|
a |
|
b/setup.py |
|
|
1 |
import setuptools |
|
|
2 |
from medseg import __version__ |
|
|
3 |
|
|
|
4 |
with open("README.md", "r") as fh: |
|
|
5 |
long_description = fh.read() |
|
|
6 |
|
|
|
7 |
found = setuptools.find_packages() |
|
|
8 |
print(f"Found these packages to add: {found}") |
|
|
9 |
|
|
|
10 |
setuptools.setup( |
|
|
11 |
name="medseg", |
|
|
12 |
version=__version__, |
|
|
13 |
author="Diedre Carmo", |
|
|
14 |
author_email="diedre@dca.fee.unicamp.br", |
|
|
15 |
description="Modified EfficientDet published in: Multitasking segmentation of lung and COVID-19 findings in CT scans using modified EfficientDet, UNet and MobileNetV3 models", |
|
|
16 |
long_description=long_description, |
|
|
17 |
long_description_content_type="text/markdown", |
|
|
18 |
url="https://github.com/MICLab-Unicamp/medseg", |
|
|
19 |
packages=found, |
|
|
20 |
classifiers=[ |
|
|
21 |
"Programming Language :: Python :: 3", |
|
|
22 |
"License :: OSI Approved :: MIT License", |
|
|
23 |
"Operating System :: OS Independent", |
|
|
24 |
], |
|
|
25 |
python_requires='>=3.6', |
|
|
26 |
install_requires=['setuptools', 'numpy', 'rich', 'pillow', 'scipy', 'tqdm', 'torch', 'pandas', 'torchvision', 'pytorch-lightning', 'efficientnet_pytorch', 'connected-components-3d', 'psutil', 'gputil', 'opencv-python', 'SimpleITK==2.0.2', 'pydicom', 'matplotlib'], |
|
|
27 |
entry_points={ |
|
|
28 |
'console_scripts': ["medseg = medseg.run:main", "medseg_cpu = medseg.run:main_cpu"] |
|
|
29 |
}, |
|
|
30 |
include_package_data=True, |
|
|
31 |
package_data={'medseg': ["best_coedet.ckpt", "icon.png", "poly_lung.ckpt", "sing_a100_up_awd_step_raw_medseg_pos.ckpt", "sme2d_coedet_fiso.ckpt", "airway.ckpt", "parse.ckpt"]} |
|
|
32 |
) |