|
a |
|
b/examples/tcga_lung/latefusion.py |
|
|
1 |
import argparse |
|
|
2 |
import inspect |
|
|
3 |
import os |
|
|
4 |
import sys |
|
|
5 |
|
|
|
6 |
# import warnings |
|
|
7 |
from datetime import datetime |
|
|
8 |
|
|
|
9 |
import numpy as np |
|
|
10 |
import pandas as pd |
|
|
11 |
from joblib import delayed |
|
|
12 |
from sklearn.base import clone |
|
|
13 |
from sklearn.model_selection import StratifiedKFold |
|
|
14 |
from sklearn.utils import check_random_state |
|
|
15 |
from tqdm import tqdm |
|
|
16 |
|
|
|
17 |
from _init_scripts_tcga import PredictionTask |
|
|
18 |
from _utils import read_yaml, write_yaml, ProgressParallel |
|
|
19 |
|
|
|
20 |
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) |
|
|
21 |
parentdir = os.path.dirname(os.path.dirname(currentdir)) |
|
|
22 |
sys.path.insert(0, parentdir) |
|
|
23 |
|
|
|
24 |
from multipit.multi_model.latefusion import LateFusionClassifier |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
def main(params): |
|
|
28 |
""" |
|
|
29 |
Repeated cross-validation experiment for classification with late fusion |
|
|
30 |
""" |
|
|
31 |
|
|
|
32 |
# Uncomment for disabling ConvergenceWarning |
|
|
33 |
# warnings.simplefilter("ignore") |
|
|
34 |
# os.environ["PYTHONWARNINGS"] = 'ignore' |
|
|
35 |
|
|
|
36 |
# 0. Read config file and save it in the results |
|
|
37 |
config = read_yaml(params.config) |
|
|
38 |
save_name = config["save_name"] |
|
|
39 |
if save_name is None: |
|
|
40 |
run_id = datetime.now().strftime(r"%m%d_%H%M%S") |
|
|
41 |
save_name = "exp_" + run_id |
|
|
42 |
save_dir = os.path.join(params.save_path, save_name) |
|
|
43 |
os.mkdir(save_dir) |
|
|
44 |
write_yaml(config, os.path.join(save_dir, "config.yaml")) |
|
|
45 |
|
|
|
46 |
# 1. fix random seeds for reproducibility |
|
|
47 |
seed = config["latefusion"]["seed"] |
|
|
48 |
np.random.seed(seed) |
|
|
49 |
|
|
|
50 |
# 2. Load data and define pipelines for each modality |
|
|
51 |
ptask = PredictionTask(config, survival=False, integration="late") |
|
|
52 |
ptask.load_data() |
|
|
53 |
X, y = ptask.data_concat.values, ptask.labels.loc[ptask.data_concat.index].values |
|
|
54 |
ptask.init_pipelines_latefusion() |
|
|
55 |
|
|
|
56 |
# 3. Perform repeated cross-validation |
|
|
57 |
parallel = ProgressParallel( |
|
|
58 |
n_jobs=config["parallelization"]["n_jobs_repeats"], |
|
|
59 |
total=config["latefusion"]["n_repeats"], |
|
|
60 |
) |
|
|
61 |
results_parallel = parallel( |
|
|
62 |
delayed(_fun_repeats)( |
|
|
63 |
ptask, |
|
|
64 |
X, |
|
|
65 |
y, |
|
|
66 |
r, |
|
|
67 |
disable_infos=(config["parallelization"]["n_jobs_repeats"] is not None) |
|
|
68 |
and (config["parallelization"]["n_jobs_repeats"] > 1), |
|
|
69 |
) |
|
|
70 |
for r in range(config["latefusion"]["n_repeats"]) |
|
|
71 |
) |
|
|
72 |
|
|
|
73 |
# 4. Save results |
|
|
74 |
if config["permutation_test"]: |
|
|
75 |
perm_predictions = np.zeros( |
|
|
76 |
( |
|
|
77 |
len(y), |
|
|
78 |
len(ptask.names), |
|
|
79 |
config["n_permutations"], |
|
|
80 |
config["latefusion"]["n_repeats"], |
|
|
81 |
) |
|
|
82 |
) |
|
|
83 |
list_data_preds= [] |
|
|
84 |
for p, res in enumerate(results_parallel): |
|
|
85 |
list_data_preds.append(res[0]) |
|
|
86 |
perm_predictions[:, :, :, p] = res[1] |
|
|
87 |
perm_labels = results_parallel[-1][3] |
|
|
88 |
|
|
|
89 |
np.save(os.path.join(save_dir, "permutation_labels.npy"), perm_labels) |
|
|
90 |
np.save(os.path.join(save_dir, "permutation_predictions.npy"), perm_predictions) |
|
|
91 |
data_preds = pd.concat(list_data_preds, axis=0) |
|
|
92 |
data_preds.to_csv(os.path.join(save_dir, "predictions.csv")) |
|
|
93 |
else: |
|
|
94 |
list_data_preds = [] |
|
|
95 |
for p, res in enumerate(results_parallel): |
|
|
96 |
list_data_preds.append(res[0]) |
|
|
97 |
data_preds = pd.concat(list_data_preds, axis=0) |
|
|
98 |
data_preds.to_csv(os.path.join(save_dir, "predictions.csv")) |
|
|
99 |
|
|
|
100 |
|
|
|
101 |
def _fun_repeats(prediction_task, X, y, r, disable_infos): |
|
|
102 |
""" |
|
|
103 |
Train and test a late fusion model for classification with cross-validation |
|
|
104 |
|
|
|
105 |
Parameters |
|
|
106 |
---------- |
|
|
107 |
prediction_task: PredictionTask object |
|
|
108 |
|
|
|
109 |
X: 2D array of shape (n_samples, n_features) |
|
|
110 |
Concatenation of the different modalities |
|
|
111 |
|
|
|
112 |
y: 1D array of shape (n_samples,) |
|
|
113 |
Binary outcome |
|
|
114 |
|
|
|
115 |
r: int |
|
|
116 |
Repeat number |
|
|
117 |
|
|
|
118 |
disable_infos: bool |
|
|
119 |
|
|
|
120 |
Returns |
|
|
121 |
------- |
|
|
122 |
df_pred: pd.DataFrame of shape (n_samples, n_models+3) |
|
|
123 |
Predictions collected over the test sets of the cross-validation scheme for each multimodal combination |
|
|
124 |
|
|
|
125 |
df_thrs: pd.DataFrame of shape (n_samples, n_models+2), None |
|
|
126 |
Thresholds that optimize the log-rank test on the training set for each fold and each multimodal combination. |
|
|
127 |
|
|
|
128 |
permut_predictions: 3D array of shape (n_samples, n_models, n_permutations) |
|
|
129 |
Predictions collected over the test sets of the cross_validation scheme for each multimodal combination and each random permutation of the labels. |
|
|
130 |
|
|
|
131 |
permut_labels: 2D array of shape (n_samples, n_permutations) |
|
|
132 |
Permuted labels |
|
|
133 |
""" |
|
|
134 |
cv = StratifiedKFold(n_splits=10, shuffle=True) # , random_state=np.random.seed(i)) |
|
|
135 |
X_preds = np.zeros((len(y), 3 + len(prediction_task.names))) |
|
|
136 |
|
|
|
137 |
late_clf = LateFusionClassifier( |
|
|
138 |
estimators=prediction_task.late_estimators, |
|
|
139 |
cv=StratifiedKFold(n_splits=10, shuffle=True, random_state=np.random.seed(r)), |
|
|
140 |
**prediction_task.config["latefusion"]["args"] |
|
|
141 |
) |
|
|
142 |
|
|
|
143 |
# 1. Cross-validation scheme |
|
|
144 |
for fold_index, (train_index, test_index) in tqdm( |
|
|
145 |
enumerate(cv.split(np.zeros(len(y)), y)), |
|
|
146 |
leave=False, |
|
|
147 |
total=cv.get_n_splits(np.zeros(len(y))), |
|
|
148 |
disable=disable_infos, |
|
|
149 |
): |
|
|
150 |
X_train, y_train, X_test = ( |
|
|
151 |
X[train_index, :], |
|
|
152 |
y[train_index], |
|
|
153 |
X[test_index, :], |
|
|
154 |
) |
|
|
155 |
|
|
|
156 |
# Fit late fusion on the training set of the fold |
|
|
157 |
clf = clone(late_clf) |
|
|
158 |
clf.fit(X_train, y_train) |
|
|
159 |
# Collect predictions on the test set of the fold for each multimodal combination |
|
|
160 |
for c, idx in enumerate(prediction_task.indices): |
|
|
161 |
X_preds[test_index, c] = clf.predict_proba(X_test, estim_ind=idx)[:, 1] |
|
|
162 |
|
|
|
163 |
X_preds[test_index, -3] = fold_index |
|
|
164 |
|
|
|
165 |
X_preds[:, -2] = r |
|
|
166 |
X_preds[:, -1] = y |
|
|
167 |
|
|
|
168 |
df_pred = ( |
|
|
169 |
pd.DataFrame( |
|
|
170 |
X_preds, |
|
|
171 |
columns=prediction_task.names + ["fold_index", "repeat", "label"], |
|
|
172 |
index=prediction_task.data_concat.index, |
|
|
173 |
) |
|
|
174 |
.reset_index() |
|
|
175 |
.rename(columns={"bcr_patient_barcode": "samples"}) |
|
|
176 |
.set_index(["repeat", "samples"]) |
|
|
177 |
) |
|
|
178 |
|
|
|
179 |
# 2. Perform permutation test |
|
|
180 |
permut_predictions = None |
|
|
181 |
permut_labels = None |
|
|
182 |
if prediction_task.config["permutation_test"]: |
|
|
183 |
permut_labels = np.zeros((len(y), prediction_task.config["n_permutations"])) |
|
|
184 |
permut_predictions = np.zeros( |
|
|
185 |
( |
|
|
186 |
len(y), |
|
|
187 |
len(prediction_task.names), |
|
|
188 |
prediction_task.config["n_permutations"], |
|
|
189 |
) |
|
|
190 |
) |
|
|
191 |
for prm in range(prediction_task.config["n_permutations"]): |
|
|
192 |
X_perm = np.zeros((len(y), len(prediction_task.names))) |
|
|
193 |
random_state = check_random_state(prm) |
|
|
194 |
sh_ind = random_state.permutation(len(y)) |
|
|
195 |
yshuffle = np.copy(y)[sh_ind] |
|
|
196 |
permut_labels[:, prm] = yshuffle |
|
|
197 |
for fold_index, (train_index, test_index) in tqdm( |
|
|
198 |
enumerate(cv.split(np.zeros(len(y)), y)), |
|
|
199 |
leave=False, |
|
|
200 |
total=cv.get_n_splits(np.zeros(len(y))), |
|
|
201 |
disable=disable_infos, |
|
|
202 |
): |
|
|
203 |
X_train, yshuffle_train, X_test = ( |
|
|
204 |
X[train_index, :], |
|
|
205 |
yshuffle[train_index], |
|
|
206 |
X[test_index, :], |
|
|
207 |
) |
|
|
208 |
clf = clone(late_clf) |
|
|
209 |
clf.fit(X_train, yshuffle_train) |
|
|
210 |
|
|
|
211 |
for c, idx in enumerate(prediction_task.indices): |
|
|
212 |
X_perm[test_index, c] = clf.predict_proba(X_test, estim_ind=idx)[ |
|
|
213 |
:, 1 |
|
|
214 |
] |
|
|
215 |
permut_predictions[:, :, prm] = X_perm |
|
|
216 |
return df_pred, permut_predictions, permut_labels |
|
|
217 |
|
|
|
218 |
|
|
|
219 |
if __name__ == "__main__": |
|
|
220 |
args = argparse.ArgumentParser(description="Late fusion") |
|
|
221 |
args.add_argument( |
|
|
222 |
"-c", |
|
|
223 |
"--config", |
|
|
224 |
type=str, |
|
|
225 |
help="config file path", |
|
|
226 |
) |
|
|
227 |
args.add_argument( |
|
|
228 |
"-s", |
|
|
229 |
"--save_path", |
|
|
230 |
type=str, |
|
|
231 |
help="save path", |
|
|
232 |
) |
|
|
233 |
main(params=args.parse_args()) |