[7b3b0e]: / utils.py

Download this file

176 lines (142 with data), 6.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
'''
Contains the utility functions
'''
import numpy as np
import config as config
import sys
sys.path.append('../')
from sksurv.linear_model import CoxnetSurvivalAnalysis
from loader import Dataset
available_models = ['genomics', 'pyradiomics',
'densenet', 'intermediate_gp',
'intermediate_gd', 'late_gp',
'late_gd']
def run_coxnet(l1_ratio, n_alphas, x_train, y_train, x_test, y_test):
coxnet = CoxnetSurvivalAnalysis(l1_ratio=l1_ratio, n_alphas=n_alphas)
coxnet.fit(x_train, y_train)
outputs = coxnet.predict(x_test)
score = coxnet.score(x_test, y_test)
return outputs, score
def get_data(split=0, location=config.csv_location, mode='valid'):
'''
use mode = 'test' for testing
'''
print('Loading data for mode ' + mode + ' from location ' + location)
X_train, y_train, y_train2 = [], [], []
with open(location + 'train_' + str(split) + '.csv', 'r') as curr_file:
for row in curr_file:
a, b, c = row.split('\t')
X_train.append(a.strip())
y_train.append(int(b.strip()))
y_train2.append(int(c.strip()))
X_test, y_test, y_test2 = [], [], []
with open(location + mode + '_' + str(split) + '.csv', 'r') as curr_file:
for row in curr_file:
a, b, c = row.split('\t')
X_test.append(a.strip())
y_test.append(int(b.strip()))
y_test2.append(int(c.strip()))
return X_train, X_test, y_train, y_test, y_train2, y_test2
def get_structured_array(data_bool, data_value):
all_bools = data_bool
all_values = data_value
# all_bools = data_bool.cpu().detach().numpy()
# all_values = data_value.cpu().detach().numpy()
new_list = []
for idx in range(len(all_bools)):
new_list.append(tuple((all_bools[idx], all_values[idx])))
return np.array(new_list, dtype='bool, i8')
class DataLoader(object):
def __init__(self, fold=0, num_genes=500, mode='cpu'):
self.fold = fold
self.num_genes = num_genes
self.load_data(mode)
def load_data(self, mode):
X_train_list, X_valid_list, y_value_train, y_value_valid, \
y_train, y_valid = get_data(self.fold, config.csv_location, 'valid')
_, X_test_list, _, y_value_test, _, y_test = \
get_data(self.fold, config.csv_location, 'test')
self.train_num = len(X_train_list)
self.valid_num = len(X_valid_list)
self.test_num = len(X_test_list)
# labels
if mode == 'cpu':
self.y_train_bool = np.array(y_train)
self.y_valid_bool = np.array(y_valid)
self.y_test_bool = np.array(y_test)
self.y_train_value = np.array(y_value_train)
self.y_valid_value = np.array(y_value_valid)
self.y_test_value = np.array(y_value_test)
elif mode == 'gpu':
from torch.autograd import Variable
self.y_train_bool = Variable(torch.from_numpy(
np.array(y_train))).float()
self.y_valid_bool = Variable(torch.from_numpy(
np.array(y_valid))).float()
self.y_test_bool = Variable(torch.from_numpy(
np.array(y_test))).float()
self.y_train_value = Variable(torch.from_numpy(
np.array(y_value_train))).float()
self.y_valid_value = Variable(torch.from_numpy(
np.array(y_value_valid))).float()
self.y_test_value = Variable(torch.from_numpy(
np.array(y_value_test))).float()
else:
raise(NotImplementedError)
NRG = Dataset(config)
# genomics
X_gen_train, gen_list = NRG.get_genomics(X_train_list)
X_gen_valid, gen_list = NRG.get_genomics(X_valid_list)
X_gen_test, gen_list = NRG.get_genomics(X_test_list)
all_std = np.std(np.array(X_gen_train), axis=0)
all_sorted = np.argsort(all_std)
X_gen_train = np.array(X_gen_train)[:, all_sorted[-self.num_genes:]]
X_gen_valid = np.array(X_gen_valid)[:, all_sorted[-self.num_genes:]]
X_gen_test = np.array(X_gen_test)[:, all_sorted[-self.num_genes:]]
max_gen = np.max(np.concatenate(
(X_gen_train, X_gen_valid, X_gen_train), axis=0))
X_gen_train = (X_gen_train) / max_gen
X_gen_valid = (X_gen_valid) / max_gen
X_gen_test = (X_gen_test) / max_gen
if mode == 'gpu':
self.gen_train = Variable(torch.from_numpy(X_gen_train)).float()
self.gen_valid = Variable(torch.from_numpy(X_gen_valid)).float()
self.gen_test = Variable(torch.from_numpy(X_gen_test)).float()
elif mode == 'cpu':
self.gen_train = X_gen_train
self.gen_valid = X_gen_valid
self.gen_test = X_gen_test
# pyradiomics
X_pyrad_train = NRG.get_pyradiomics(X_train_list)
X_pyrad_valid = NRG.get_pyradiomics(X_valid_list)
X_pyrad_test = NRG.get_pyradiomics(X_test_list)
max_pyrad = np.max(np.concatenate(
(X_pyrad_train, X_pyrad_valid, X_pyrad_train), axis=0))
X_pyrad_train = (X_pyrad_train) / max_pyrad
X_pyrad_valid = (X_pyrad_valid) / max_pyrad
X_pyrad_test = (X_pyrad_test) / max_pyrad
if mode == 'gpu':
self.pyrad_train = Variable(torch.from_numpy(X_pyrad_train)).float()
self.pyrad_valid = Variable(torch.from_numpy(X_pyrad_valid)).float()
self.pyrad_test = Variable(torch.from_numpy(X_pyrad_test)).float()
elif mode == 'cpu':
self.pyrad_train = X_pyrad_train
self.pyrad_valid = X_pyrad_valid
self.pyrad_test = X_pyrad_test
# densenet
X_dense_train = NRG.get_densenet_features(X_train_list)
X_dense_valid = NRG.get_densenet_features(X_valid_list)
X_dense_test = NRG.get_densenet_features(X_test_list)
max_dense = np.max(np.concatenate(
(X_dense_train, X_dense_valid, X_dense_train), axis=0))
X_dense_train = (X_dense_train) / max_dense
X_dense_valid = (X_dense_valid) / max_dense
X_dense_test = (X_dense_test) / max_dense
if mode == 'gpu':
self.dense_train = Variable(torch.from_numpy(X_dense_train)).float()
self.dense_valid = Variable(torch.from_numpy(X_dense_valid)).float()
self.dense_test = Variable(torch.from_numpy(X_dense_test)).float()
elif mode == 'cpu':
self.dense_train = X_dense_train
self.dense_valid = X_dense_valid
self.dense_test = X_dense_test