|
a |
|
b/scripts/earlyfusion_survival.py |
|
|
1 |
import argparse |
|
|
2 |
import inspect |
|
|
3 |
import os |
|
|
4 |
import sys |
|
|
5 |
from datetime import datetime |
|
|
6 |
|
|
|
7 |
import numpy as np |
|
|
8 |
import pandas as pd |
|
|
9 |
from joblib import delayed |
|
|
10 |
from sksurv.util import Surv |
|
|
11 |
from tqdm import tqdm |
|
|
12 |
|
|
|
13 |
from _init_scripts import PredictionTask |
|
|
14 |
from _utils import read_yaml, write_yaml, ProgressParallel |
|
|
15 |
|
|
|
16 |
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) |
|
|
17 |
parentdir = os.path.dirname(currentdir) |
|
|
18 |
sys.path.insert(0, parentdir) |
|
|
19 |
|
|
|
20 |
from multipit.multi_model.earlyfusion import EarlyFusionSurvival |
|
|
21 |
from multipit.utils.custom.cv import CensoredKFold |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
def main(params): |
|
|
25 |
""" |
|
|
26 |
Repeated cross-validation experiment for survival prediction with early fusion |
|
|
27 |
""" |
|
|
28 |
|
|
|
29 |
# 0. Read config file and save it in the results |
|
|
30 |
config = read_yaml(params.config) |
|
|
31 |
save_name = config["save_name"] |
|
|
32 |
if save_name is None: |
|
|
33 |
run_id = datetime.now().strftime(r"%m%d_%H%M%S") |
|
|
34 |
save_name = "exp_" + run_id |
|
|
35 |
|
|
|
36 |
save_dir = os.path.join(params.save_path, save_name) |
|
|
37 |
os.mkdir(save_dir) |
|
|
38 |
write_yaml(config, os.path.join(save_dir, "config.yaml")) |
|
|
39 |
|
|
|
40 |
# 1. fix random seeds for reproducibility |
|
|
41 |
seed = config["earlyfusion"]["seed"] |
|
|
42 |
np.random.seed(seed) |
|
|
43 |
|
|
|
44 |
# 2. Load data and define pipelines for each modality |
|
|
45 |
ptask = PredictionTask(config, survival=True, integration="early") |
|
|
46 |
ptask.load_data() |
|
|
47 |
X = ptask.data_concat.values |
|
|
48 |
y = Surv().from_arrays( |
|
|
49 |
event=ptask.labels.loc[ptask.data_concat.index, "event"].values, |
|
|
50 |
time=ptask.labels.loc[ptask.data_concat.index, "time"].values, |
|
|
51 |
) |
|
|
52 |
ptask.init_pipelines_earlyfusion() |
|
|
53 |
|
|
|
54 |
# 5. Define function to apply for each cross-validation scheme |
|
|
55 |
|
|
|
56 |
# 6. Perform repeated cross-validation |
|
|
57 |
parallel = ProgressParallel( |
|
|
58 |
n_jobs=config["parallelization"]["n_jobs_repeats"], |
|
|
59 |
total=config["earlyfusion"]["n_repeats"], |
|
|
60 |
) |
|
|
61 |
results_parallel = parallel( |
|
|
62 |
delayed(_fun_repeats)( |
|
|
63 |
ptask, |
|
|
64 |
X, |
|
|
65 |
y, |
|
|
66 |
r, |
|
|
67 |
disable_infos=(config["parallelization"]["n_jobs_repeats"] is not None) |
|
|
68 |
and (config["parallelization"]["n_jobs_repeats"] > 1), |
|
|
69 |
) |
|
|
70 |
for r in range(config["earlyfusion"]["n_repeats"]) |
|
|
71 |
) |
|
|
72 |
|
|
|
73 |
# 7. Save results |
|
|
74 |
list_data_preds, list_data_thrs = [], [] |
|
|
75 |
for res in results_parallel: |
|
|
76 |
list_data_preds.append(res[0]) |
|
|
77 |
list_data_thrs.append(res[1]) |
|
|
78 |
data_preds = pd.concat(list_data_preds, axis=0) |
|
|
79 |
data_preds.to_csv(os.path.join(save_dir, "predictions.csv")) |
|
|
80 |
if config["collect_thresholds"]: |
|
|
81 |
data_thrs = pd.concat(list_data_thrs, axis=0) |
|
|
82 |
data_thrs.to_csv(os.path.join(save_dir, "thresholds.csv")) |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
def _fun_repeats(prediction_task, X, y, r, disable_infos): |
|
|
86 |
""" |
|
|
87 |
Train and test an early fusion model for survival task with cross-validation |
|
|
88 |
|
|
|
89 |
Parameters |
|
|
90 |
---------- |
|
|
91 |
prediction_task: PredictionTask object |
|
|
92 |
|
|
|
93 |
X: 2D array of shape (n_samples, n_features) |
|
|
94 |
Concatenation of the different modalities |
|
|
95 |
|
|
|
96 |
y: Structured array of size (n_samples,) |
|
|
97 |
Event indicator and observed time for each sample |
|
|
98 |
|
|
|
99 |
r: int |
|
|
100 |
Repeat number |
|
|
101 |
|
|
|
102 |
disable_infos: bool |
|
|
103 |
|
|
|
104 |
Returns |
|
|
105 |
------- |
|
|
106 |
df_pred: pd.DataFrame of shape (n_samples, n_models+4) |
|
|
107 |
Predictions collected over the test sets of the cross-validation scheme for each multimodal combination |
|
|
108 |
|
|
|
109 |
df_thrs: pd.DataFrame of shape (n_samples, n_models+2), None |
|
|
110 |
Thresholds that optimize the log-rank test on the training set for each fold and each multimodal combination. |
|
|
111 |
""" |
|
|
112 |
cv = CensoredKFold(n_splits=10, shuffle=True) # , random_state=np.random.seed(i)) |
|
|
113 |
X_preds = np.zeros((len(y), 4 + len(prediction_task.names))) |
|
|
114 |
X_thresholds = ( |
|
|
115 |
np.zeros((len(y), 2 + len(prediction_task.names))) |
|
|
116 |
if prediction_task.config["collect_thresholds"] |
|
|
117 |
else None |
|
|
118 |
) |
|
|
119 |
for fold_index, (train_index, test_index) in tqdm( |
|
|
120 |
enumerate(cv.split(np.zeros(len(y)), y)), |
|
|
121 |
leave=False, |
|
|
122 |
total=cv.get_n_splits(np.zeros(len(y))), |
|
|
123 |
disable=disable_infos, |
|
|
124 |
): |
|
|
125 |
X_train, y_train, X_test, y_test = ( |
|
|
126 |
X[train_index, :], |
|
|
127 |
y[train_index], |
|
|
128 |
X[test_index, :], |
|
|
129 |
y[test_index], |
|
|
130 |
) |
|
|
131 |
|
|
|
132 |
cv_inner = CensoredKFold( |
|
|
133 |
n_splits=10, shuffle=True, random_state=np.random.seed(r) |
|
|
134 |
) |
|
|
135 |
for c, models in enumerate(prediction_task.names): |
|
|
136 |
t = { |
|
|
137 |
model: prediction_task.early_transformers[model] |
|
|
138 |
for model in models.split("+") |
|
|
139 |
} |
|
|
140 |
early_surv = EarlyFusionSurvival( |
|
|
141 |
estimator=prediction_task.early_estimator, |
|
|
142 |
transformers=t, |
|
|
143 |
modalities={ |
|
|
144 |
model: prediction_task.dic_modalities[model] |
|
|
145 |
for model in models.split("+") |
|
|
146 |
}, |
|
|
147 |
cv=cv_inner, |
|
|
148 |
**prediction_task.config["earlyfusion"]["args"] |
|
|
149 |
) |
|
|
150 |
if len(models.split("+")) == 1: |
|
|
151 |
early_surv.set_params(**{"select_features": False}) |
|
|
152 |
|
|
|
153 |
early_surv.fit(X_train, y_train) |
|
|
154 |
X_preds[test_index, c] = early_surv.predict(X_test) |
|
|
155 |
if prediction_task.config["collect_thresholds"]: |
|
|
156 |
X_thresholds[test_index, c] = early_surv.find_logrank_threshold( |
|
|
157 |
X_train, y_train |
|
|
158 |
) |
|
|
159 |
X_preds[test_index, -4] = fold_index |
|
|
160 |
if prediction_task.config["collect_thresholds"]: |
|
|
161 |
X_thresholds[test_index, -2] = fold_index |
|
|
162 |
|
|
|
163 |
X_preds[:, -3] = r |
|
|
164 |
if prediction_task.config["collect_thresholds"]: |
|
|
165 |
X_thresholds[:, -1] = r |
|
|
166 |
X_preds[:, -2] = y["time"] |
|
|
167 |
X_preds[:, -1] = y["event"] |
|
|
168 |
df_pred = ( |
|
|
169 |
pd.DataFrame( |
|
|
170 |
X_preds, |
|
|
171 |
columns=prediction_task.names |
|
|
172 |
+ ["fold_index", "repeat", "label.time", "label.event"], |
|
|
173 |
index=prediction_task.data_concat.index, |
|
|
174 |
) |
|
|
175 |
.reset_index() |
|
|
176 |
.rename(columns={"index": "samples"}) |
|
|
177 |
.set_index(["repeat", "samples"]) |
|
|
178 |
) |
|
|
179 |
|
|
|
180 |
if prediction_task.config["collect_thresholds"]: |
|
|
181 |
df_thrs = ( |
|
|
182 |
pd.DataFrame( |
|
|
183 |
X_thresholds, |
|
|
184 |
columns=prediction_task.names + ["fold_index", "repeat"], |
|
|
185 |
index=prediction_task.data_concat.index, |
|
|
186 |
) |
|
|
187 |
.reset_index() |
|
|
188 |
.rename(columns={"index": "samples"}) |
|
|
189 |
.set_index(["repeat", "samples"]) |
|
|
190 |
) |
|
|
191 |
else: |
|
|
192 |
df_thrs = None |
|
|
193 |
|
|
|
194 |
return df_pred, df_thrs |
|
|
195 |
|
|
|
196 |
|
|
|
197 |
if __name__ == "__main__": |
|
|
198 |
args = argparse.ArgumentParser(description="Early fusion") |
|
|
199 |
args.add_argument( |
|
|
200 |
"-c", |
|
|
201 |
"--config", |
|
|
202 |
type=str, |
|
|
203 |
help="config file path", |
|
|
204 |
) |
|
|
205 |
args.add_argument( |
|
|
206 |
"-s", |
|
|
207 |
"--save_path", |
|
|
208 |
type=str, |
|
|
209 |
help="save path", |
|
|
210 |
) |
|
|
211 |
main(params=args.parse_args()) |