--- a +++ b/setup.py @@ -0,0 +1,32 @@ +import setuptools +from medseg import __version__ + +with open("README.md", "r") as fh: + long_description = fh.read() + +found = setuptools.find_packages() +print(f"Found these packages to add: {found}") + +setuptools.setup( + name="medseg", + version=__version__, + author="Diedre Carmo", + author_email="diedre@dca.fee.unicamp.br", + description="Modified EfficientDet published in: Multitasking segmentation of lung and COVID-19 findings in CT scans using modified EfficientDet, UNet and MobileNetV3 models", + long_description=long_description, + long_description_content_type="text/markdown", + url="https://github.com/MICLab-Unicamp/medseg", + packages=found, + classifiers=[ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: MIT License", + "Operating System :: OS Independent", + ], + python_requires='>=3.6', + install_requires=['setuptools', 'numpy', 'rich', 'pillow', 'scipy', 'tqdm', 'torch', 'pandas', 'torchvision', 'pytorch-lightning', 'efficientnet_pytorch', 'connected-components-3d', 'psutil', 'gputil', 'opencv-python', 'SimpleITK==2.0.2', 'pydicom', 'matplotlib'], + entry_points={ + 'console_scripts': ["medseg = medseg.run:main", "medseg_cpu = medseg.run:main_cpu"] + }, + include_package_data=True, + package_data={'medseg': ["best_coedet.ckpt", "icon.png", "poly_lung.ckpt", "sing_a100_up_awd_step_raw_medseg_pos.ckpt", "sme2d_coedet_fiso.ckpt", "airway.ckpt", "parse.ckpt"]} +)