Switch to unified view

a b/scripts/config/config_latefusion.yaml
1
save_name: "xgboost_OS"
2
target: "OS"
3
4
5
#### Data paths + pre-processing for each modality (e.g. simple imputation)
6
clinical_data:
7
  clinical_file: "data/clinicals.csv"
8
  imputation:
9
    numericals: [1, 3, 4, 13, 14, 15, 16, 17, 18, 19, -4]
10
    categoricals: [20, -5, -3]
11
12
radiomics_data:
13
  radiomics_file: "data/radiomics.csv"
14
  preprocessing:
15
    f_log_transform: ['TMTV', 'T_TMTV', 'N1_TMTV', 'N2_TMTV', 'N3_TMTV', 'M1a_TMTV', 'M1bc_TMTV']
16
  imputation:
17
    numericals: [2]
18
    categoricals: null
19
20
pathomics_data:
21
  pathomics_file: "data/pathomics.csv"
22
  imputation:
23
    numericals: [ 27, 28, 29, 31, 33, 35, 38, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60,
24
                  61, 62, 63, 64, 65, 66, 67, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
25
                  131, 132, 133 ]
26
    categoricals: null
27
28
RNA_data:
29
  RNA_file: "data/omics.csv"
30
  imputation:
31
    numericals: [32]
32
    categoricals: null
33
34
35
####  Define classifier + hyperparameters
36
classifier:
37
#  type: "LR"
38
#  args:
39
#    penalty: "elasticnet"
40
#    max_iter: 2500
41
#    solver: "saga"
42
#    class_weight: "balanced"
43
#    C: 0.1
44
#    l1_ratio: 0.5
45
  type: "xgboost"
46
  args:
47
    n_jobs: 1
48
49
  optim_params: # Uncomment and modify for parameter optimization
50
#     LR__l1_ratio: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
51
#     LR__C: [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10]
52
#
53
#     xgboost__max_depth: [3, 6, 9, 12]
54
#     xgboost__learning_rate: [0.001, 0.01, 0.05, 0.1, 0.2, 0.3]
55
#     xgboost__subsample: [0.5, 0.6, 0.7, 0.8, 0.9, 1.]
56
#     xgboost__colsample_bytree: [0.5, 0.6, 0.7, 0.8, 0.9, 1.]
57
#     xgboost__n_estimators: [100, 200, 300, 400, 500]
58
#  n_iter_randomcv: 80 # number of iterations/samples for randomsearch
59
60
61
#### Define latefusion parameters  (see multipit.multi_model.latefusion)
62
latefusion:
63
  n_repeats: 100 # number of repeats for 10-fold cross-validation
64
  seed: 3 # random seed
65
  args:
66
    sup_weights: False # learn weights with inner cross-validation for weighted late fusion
67
    calibration: 'late' # if 'late' calibrate the fused model, if 'early' calibrate each unimodal model before fusion
68
    n_jobs: 1
69
    # tuning: "gridsearch" # uncomment for parameter optimization
70
    # score: "roc_auc" # uncomment for parameter optimization
71
72
73
##### Additionnal parameters
74
parallelization: # number of jobs for dealing with several repeats in parallel (conflict with n_jobs of latefusion)
75
  n_jobs_repeats: 1
76
77
collect_thresholds: False  # collect threshold that optimizes log-rank test on the training set
78
79
permutation_test: False # perform permutation test
80
n_permutations: 1