Diff of /medseg/radam.py [000000] .. [a22922]

Switch to unified view

a b/medseg/radam.py
1
import math
2
3
import torch
4
from torch import optim
5
from torch.optim.optimizer import Optimizer
6
7
8
class RAdam(Optimizer):
9
10
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
11
        if not 0.0 <= lr:
12
            raise ValueError("Invalid learning rate: {}".format(lr))
13
        if not 0.0 <= eps:
14
            raise ValueError("Invalid epsilon value: {}".format(eps))
15
        if not 0.0 <= betas[0] < 1.0:
16
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
17
        if not 0.0 <= betas[1] < 1.0:
18
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
19
20
        self.degenerated_to_sgd = degenerated_to_sgd
21
        if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):
22
            for param in params:
23
                if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]):
24
                    param['buffer'] = [[None, None, None] for _ in range(10)]
25
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)])
26
        super(RAdam, self).__init__(params, defaults)
27
28
    def __setstate__(self, state):
29
        super(RAdam, self).__setstate__(state)
30
31
    def step(self, closure=None):
32
33
        loss = None
34
        if closure is not None:
35
            loss = closure()
36
37
        for group in self.param_groups:
38
39
            for p in group['params']:
40
                if p.grad is None:
41
                    continue
42
                grad = p.grad.data.float()
43
                if grad.is_sparse:
44
                    raise RuntimeError('RAdam does not support sparse gradients')
45
46
                p_data_fp32 = p.data.float()
47
48
                state = self.state[p]
49
50
                if len(state) == 0:
51
                    state['step'] = 0
52
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
53
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
54
                else:
55
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
56
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
57
58
                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
59
                beta1, beta2 = group['betas']
60
61
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value = 1 - beta2)
62
                exp_avg.mul_(beta1).add_(grad, alpha = 1 - beta1)
63
64
                state['step'] += 1
65
                buffered = group['buffer'][int(state['step'] % 10)]
66
                if state['step'] == buffered[0]:
67
                    N_sma, step_size = buffered[1], buffered[2]
68
                else:
69
                    buffered[0] = state['step']
70
                    beta2_t = beta2 ** state['step']
71
                    N_sma_max = 2 / (1 - beta2) - 1
72
                    N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
73
                    buffered[1] = N_sma
74
75
                    # more conservative since it's an approximated value
76
                    if N_sma >= 5:
77
                        step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
78
                    elif self.degenerated_to_sgd:
79
                        step_size = 1.0 / (1 - beta1 ** state['step'])
80
                    else:
81
                        step_size = -1
82
                    buffered[2] = step_size
83
84
                # more conservative since it's an approximated value
85
                if N_sma >= 5:
86
                    if group['weight_decay'] != 0:
87
                        p_data_fp32.add_(p_data_fp32, alpha = -group['weight_decay'] * group['lr'])
88
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
89
                    p_data_fp32.addcdiv_(exp_avg, denom, value = -step_size * group['lr'])
90
                    p.data.copy_(p_data_fp32)
91
                elif step_size > 0:
92
                    if group['weight_decay'] != 0:
93
                        p_data_fp32.add_(p_data_fp32, alpha = -group['weight_decay'] * group['lr'])
94
                    p_data_fp32.add_(exp_avg, alpha = -step_size * group['lr'])
95
                    p.data.copy_(p_data_fp32)
96
97
        return loss
98
99
def get_optimizer(name, params, lr, wd=0):
100
    if name == "RAdam":
101
        return RAdam(params, lr=lr, weight_decay=wd)
102
    elif name == "Adam":
103
        return optim.Adam(params, lr=lr, weight_decay=wd)
104
    elif name == "SGD":
105
        return optim.SGD(params, lr=lr, momentum=0.9, weight_decay=wd)
106
    else:
107
        raise ValueError("Invalid optimizer name")