|
a |
|
b/medseg/radam.py |
|
|
1 |
import math |
|
|
2 |
|
|
|
3 |
import torch |
|
|
4 |
from torch import optim |
|
|
5 |
from torch.optim.optimizer import Optimizer |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
class RAdam(Optimizer): |
|
|
9 |
|
|
|
10 |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): |
|
|
11 |
if not 0.0 <= lr: |
|
|
12 |
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
|
13 |
if not 0.0 <= eps: |
|
|
14 |
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
|
15 |
if not 0.0 <= betas[0] < 1.0: |
|
|
16 |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
|
17 |
if not 0.0 <= betas[1] < 1.0: |
|
|
18 |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
|
19 |
|
|
|
20 |
self.degenerated_to_sgd = degenerated_to_sgd |
|
|
21 |
if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): |
|
|
22 |
for param in params: |
|
|
23 |
if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): |
|
|
24 |
param['buffer'] = [[None, None, None] for _ in range(10)] |
|
|
25 |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)]) |
|
|
26 |
super(RAdam, self).__init__(params, defaults) |
|
|
27 |
|
|
|
28 |
def __setstate__(self, state): |
|
|
29 |
super(RAdam, self).__setstate__(state) |
|
|
30 |
|
|
|
31 |
def step(self, closure=None): |
|
|
32 |
|
|
|
33 |
loss = None |
|
|
34 |
if closure is not None: |
|
|
35 |
loss = closure() |
|
|
36 |
|
|
|
37 |
for group in self.param_groups: |
|
|
38 |
|
|
|
39 |
for p in group['params']: |
|
|
40 |
if p.grad is None: |
|
|
41 |
continue |
|
|
42 |
grad = p.grad.data.float() |
|
|
43 |
if grad.is_sparse: |
|
|
44 |
raise RuntimeError('RAdam does not support sparse gradients') |
|
|
45 |
|
|
|
46 |
p_data_fp32 = p.data.float() |
|
|
47 |
|
|
|
48 |
state = self.state[p] |
|
|
49 |
|
|
|
50 |
if len(state) == 0: |
|
|
51 |
state['step'] = 0 |
|
|
52 |
state['exp_avg'] = torch.zeros_like(p_data_fp32) |
|
|
53 |
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) |
|
|
54 |
else: |
|
|
55 |
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) |
|
|
56 |
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) |
|
|
57 |
|
|
|
58 |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
|
59 |
beta1, beta2 = group['betas'] |
|
|
60 |
|
|
|
61 |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value = 1 - beta2) |
|
|
62 |
exp_avg.mul_(beta1).add_(grad, alpha = 1 - beta1) |
|
|
63 |
|
|
|
64 |
state['step'] += 1 |
|
|
65 |
buffered = group['buffer'][int(state['step'] % 10)] |
|
|
66 |
if state['step'] == buffered[0]: |
|
|
67 |
N_sma, step_size = buffered[1], buffered[2] |
|
|
68 |
else: |
|
|
69 |
buffered[0] = state['step'] |
|
|
70 |
beta2_t = beta2 ** state['step'] |
|
|
71 |
N_sma_max = 2 / (1 - beta2) - 1 |
|
|
72 |
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) |
|
|
73 |
buffered[1] = N_sma |
|
|
74 |
|
|
|
75 |
# more conservative since it's an approximated value |
|
|
76 |
if N_sma >= 5: |
|
|
77 |
step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) |
|
|
78 |
elif self.degenerated_to_sgd: |
|
|
79 |
step_size = 1.0 / (1 - beta1 ** state['step']) |
|
|
80 |
else: |
|
|
81 |
step_size = -1 |
|
|
82 |
buffered[2] = step_size |
|
|
83 |
|
|
|
84 |
# more conservative since it's an approximated value |
|
|
85 |
if N_sma >= 5: |
|
|
86 |
if group['weight_decay'] != 0: |
|
|
87 |
p_data_fp32.add_(p_data_fp32, alpha = -group['weight_decay'] * group['lr']) |
|
|
88 |
denom = exp_avg_sq.sqrt().add_(group['eps']) |
|
|
89 |
p_data_fp32.addcdiv_(exp_avg, denom, value = -step_size * group['lr']) |
|
|
90 |
p.data.copy_(p_data_fp32) |
|
|
91 |
elif step_size > 0: |
|
|
92 |
if group['weight_decay'] != 0: |
|
|
93 |
p_data_fp32.add_(p_data_fp32, alpha = -group['weight_decay'] * group['lr']) |
|
|
94 |
p_data_fp32.add_(exp_avg, alpha = -step_size * group['lr']) |
|
|
95 |
p.data.copy_(p_data_fp32) |
|
|
96 |
|
|
|
97 |
return loss |
|
|
98 |
|
|
|
99 |
def get_optimizer(name, params, lr, wd=0): |
|
|
100 |
if name == "RAdam": |
|
|
101 |
return RAdam(params, lr=lr, weight_decay=wd) |
|
|
102 |
elif name == "Adam": |
|
|
103 |
return optim.Adam(params, lr=lr, weight_decay=wd) |
|
|
104 |
elif name == "SGD": |
|
|
105 |
return optim.SGD(params, lr=lr, momentum=0.9, weight_decay=wd) |
|
|
106 |
else: |
|
|
107 |
raise ValueError("Invalid optimizer name") |