a b/scripts/config/config_latefusion_survival.yaml
1
save_name: "RF_PFS"
2
target: "PFS"
3
4
5
#### Data paths + pre-processing for each modality (e.g. simple imputation)
6
clinical_data:
7
  clinical_file: "data/clinicals.csv"
8
  imputation:
9
    numericals: [1, 3, 4, 13, 14, 15, 16, 17, 18, 19, -4]
10
    categoricals: [20, -5, -3]
11
12
radiomics_data:
13
  radiomics_file: "data/radiomics.csv"
14
  preprocessing:
15
    f_log_transform: ['TMTV', 'T_TMTV', 'N1_TMTV', 'N2_TMTV', 'N3_TMTV', 'M1a_TMTV', 'M1bc_TMTV']
16
  imputation:
17
    numericals: [2]
18
    categoricals: null
19
20
pathomics_data:
21
  pathomics_file: "data/pathomics.csv"
22
  imputation:
23
    numericals: [ 27, 28, 29, 31, 33, 35, 38, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60,
24
                  61, 62, 63, 64, 65, 66, 67, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
25
                  131, 132, 133 ]
26
    categoricals: null
27
28
RNA_data:
29
  RNA_file: "data/omics.csv"
30
  imputation:
31
    numericals: [32]
32
    categoricals: null
33
34
35
####  Define survival model + hyperparameters
36
survival_model:
37
#  type: "Cox"
38
#  args:
39
#    n_alphas: 100
40
#    alpha_min_ratio: 0.01
41
#    l1_ratio: 0.5
42
  type: "RF"
43
  args:
44
    max_features: "sqrt"
45
    max_depth: 6
46
47
  optim_params: # Uncomment and modify for parameter optimization
48
#  n_iter_randomcv: 80 # number of iterations/samples for randomsearch
49
50
51
#### Define latefusion parameters (see multipit.multi_model.latefusion)
52
latefusion:
53
  n_repeats: 100  # number of repeats for 10-fold cross-validation
54
  seed: 3 # random seed
55
  args:
56
    sup_weights: False # learn weights with inner cross-validation for weighted late fusion
57
    calibration: True # if True 'calibrate' (i.e. learn standardization) each unimodal model before fusion
58
    n_jobs: 1
59
#    tuning: "gridsearch" # uncomment for parameter optimization
60
#    score: null # uncomment for parameter optimization
61
62
63
##### Additionnal parameters
64
parallelization:  # number of jobs for dealing with several repeats in parallel (conflict with n_jobs of latefusion)
65
  n_jobs_repeats: 1
66
67
collect_thresholds: False # collect threshold that optimizes log-rank test on the training set
68
69
permutation_test: False # perform permutation test
70
n_permutations: 1