save_name: "tcga_1y_death_latefusion"
#### Data paths + pre-processing for each modality (e.g. simple imputation)
clinical_data:
clinical_file: "..\\..\\data\\tcga_lung_clinical.csv"
imputation:
numericals: [2, 4, 5]
categoricals:
RNA_data:
RNA_file: "..\\..\\data\\tcga_lung_rna.csv"
imputation:
numericals:
categoricals:
#### Define classifier + hyperparameters
classifier:
# type: "LR"
# args:
# penalty: "elasticnet"
# max_iter: 2500
# solver: "saga"
# class_weight: "balanced"
# C: 0.1
# l1_ratio: 0.5
type: "xgboost"
args:
n_jobs: 1
optim_params: # Uncomment and modify for parameter optimization
# LR__l1_ratio: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
# LR__C: [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10]
#
# xgboost__max_depth: [3, 6, 9, 12]
# xgboost__learning_rate: [0.001, 0.01, 0.05, 0.1, 0.2, 0.3]
# xgboost__subsample: [0.5, 0.6, 0.7, 0.8, 0.9, 1.]
# xgboost__colsample_bytree: [0.5, 0.6, 0.7, 0.8, 0.9, 1.]
# xgboost__n_estimators: [100, 200, 300, 400, 500]
# n_iter_randomcv: 80 # number of iterations/samples for randomsearch
#### Define latefusion parameters (see multipit.multi_model.latefusion)
latefusion:
n_repeats: 1 # number of repeats for 10-fold cross-validation
seed: 3 # random seed
args:
sup_weights: False # learn weights with inner cross-validation for weighted late fusion
calibration: 'late' # if 'late' calibrate the fused model, if 'early' calibrate each unimodal model before fusion
n_jobs: 1
# tuning: "gridsearch" # uncomment for parameter optimization
# score: "roc_auc" # uncomment for parameter optimization
##### Additionnal parameters
parallelization: # number of jobs for dealing with several repeats in parallel (conflict with n_jobs of latefusion)
n_jobs_repeats: 1
collect_thresholds: False # collect threshold that optimizes log-rank test on the training set
permutation_test: False # perform permutation test
n_permutations: 1