|
a |
|
b/scripts/collect_shap.py |
|
|
1 |
import argparse |
|
|
2 |
import inspect |
|
|
3 |
import os |
|
|
4 |
import sys |
|
|
5 |
|
|
|
6 |
# import warnings |
|
|
7 |
from datetime import datetime |
|
|
8 |
|
|
|
9 |
import numpy as np |
|
|
10 |
import pandas as pd |
|
|
11 |
import shap |
|
|
12 |
from joblib import delayed |
|
|
13 |
from sklearn.base import clone |
|
|
14 |
from sklearn.model_selection import StratifiedKFold |
|
|
15 |
from tqdm import tqdm |
|
|
16 |
|
|
|
17 |
from _init_scripts import PredictionTask |
|
|
18 |
from _utils import read_yaml, write_yaml, ProgressParallel |
|
|
19 |
|
|
|
20 |
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) |
|
|
21 |
parentdir = os.path.dirname(currentdir) |
|
|
22 |
sys.path.insert(0, parentdir) |
|
|
23 |
|
|
|
24 |
from multipit.multi_model.latefusion import LateFusionClassifier |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
def main(params): |
|
|
28 |
""" """ |
|
|
29 |
|
|
|
30 |
# 0. Read config file and save it in the results |
|
|
31 |
config = read_yaml(params.config) |
|
|
32 |
save_name = config["save_name"] |
|
|
33 |
if save_name is None: |
|
|
34 |
run_id = datetime.now().strftime(r"%m%d_%H%M%S") |
|
|
35 |
save_name = "exp_" + run_id |
|
|
36 |
save_dir = os.path.join(params.save_path, save_name) |
|
|
37 |
os.mkdir(save_dir) |
|
|
38 |
write_yaml(config, os.path.join(save_dir, "config.yaml")) |
|
|
39 |
|
|
|
40 |
# 1. fix random seeds for reproducibility |
|
|
41 |
seed = config["latefusion"]["seed"] |
|
|
42 |
np.random.seed(seed) |
|
|
43 |
|
|
|
44 |
# 2. Load data and define pipelines for each modality |
|
|
45 |
ptask = PredictionTask(config, survival=False, integration="late") |
|
|
46 |
ptask.load_data() |
|
|
47 |
X, y = ptask.data_concat.values, ptask.labels.loc[ptask.data_concat.index].values |
|
|
48 |
ptask.init_pipelines_latefusion() |
|
|
49 |
|
|
|
50 |
parallel = ProgressParallel( |
|
|
51 |
n_jobs=config["parallelization"]["n_jobs_repeats"], |
|
|
52 |
total=config["latefusion"]["n_repeats"], |
|
|
53 |
) |
|
|
54 |
list_shap = parallel( |
|
|
55 |
delayed(_fun_parallel)( |
|
|
56 |
ptask, |
|
|
57 |
X, |
|
|
58 |
y, |
|
|
59 |
r, |
|
|
60 |
disable_infos=(config["parallelization"]["n_jobs_repeats"] is not None) |
|
|
61 |
and (config["parallelization"]["n_jobs_repeats"] > 1), |
|
|
62 |
) |
|
|
63 |
for r in range(config["latefusion"]["n_repeats"]) |
|
|
64 |
) |
|
|
65 |
|
|
|
66 |
shap_explain = {"clinical": [], "radiomics": [], "pathomics": [], "RNA": []} |
|
|
67 |
coefs_LR = {"clinical": [], "radiomics": [], "pathomics": [], "RNA": []} |
|
|
68 |
|
|
|
69 |
for results in list_shap: |
|
|
70 |
for moda, shapley in results[0].items(): |
|
|
71 |
shap_explain[moda].append(shapley) |
|
|
72 |
|
|
|
73 |
for key, val in shap_explain.items(): |
|
|
74 |
df_shap = pd.concat(val, axis=0, join="outer") |
|
|
75 |
df_shap.to_csv(os.path.join(save_dir, "Shap_" + key + ".csv")) |
|
|
76 |
|
|
|
77 |
if config["classifier"]["type"] == "LR": |
|
|
78 |
for results in list_shap: |
|
|
79 |
for moda, coefs in results[1].items(): |
|
|
80 |
coefs_LR[moda].append(coefs) |
|
|
81 |
|
|
|
82 |
for key, val in coefs_LR.items(): |
|
|
83 |
coefficients = np.stack(val, axis=-1) |
|
|
84 |
np.save(os.path.join(save_dir, "coef_LR_" + key + ".npy"), coefficients) |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
def _fun_parallel(prediction_task, X, y, r, disable_infos): |
|
|
88 |
""" |
|
|
89 |
Collect SHAP values for several unimodal classifiers with cross-validation |
|
|
90 |
|
|
|
91 |
Parameters |
|
|
92 |
---------- |
|
|
93 |
prediction_task: PredictionTask object |
|
|
94 |
|
|
|
95 |
X: 2D array of shape (n_samples, n_features) |
|
|
96 |
Concatenation of the different modalities |
|
|
97 |
|
|
|
98 |
y: 1D array of shape (n_samples,) |
|
|
99 |
Binary outcome |
|
|
100 |
|
|
|
101 |
r: int |
|
|
102 |
Repeat number |
|
|
103 |
|
|
|
104 |
disable_infos: bool |
|
|
105 |
|
|
|
106 |
Returns |
|
|
107 |
------- |
|
|
108 |
shap_dict: dictionary |
|
|
109 |
Dictionary whose keys correspond to the different modalities (e.g., "RNA", "clinical") and the items correspond |
|
|
110 |
to pandas dataframe of size (n_samples, n_features) that contain the SHAP values collected across the test sets |
|
|
111 |
of the cross-validation scheme. |
|
|
112 |
|
|
|
113 |
coefs_dict: dictionary or None |
|
|
114 |
Dictionary whose keys correspond to the different modalities (e.g., "RNA", "clinical") and the items correspond |
|
|
115 |
to arrays of size (n_folds, n_features) that contain the linear coefficients collected across the different |
|
|
116 |
folds of the cross-validation scheme. None if the classifier type is not linear. |
|
|
117 |
""" |
|
|
118 |
|
|
|
119 |
cv = StratifiedKFold(n_splits=10, shuffle=True) |
|
|
120 |
late_clf = LateFusionClassifier( |
|
|
121 |
estimators=prediction_task.late_estimators, |
|
|
122 |
cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=np.random.seed(r)), |
|
|
123 |
**prediction_task.config["latefusion"]["args"] |
|
|
124 |
) |
|
|
125 |
|
|
|
126 |
shap_dict = {name: [] for name, *_ in late_clf.estimators} |
|
|
127 |
|
|
|
128 |
if prediction_task.config["classifier"]["type"] == "LR": |
|
|
129 |
coef_dict = {name: [] for name, *_ in late_clf.estimators} |
|
|
130 |
|
|
|
131 |
for fold_index, (train_index, test_index) in tqdm( |
|
|
132 |
enumerate(cv.split(np.zeros(len(y)), y)), |
|
|
133 |
leave=False, |
|
|
134 |
total=cv.get_n_splits(np.zeros(len(y))), |
|
|
135 |
disable=disable_infos, |
|
|
136 |
): |
|
|
137 |
X_train, y_train, X_test, y_test = ( |
|
|
138 |
X[train_index, :], |
|
|
139 |
y[train_index], |
|
|
140 |
X[test_index, :], |
|
|
141 |
y[test_index], |
|
|
142 |
) |
|
|
143 |
# Fit late fusion on the training set of the fold |
|
|
144 |
clf = clone(late_clf) |
|
|
145 |
clf.fit(X_train, y_train) |
|
|
146 |
# Collect SHAP values on the test set of the fold for each unimodal classifier |
|
|
147 |
for ind, (name, estim, features) in enumerate(clf.fitted_estimators_): |
|
|
148 |
X_background = X_train[:, features] |
|
|
149 |
bool_mask = ~( |
|
|
150 |
np.sum(np.isnan(X_background), axis=1) |
|
|
151 |
> clf.missing_threshold * len(features) |
|
|
152 |
) |
|
|
153 |
X_explain = X_test[:, features] |
|
|
154 |
bool_mask_explain = ~( |
|
|
155 |
np.sum(np.isnan(X_explain), axis=1) |
|
|
156 |
> clf.missing_threshold * len(features) |
|
|
157 |
) |
|
|
158 |
if clf.calibration is not None: |
|
|
159 |
explainer = shap.Explainer( |
|
|
160 |
lambda x: ( |
|
|
161 |
clf.fitted_meta_estimators_[(ind,)].predict_proba( |
|
|
162 |
estim.predict_proba(x)[:, 1].reshape(-1, 1) |
|
|
163 |
) |
|
|
164 |
), |
|
|
165 |
X_background[bool_mask, :], |
|
|
166 |
) |
|
|
167 |
else: |
|
|
168 |
explainer = shap.Explainer( |
|
|
169 |
lambda x: estim.predict_proba(x), X_background[bool_mask, :] |
|
|
170 |
) |
|
|
171 |
shap_values = explainer(X_explain[bool_mask_explain, :]) |
|
|
172 |
shap_df = pd.DataFrame( |
|
|
173 |
shap_values.values[:, :, 1], |
|
|
174 |
columns=prediction_task.data_concat.columns[features], |
|
|
175 |
index=prediction_task.data_concat.index.values[ |
|
|
176 |
test_index[bool_mask_explain] |
|
|
177 |
], |
|
|
178 |
) |
|
|
179 |
shap_df["fold_index"] = fold_index |
|
|
180 |
shap_df["repeat"] = r |
|
|
181 |
shap_dict[name].append(shap_df) |
|
|
182 |
# Also collect coefficients for logistic regreression |
|
|
183 |
if prediction_task.config["classifier"]["type"] == "LR": |
|
|
184 |
if name == "RNA": |
|
|
185 |
temp = np.zeros((1, 40)) |
|
|
186 |
temp[:, : estim[-1].coef_.shape[1]] = estim[-1].coef_ |
|
|
187 |
coef_dict[name].append(temp) |
|
|
188 |
else: |
|
|
189 |
coef_dict[name].append(estim[-1].coef_) |
|
|
190 |
|
|
|
191 |
if prediction_task.config["classifier"]["type"] == "LR": |
|
|
192 |
coefs_dict = {name: np.vstack(value) for name, value in coef_dict.items()} |
|
|
193 |
else: |
|
|
194 |
coefs_dict = None |
|
|
195 |
|
|
|
196 |
shap_dict = { |
|
|
197 |
name: pd.concat(value, axis=0, join="outer") |
|
|
198 |
for name, value in shap_dict.items() |
|
|
199 |
} |
|
|
200 |
|
|
|
201 |
return shap_dict, coefs_dict |
|
|
202 |
|
|
|
203 |
|
|
|
204 |
if __name__ == "__main__": |
|
|
205 |
args = argparse.ArgumentParser(description="Collect Shap") |
|
|
206 |
args.add_argument( |
|
|
207 |
"-c", |
|
|
208 |
"--config", |
|
|
209 |
type=str, |
|
|
210 |
help="config file path", |
|
|
211 |
) |
|
|
212 |
args.add_argument( |
|
|
213 |
"-s", |
|
|
214 |
"--save_path", |
|
|
215 |
type=str, |
|
|
216 |
help="save path", |
|
|
217 |
) |
|
|
218 |
main(params=args.parse_args()) |