|
a |
|
b/linear_cox.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"#### Packages required\n", |
|
|
8 |
"- numpy==1.14.0\n", |
|
|
9 |
"- matplotlib==3.0.3\n", |
|
|
10 |
"- pandas==0.24.2\n", |
|
|
11 |
"- nibabel==2.5.0\n", |
|
|
12 |
"- scikit-learn\n", |
|
|
13 |
"- scikit-survival 0.12 with ``pip install scikit-survival==0.12``\n", |
|
|
14 |
"- lifelines 0.23.9 with ``pip install lifelines``" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": 1, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [], |
|
|
22 |
"source": [ |
|
|
23 |
"import sksurv\n", |
|
|
24 |
"import numpy as np\n", |
|
|
25 |
"%matplotlib inline\n", |
|
|
26 |
"from matplotlib import pyplot as plt\n", |
|
|
27 |
"\n", |
|
|
28 |
"from sksurv.linear_model import CoxPHSurvivalAnalysis\n", |
|
|
29 |
"from lifelines.utils import concordance_index\n", |
|
|
30 |
"\n", |
|
|
31 |
"from utils import DataLoader, get_structured_array, run_coxnet" |
|
|
32 |
] |
|
|
33 |
}, |
|
|
34 |
{ |
|
|
35 |
"cell_type": "code", |
|
|
36 |
"execution_count": 2, |
|
|
37 |
"metadata": {}, |
|
|
38 |
"outputs": [ |
|
|
39 |
{ |
|
|
40 |
"name": "stdout", |
|
|
41 |
"output_type": "stream", |
|
|
42 |
"text": [ |
|
|
43 |
"Loading data for mode valid from location data/stanford/labels/recurrence_labels/\n", |
|
|
44 |
"Loading data for mode test from location data/stanford/labels/recurrence_labels/\n", |
|
|
45 |
"Fold : 0 || Training set: (74,) | Validation set: (11,) | Test set: (22,)\n" |
|
|
46 |
] |
|
|
47 |
}, |
|
|
48 |
{ |
|
|
49 |
"name": "stderr", |
|
|
50 |
"output_type": "stream", |
|
|
51 |
"text": [ |
|
|
52 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
53 |
" FutureWarning)\n", |
|
|
54 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
55 |
" FutureWarning)\n", |
|
|
56 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
57 |
" FutureWarning)\n", |
|
|
58 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
59 |
" FutureWarning)\n", |
|
|
60 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
61 |
" FutureWarning)\n", |
|
|
62 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
63 |
" FutureWarning)\n" |
|
|
64 |
] |
|
|
65 |
}, |
|
|
66 |
{ |
|
|
67 |
"name": "stdout", |
|
|
68 |
"output_type": "stream", |
|
|
69 |
"text": [ |
|
|
70 |
"Loading data for mode valid from location data/stanford/labels/recurrence_labels/\n", |
|
|
71 |
"Loading data for mode test from location data/stanford/labels/recurrence_labels/\n", |
|
|
72 |
"Fold : 1 || Training set: (74,) | Validation set: (11,) | Test set: (22,)\n" |
|
|
73 |
] |
|
|
74 |
}, |
|
|
75 |
{ |
|
|
76 |
"name": "stderr", |
|
|
77 |
"output_type": "stream", |
|
|
78 |
"text": [ |
|
|
79 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
80 |
" FutureWarning)\n", |
|
|
81 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
82 |
" FutureWarning)\n", |
|
|
83 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
84 |
" FutureWarning)\n", |
|
|
85 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
86 |
" FutureWarning)\n", |
|
|
87 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
88 |
" FutureWarning)\n", |
|
|
89 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
90 |
" FutureWarning)\n" |
|
|
91 |
] |
|
|
92 |
}, |
|
|
93 |
{ |
|
|
94 |
"name": "stdout", |
|
|
95 |
"output_type": "stream", |
|
|
96 |
"text": [ |
|
|
97 |
"Loading data for mode valid from location data/stanford/labels/recurrence_labels/\n", |
|
|
98 |
"Loading data for mode test from location data/stanford/labels/recurrence_labels/\n", |
|
|
99 |
"Fold : 2 || Training set: (75,) | Validation set: (11,) | Test set: (21,)\n" |
|
|
100 |
] |
|
|
101 |
}, |
|
|
102 |
{ |
|
|
103 |
"name": "stderr", |
|
|
104 |
"output_type": "stream", |
|
|
105 |
"text": [ |
|
|
106 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
107 |
" FutureWarning)\n", |
|
|
108 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
109 |
" FutureWarning)\n", |
|
|
110 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
111 |
" FutureWarning)\n", |
|
|
112 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
113 |
" FutureWarning)\n", |
|
|
114 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
115 |
" FutureWarning)\n", |
|
|
116 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
117 |
" FutureWarning)\n" |
|
|
118 |
] |
|
|
119 |
}, |
|
|
120 |
{ |
|
|
121 |
"name": "stdout", |
|
|
122 |
"output_type": "stream", |
|
|
123 |
"text": [ |
|
|
124 |
"Loading data for mode valid from location data/stanford/labels/recurrence_labels/\n", |
|
|
125 |
"Loading data for mode test from location data/stanford/labels/recurrence_labels/\n", |
|
|
126 |
"Fold : 3 || Training set: (75,) | Validation set: (11,) | Test set: (21,)\n" |
|
|
127 |
] |
|
|
128 |
}, |
|
|
129 |
{ |
|
|
130 |
"name": "stderr", |
|
|
131 |
"output_type": "stream", |
|
|
132 |
"text": [ |
|
|
133 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
134 |
" FutureWarning)\n", |
|
|
135 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
136 |
" FutureWarning)\n", |
|
|
137 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
138 |
" FutureWarning)\n", |
|
|
139 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
140 |
" FutureWarning)\n", |
|
|
141 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
142 |
" FutureWarning)\n", |
|
|
143 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
144 |
" FutureWarning)\n" |
|
|
145 |
] |
|
|
146 |
}, |
|
|
147 |
{ |
|
|
148 |
"name": "stdout", |
|
|
149 |
"output_type": "stream", |
|
|
150 |
"text": [ |
|
|
151 |
"Loading data for mode valid from location data/stanford/labels/recurrence_labels/\n", |
|
|
152 |
"Loading data for mode test from location data/stanford/labels/recurrence_labels/\n", |
|
|
153 |
"Fold : 4 || Training set: (75,) | Validation set: (11,) | Test set: (21,)\n" |
|
|
154 |
] |
|
|
155 |
}, |
|
|
156 |
{ |
|
|
157 |
"name": "stderr", |
|
|
158 |
"output_type": "stream", |
|
|
159 |
"text": [ |
|
|
160 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
161 |
" FutureWarning)\n", |
|
|
162 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
163 |
" FutureWarning)\n", |
|
|
164 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
165 |
" FutureWarning)\n", |
|
|
166 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
167 |
" FutureWarning)\n", |
|
|
168 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
169 |
" FutureWarning)\n", |
|
|
170 |
"/home/vs5/.virtualenvs/radiogenomics/lib/python3.5/site-packages/sksurv/linear_model/coxnet.py:211: FutureWarning: The default value of alpha_min_ratio will depend on the sample size relative to the number of features in 0.13. If n_samples > n_features, the current default value 0.0001 will be used. If n_samples < n_features, 0.01 will be used instead.\n", |
|
|
171 |
" FutureWarning)\n" |
|
|
172 |
] |
|
|
173 |
} |
|
|
174 |
], |
|
|
175 |
"source": [ |
|
|
176 |
"n_alphas = 100\n", |
|
|
177 |
"l1_ratio = 0.3\n", |
|
|
178 |
"num_genes = 500\n", |
|
|
179 |
"\n", |
|
|
180 |
"all_indices = []\n", |
|
|
181 |
"\n", |
|
|
182 |
"for fold_num in range(5):\n", |
|
|
183 |
"\n", |
|
|
184 |
" curr_indices = []\n", |
|
|
185 |
"\n", |
|
|
186 |
" data = DataLoader(fold=fold_num, num_genes=num_genes)\n", |
|
|
187 |
" y_train = get_structured_array(data.y_train_bool, data.y_train_value)\n", |
|
|
188 |
" y_valid = get_structured_array(data.y_valid_bool, data.y_valid_value)\n", |
|
|
189 |
" y_test = get_structured_array(data.y_test_bool, data.y_test_value)\n", |
|
|
190 |
" print('Fold : ' + str(fold_num) + ' || ' +\n", |
|
|
191 |
" 'Training set: ' + str(y_train.shape) + ' | Validation set: ' + str(y_valid.shape) +\n", |
|
|
192 |
" ' | Test set: ' + str(y_test.shape))\n", |
|
|
193 |
"\n", |
|
|
194 |
" ### Genomics\n", |
|
|
195 |
"\n", |
|
|
196 |
" gen_outputs, gen_scores = run_coxnet(l1_ratio, n_alphas,\n", |
|
|
197 |
" data.gen_train , y_train,\n", |
|
|
198 |
" data.gen_test , y_test)\n", |
|
|
199 |
"\n", |
|
|
200 |
" ### Pyradiomics\n", |
|
|
201 |
"\n", |
|
|
202 |
" pyrad_outputs, pyrad_scores = run_coxnet(l1_ratio, n_alphas,\n", |
|
|
203 |
" data.pyrad_train , y_train,\n", |
|
|
204 |
" data.pyrad_test , y_test)\n", |
|
|
205 |
" \n", |
|
|
206 |
" ### Densenet\n", |
|
|
207 |
"\n", |
|
|
208 |
" dense_outputs, dense_scores = run_coxnet(l1_ratio, n_alphas,\n", |
|
|
209 |
" data.dense_train , y_train,\n", |
|
|
210 |
" data.dense_test , y_test)\n", |
|
|
211 |
"\n", |
|
|
212 |
" ### Genomics-PyRadiomics\n", |
|
|
213 |
"\n", |
|
|
214 |
" feat1_train = np.concatenate((data.gen_train , \n", |
|
|
215 |
" data.pyrad_train ), axis=1)\n", |
|
|
216 |
" feat1_test = np.concatenate((data.gen_test , \n", |
|
|
217 |
" data.pyrad_test ), axis=1)\n", |
|
|
218 |
"\n", |
|
|
219 |
" feat1_outputs, feat1_score = run_coxnet(l1_ratio, n_alphas,\n", |
|
|
220 |
" feat1_train, y_train,\n", |
|
|
221 |
" feat1_test, y_test)\n", |
|
|
222 |
" feat1_hat_score = concordance_index(data.y_test_value ,\n", |
|
|
223 |
" - gen_outputs - pyrad_outputs,\n", |
|
|
224 |
" data.y_test_bool )\n", |
|
|
225 |
" ### Genomics-DenseNet\n", |
|
|
226 |
" \n", |
|
|
227 |
" feat2_train = np.concatenate((data.gen_train , \n", |
|
|
228 |
" data.dense_train ), axis=1)\n", |
|
|
229 |
" feat2_test = np.concatenate((data.gen_test , \n", |
|
|
230 |
" data.dense_test ), axis=1)\n", |
|
|
231 |
"\n", |
|
|
232 |
" feat2_outputs, feat2_score = run_coxnet(l1_ratio, n_alphas,\n", |
|
|
233 |
" feat2_train, y_train,\n", |
|
|
234 |
" feat2_test, y_test)\n", |
|
|
235 |
" feat2_hat_score = concordance_index(data.y_test_value ,\n", |
|
|
236 |
" - gen_outputs - dense_outputs,\n", |
|
|
237 |
" data.y_test_bool )\n", |
|
|
238 |
" \n", |
|
|
239 |
" ### Genomics-PyRadiomics-DenseNet\n", |
|
|
240 |
"\n", |
|
|
241 |
" \n", |
|
|
242 |
" feat3_train = np.concatenate((data.gen_train , \n", |
|
|
243 |
" data.pyrad_train ,\n", |
|
|
244 |
" data.dense_train ), axis=1)\n", |
|
|
245 |
" feat3_test = np.concatenate((data.gen_test , \n", |
|
|
246 |
" data.pyrad_test ,\n", |
|
|
247 |
" data.dense_test ), axis=1)\n", |
|
|
248 |
"\n", |
|
|
249 |
" feat3_outputs, feat3_score = run_coxnet(l1_ratio, n_alphas,\n", |
|
|
250 |
" feat3_train, y_train,\n", |
|
|
251 |
" feat3_test, y_test)\n", |
|
|
252 |
" feat3_hat_score = concordance_index(data.y_test_value ,\n", |
|
|
253 |
" - gen_outputs - pyrad_outputs - dense_outputs,\n", |
|
|
254 |
" data.y_test_bool )\n", |
|
|
255 |
"\n", |
|
|
256 |
"\n", |
|
|
257 |
" curr_indices = [gen_scores, pyrad_scores, dense_scores,\n", |
|
|
258 |
" feat1_score, feat1_hat_score,\n", |
|
|
259 |
" feat2_score, feat2_hat_score,\n", |
|
|
260 |
" feat3_score, feat3_hat_score]\n", |
|
|
261 |
" all_indices.append(curr_indices)" |
|
|
262 |
] |
|
|
263 |
}, |
|
|
264 |
{ |
|
|
265 |
"cell_type": "code", |
|
|
266 |
"execution_count": 3, |
|
|
267 |
"metadata": {}, |
|
|
268 |
"outputs": [], |
|
|
269 |
"source": [ |
|
|
270 |
"methods = ['genomics \\t ', 'pyradiomics \\t', 'densenet \\t',\n", |
|
|
271 |
" 'gen-pyrad (ef) \\t', 'gen-pyrad (lf) \\t', 'gen-dense (ef) \\t', 'gen-dense (lf) \\t',\n", |
|
|
272 |
" 'gen-pyrad-dense (ef)', 'gen-pyrad-dense (lf)',]" |
|
|
273 |
] |
|
|
274 |
}, |
|
|
275 |
{ |
|
|
276 |
"cell_type": "code", |
|
|
277 |
"execution_count": 4, |
|
|
278 |
"metadata": {}, |
|
|
279 |
"outputs": [ |
|
|
280 |
{ |
|
|
281 |
"name": "stdout", |
|
|
282 |
"output_type": "stream", |
|
|
283 |
"text": [ |
|
|
284 |
"method \t\t \t|fd 1|fd 2|fd 3|fd 4|fd 5\n", |
|
|
285 |
"-------------------------------------------------\n", |
|
|
286 |
"genomics \t \t|0.52|0.45|0.60|0.72|0.75\n", |
|
|
287 |
"pyradiomics \t\t|0.46|0.39|0.30|0.37|0.80\n", |
|
|
288 |
"densenet \t\t|0.53|0.49|0.44|0.65|0.52\n", |
|
|
289 |
"gen-pyrad (ef) \t\t|0.41|0.36|0.46|0.57|0.81\n", |
|
|
290 |
"gen-pyrad (lf) \t\t|0.41|0.42|0.49|0.60|0.81\n", |
|
|
291 |
"gen-dense (ef) \t\t|0.53|0.46|0.60|0.80|0.77\n", |
|
|
292 |
"gen-dense (lf) \t\t|0.49|0.50|0.55|0.82|0.59\n", |
|
|
293 |
"gen-pyrad-dense (ef)\t|0.43|0.37|0.47|0.61|0.82\n", |
|
|
294 |
"gen-pyrad-dense (lf)\t|0.46|0.46|0.51|0.81|0.60\n" |
|
|
295 |
] |
|
|
296 |
} |
|
|
297 |
], |
|
|
298 |
"source": [ |
|
|
299 |
"print('method \\t\\t \\t|fd 1|fd 2|fd 3|fd 4|fd 5')\n", |
|
|
300 |
"print('-------------------------------------------------')\n", |
|
|
301 |
"for y in range(len(all_indices[0])):s\n", |
|
|
302 |
" print(methods[y] + '\\t|' + '|'.join([\"{0:.2f}\".format(round(x[y], 2)) for x in all_indices]))" |
|
|
303 |
] |
|
|
304 |
}, |
|
|
305 |
{ |
|
|
306 |
"cell_type": "code", |
|
|
307 |
"execution_count": null, |
|
|
308 |
"metadata": {}, |
|
|
309 |
"outputs": [], |
|
|
310 |
"source": [] |
|
|
311 |
} |
|
|
312 |
], |
|
|
313 |
"metadata": { |
|
|
314 |
"kernelspec": { |
|
|
315 |
"display_name": "Python3 (radiogenomics)", |
|
|
316 |
"language": "python", |
|
|
317 |
"name": "radiogenomics" |
|
|
318 |
}, |
|
|
319 |
"language_info": { |
|
|
320 |
"codemirror_mode": { |
|
|
321 |
"name": "ipython", |
|
|
322 |
"version": 3 |
|
|
323 |
}, |
|
|
324 |
"file_extension": ".py", |
|
|
325 |
"mimetype": "text/x-python", |
|
|
326 |
"name": "python", |
|
|
327 |
"nbconvert_exporter": "python", |
|
|
328 |
"pygments_lexer": "ipython3", |
|
|
329 |
"version": "3.5.2" |
|
|
330 |
} |
|
|
331 |
}, |
|
|
332 |
"nbformat": 4, |
|
|
333 |
"nbformat_minor": 2 |
|
|
334 |
} |