|
a |
|
b/scripts/config/config_latefusion.yaml |
|
|
1 |
save_name: "xgboost_OS" |
|
|
2 |
target: "OS" |
|
|
3 |
|
|
|
4 |
|
|
|
5 |
#### Data paths + pre-processing for each modality (e.g. simple imputation) |
|
|
6 |
clinical_data: |
|
|
7 |
clinical_file: "data/clinicals.csv" |
|
|
8 |
imputation: |
|
|
9 |
numericals: [1, 3, 4, 13, 14, 15, 16, 17, 18, 19, -4] |
|
|
10 |
categoricals: [20, -5, -3] |
|
|
11 |
|
|
|
12 |
radiomics_data: |
|
|
13 |
radiomics_file: "data/radiomics.csv" |
|
|
14 |
preprocessing: |
|
|
15 |
f_log_transform: ['TMTV', 'T_TMTV', 'N1_TMTV', 'N2_TMTV', 'N3_TMTV', 'M1a_TMTV', 'M1bc_TMTV'] |
|
|
16 |
imputation: |
|
|
17 |
numericals: [2] |
|
|
18 |
categoricals: null |
|
|
19 |
|
|
|
20 |
pathomics_data: |
|
|
21 |
pathomics_file: "data/pathomics.csv" |
|
|
22 |
imputation: |
|
|
23 |
numericals: [ 27, 28, 29, 31, 33, 35, 38, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, |
|
|
24 |
61, 62, 63, 64, 65, 66, 67, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, |
|
|
25 |
131, 132, 133 ] |
|
|
26 |
categoricals: null |
|
|
27 |
|
|
|
28 |
RNA_data: |
|
|
29 |
RNA_file: "data/omics.csv" |
|
|
30 |
imputation: |
|
|
31 |
numericals: [32] |
|
|
32 |
categoricals: null |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
#### Define classifier + hyperparameters |
|
|
36 |
classifier: |
|
|
37 |
# type: "LR" |
|
|
38 |
# args: |
|
|
39 |
# penalty: "elasticnet" |
|
|
40 |
# max_iter: 2500 |
|
|
41 |
# solver: "saga" |
|
|
42 |
# class_weight: "balanced" |
|
|
43 |
# C: 0.1 |
|
|
44 |
# l1_ratio: 0.5 |
|
|
45 |
type: "xgboost" |
|
|
46 |
args: |
|
|
47 |
n_jobs: 1 |
|
|
48 |
|
|
|
49 |
optim_params: # Uncomment and modify for parameter optimization |
|
|
50 |
# LR__l1_ratio: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] |
|
|
51 |
# LR__C: [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10] |
|
|
52 |
# |
|
|
53 |
# xgboost__max_depth: [3, 6, 9, 12] |
|
|
54 |
# xgboost__learning_rate: [0.001, 0.01, 0.05, 0.1, 0.2, 0.3] |
|
|
55 |
# xgboost__subsample: [0.5, 0.6, 0.7, 0.8, 0.9, 1.] |
|
|
56 |
# xgboost__colsample_bytree: [0.5, 0.6, 0.7, 0.8, 0.9, 1.] |
|
|
57 |
# xgboost__n_estimators: [100, 200, 300, 400, 500] |
|
|
58 |
# n_iter_randomcv: 80 # number of iterations/samples for randomsearch |
|
|
59 |
|
|
|
60 |
|
|
|
61 |
#### Define latefusion parameters (see multipit.multi_model.latefusion) |
|
|
62 |
latefusion: |
|
|
63 |
n_repeats: 100 # number of repeats for 10-fold cross-validation |
|
|
64 |
seed: 3 # random seed |
|
|
65 |
args: |
|
|
66 |
sup_weights: False # learn weights with inner cross-validation for weighted late fusion |
|
|
67 |
calibration: 'late' # if 'late' calibrate the fused model, if 'early' calibrate each unimodal model before fusion |
|
|
68 |
n_jobs: 1 |
|
|
69 |
# tuning: "gridsearch" # uncomment for parameter optimization |
|
|
70 |
# score: "roc_auc" # uncomment for parameter optimization |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
##### Additionnal parameters |
|
|
74 |
parallelization: # number of jobs for dealing with several repeats in parallel (conflict with n_jobs of latefusion) |
|
|
75 |
n_jobs_repeats: 1 |
|
|
76 |
|
|
|
77 |
collect_thresholds: False # collect threshold that optimizes log-rank test on the training set |
|
|
78 |
|
|
|
79 |
permutation_test: False # perform permutation test |
|
|
80 |
n_permutations: 1 |