from model_definition.baseline import baseline_config
from model_definition.additional_layers import additional_layers_config
from model_definition.default import default_config
class ModelConfig(object):
def __init__(self, conv_layers_num, fc_layers_num, config_dict):
self._weights = config_dict['weights']
self._biases = config_dict['biases']
self._fc_layers_with_dropout = []
self._conv_layers_num = conv_layers_num
self._fc_layers_num = fc_layers_num
self._config_dict = config_dict
def get_fc_weights(self):
return self._weights[self._conv_layers_num:]
def get_fc_biases(self):
return self._biases[self._conv_layers_num:]
def get_conv_weights(self):
return self._weights[0:self._conv_layers_num]
def get_conv_biases(self):
return self._biases[0:self._conv_layers_num]
def get_strides(self):
return self._config_dict['strides']
def get_pool_strides(self):
return self._config_dict['pool_strides']
def get_pool_windows(self):
return self._config_dict['pool_windows']
def has_fc_dropout(self, index):
return index in self._fc_layers_with_dropout
def has_dropout_after_convolutions(self):
return False
def with_l2_norm(self):
return False
class BaselineConfig(ModelConfig):
def __init__(self, conv_layers_num=3, fc_layers_num=2,
config_dict=baseline_config):
super(BaselineConfig, self).__init__(conv_layers_num,
fc_layers_num,
config_dict)
class NoRegularizationConfig(ModelConfig):
def __init__(self, conv_layers_num=4, fc_layers_num=3,
config_dict=additional_layers_config):
super(NoRegularizationConfig, self).__init__(
conv_layers_num, fc_layers_num, config_dict)
# Three different regularization options used for
# building the network configuration
class OneDropoutRegularizationConfig(NoRegularizationConfig):
def __init__(self, conv_layers_num=4, fc_layers_num=3,
config_dict=additional_layers_config):
super(OneDropoutRegularizationConfig, self).__init__(
conv_layers_num, fc_layers_num, config_dict)
# Dropout on second fully connected layers, zero based indexing
self._fc_layers_with_dropout = [1]
class DropoutAfterConvolutionsConfig(OneDropoutRegularizationConfig):
def __init__(self, conv_layers_num=4, fc_layers_num=3,
config_dict=additional_layers_config):
super(DropoutAfterConvolutionsConfig, self).__init__(
conv_layers_num, fc_layers_num, config_dict)
def has_dropout_after_convolutions(self):
return True
class DropoutsWithL2RegularizationConfig(DropoutAfterConvolutionsConfig):
def __init__(self, conv_layers_num=4, fc_layers_num=3,
config_dict=additional_layers_config):
super(DropoutsWithL2RegularizationConfig, self).__init__(
conv_layers_num, fc_layers_num, config_dict)
def with_l2_norm(self):
return True
# With regularization - 2 dropouts and L2 norm
# filters and strides adopted to handle more slices with the same
# network depth
class DefaultConfig(ModelConfig):
def __init__(self, conv_layers_num=4, fc_layers_num=3,
config_dict=default_config):
super(DefaultConfig, self).__init__(conv_layers_num,
fc_layers_num,
config_dict)
self._fc_layers_with_dropout = [1]
def has_dropout_after_convolutions(self):
return True
def with_l2_norm(self):
return True