|
a |
|
b/examples/tcga_lung/_utils.py |
|
|
1 |
import numpy as np |
|
|
2 |
import pandas as pd |
|
|
3 |
import yaml |
|
|
4 |
from joblib import Parallel |
|
|
5 |
from tqdm.auto import tqdm |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
def encode_biopsy_site(df_rna): |
|
|
9 |
d = {} |
|
|
10 |
for site in df_rna["Biopsy site"].unique(): |
|
|
11 |
if pd.isnull(site) | (site == "Non disponible"): |
|
|
12 |
d[site] = np.nan |
|
|
13 |
elif site in ["PRIMITIF", "META_PULM", "META_PULM_HL", "META_PULM_CL"]: |
|
|
14 |
d[site] = 0 |
|
|
15 |
elif site in ["META_PLEVRE", "META_PLEVRE_HL", "META_PLEVRE_CL"]: |
|
|
16 |
d[site] = 1 |
|
|
17 |
elif site.split("_")[0] == "ADP": |
|
|
18 |
d[site] = 2 |
|
|
19 |
elif site == "META_OS": |
|
|
20 |
d[site] = 3 |
|
|
21 |
elif site == "META_FOIE": |
|
|
22 |
d[site] = 4 |
|
|
23 |
elif site == "META_SURRENALE": |
|
|
24 |
d[site] = 5 |
|
|
25 |
elif site == "META_BRAIN": |
|
|
26 |
d[site] = 6 |
|
|
27 |
else: |
|
|
28 |
d[site] = 7 |
|
|
29 |
return df_rna.replace({"Biopsy site": d}) |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
def process_radiomics(df_rad, transformed_features): |
|
|
33 |
df_rad[transformed_features] = np.log(df_rad[transformed_features] + 1) |
|
|
34 |
return df_rad |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
def write_yaml(content, fname): |
|
|
38 |
content = _clean_nested_dict(content) |
|
|
39 |
with open(fname, "w") as yaml_file: |
|
|
40 |
yaml.safe_dump( |
|
|
41 |
content, yaml_file, default_flow_style=None |
|
|
42 |
) # , default_flow_style=False) |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
def read_yaml(fname): |
|
|
46 |
with open(fname) as yaml_file: |
|
|
47 |
return yaml.safe_load(yaml_file) |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
class ProgressParallel(Parallel): |
|
|
51 |
def __init__(self, use_tqdm=True, total=None, *args, **kwargs): |
|
|
52 |
self._use_tqdm = use_tqdm |
|
|
53 |
self._total = total |
|
|
54 |
super().__init__(*args, **kwargs) |
|
|
55 |
|
|
|
56 |
def __call__(self, *args, **kwargs): |
|
|
57 |
with tqdm(disable=not self._use_tqdm, total=self._total) as self._pbar: |
|
|
58 |
return Parallel.__call__(self, *args, **kwargs) |
|
|
59 |
|
|
|
60 |
def print_progress(self): |
|
|
61 |
if self._total is None: |
|
|
62 |
self._pbar.total = self.n_dispatched_tasks |
|
|
63 |
self._pbar.n = self.n_completed_tasks |
|
|
64 |
self._pbar.refresh() |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
def _clean_nested_dict(d): |
|
|
68 |
if isinstance(d, (np.int8, np.int16, np.int32, np.int64)): |
|
|
69 |
return int(d) |
|
|
70 |
if isinstance(d, (np.float16, np.float32, np.float64)): |
|
|
71 |
return float(d) |
|
|
72 |
if isinstance(d, list): |
|
|
73 |
return [_clean_nested_dict(x) for x in d] |
|
|
74 |
if isinstance(d, dict): |
|
|
75 |
for key, value in d.items(): |
|
|
76 |
d.update({key: _clean_nested_dict(value)}) |
|
|
77 |
return d |