",
"--config",
type=str,
help="config file path",
)
args.add_argument(
"-s",
"--save_path",
type=str,
help="save path",
)
main(params=args.parse_args())