|
a |
|
b/utils.py |
|
|
1 |
import os |
|
|
2 |
import cv2 |
|
|
3 |
import math |
|
|
4 |
import imutils |
|
|
5 |
|
|
|
6 |
import numpy as np |
|
|
7 |
import pandas as pd |
|
|
8 |
import matplotlib.pyplot as plt |
|
|
9 |
import config |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
def resize(image, |
|
|
13 |
x=config.IMAGE_PXL_SIZE_X, |
|
|
14 |
y=config.IMAGE_PXL_SIZE_Y): |
|
|
15 |
if not len(image): |
|
|
16 |
return np.array([]) |
|
|
17 |
|
|
|
18 |
return np.stack([cv2.resize(scan, (x, y)) |
|
|
19 |
for scan in image]) |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def normalize(image): |
|
|
23 |
image = ((image - config.MIN_BOUND) / |
|
|
24 |
(config.MAX_BOUND - config.MIN_BOUND)) |
|
|
25 |
image[image>1] = 1. |
|
|
26 |
image[image<0] = 0. |
|
|
27 |
return image |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
def chunks(l, n): |
|
|
31 |
"""Yield successive n-sized chunks from l.""" |
|
|
32 |
for i in range(0, len(l), n): |
|
|
33 |
yield l[i:i + n] |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
def mean(l): |
|
|
37 |
if len(l): |
|
|
38 |
return sum(l) / len(l) |
|
|
39 |
return np.full(l.shape, config.OUT_SCAN, l.dtype) |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
def get_mean_chunk_slices(slices): |
|
|
43 |
if len(slices) < config.SLICES: |
|
|
44 |
print("New slices are less then required after getting mean images, adding padding.") |
|
|
45 |
return trim_and_pad(np.array(slices), config.SLICES) |
|
|
46 |
|
|
|
47 |
new_slices = [] |
|
|
48 |
for slice_chunk in np.array_split(slices, config.SLICES): |
|
|
49 |
slice_chunk = list(map(mean, zip(*slice_chunk))) |
|
|
50 |
new_slices.append(slice_chunk) |
|
|
51 |
|
|
|
52 |
return np.stack(new_slices) |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
def read_csv(input_file): |
|
|
56 |
return pd.read_csv(input_file, index_col=0) |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
def read_csv_column(input_file, columns=[0]): |
|
|
60 |
return pd.read_csv(input_file, usecols=columns).values.flatten() |
|
|
61 |
|
|
|
62 |
|
|
|
63 |
def store_to_csv(patients, labels, csv_file_path): |
|
|
64 |
index = pd.Index(data=patients, name=config.ID_COLUMN_NAME) |
|
|
65 |
df = pd.DataFrame(data={config.COLUMN_NAME: labels}, |
|
|
66 |
columns=[config.COLUMN_NAME], |
|
|
67 |
index=index) |
|
|
68 |
df.to_csv(csv_file_path) |
|
|
69 |
|
|
|
70 |
|
|
|
71 |
def trim_and_pad(patient_img, slice_count, normalize_pad=True): |
|
|
72 |
slices, size_x, size_y = patient_img.shape |
|
|
73 |
|
|
|
74 |
if slices == slice_count: |
|
|
75 |
return patient_img |
|
|
76 |
|
|
|
77 |
if slices > slice_count: |
|
|
78 |
return patient_img[:slice_count] |
|
|
79 |
|
|
|
80 |
padding = np.full((slice_count-slices, size_x, size_y), |
|
|
81 |
config.OUT_SCAN, patient_img.dtype) |
|
|
82 |
if normalize_pad: |
|
|
83 |
padding = normalize(padding) |
|
|
84 |
|
|
|
85 |
return np.vstack([patient_img, padding]) |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
def trim_pad_slices(scans, pad_with_existing=True, |
|
|
89 |
padding_value=config.BACKGROUND): |
|
|
90 |
slices, x, y = scans.shape |
|
|
91 |
|
|
|
92 |
if slices == config.SLICES: |
|
|
93 |
return scans |
|
|
94 |
|
|
|
95 |
if slices < config.SLICES: |
|
|
96 |
pad = config.SLICES - slices |
|
|
97 |
new_scans = [] |
|
|
98 |
if pad > slices: |
|
|
99 |
# Double the size, scans are already ordered by slice location |
|
|
100 |
for scan in scans: |
|
|
101 |
new_scans.append(scan) |
|
|
102 |
new_scans.append(scan) |
|
|
103 |
|
|
|
104 |
del scans |
|
|
105 |
scans = new_scans |
|
|
106 |
pad = config.SLICES - len(scans) |
|
|
107 |
|
|
|
108 |
if pad_with_existing: |
|
|
109 |
padding = [] |
|
|
110 |
for slice_chunk in np.array_split(scans, pad): |
|
|
111 |
padding.extend(slice_chunk) |
|
|
112 |
padding.append(slice_chunk[-1]) |
|
|
113 |
|
|
|
114 |
#contains originals also, doubles the last slice in the chunk |
|
|
115 |
return np.stack(padding) |
|
|
116 |
else: |
|
|
117 |
padding = np.full((pad, x, y), padding_value, scans.dtype) |
|
|
118 |
return np.vstack([scans, padding]) |
|
|
119 |
|
|
|
120 |
trim = slices - config.SLICES |
|
|
121 |
trimmed = [] |
|
|
122 |
for slice_chunk in np.array_split(scans, trim): |
|
|
123 |
trimmed.append(slice_chunk[1:]) |
|
|
124 |
|
|
|
125 |
return np.vstack(trimmed) |
|
|
126 |
|
|
|
127 |
|
|
|
128 |
def count_background_rows(image, background=config.BACKGROUND): |
|
|
129 |
return np.sum(np.all(image == background, axis=1)) |
|
|
130 |
|
|
|
131 |
|
|
|
132 |
def remove_background_rows(image, background=config.BACKGROUND): |
|
|
133 |
return image[40:image.shape[0]-40, 20:image.shape[1]-20] |
|
|
134 |
|
|
|
135 |
|
|
|
136 |
def rotate_scans(scans, angle=10): |
|
|
137 |
return np.stack([imutils.rotate(scan, angle) for scan in scans]) |
|
|
138 |
|
|
|
139 |
|
|
|
140 |
def remove_background_rows_3d(scans, background=config.BACKGROUND): |
|
|
141 |
transformed = [] |
|
|
142 |
for scan in scans: |
|
|
143 |
removed = remove_background_rows(scan, background) |
|
|
144 |
tr_scan = cv2.resize(removed, |
|
|
145 |
(config.IMAGE_PXL_SIZE_X, config.IMAGE_PXL_SIZE_Y)) |
|
|
146 |
transformed.append(tr_scan) |
|
|
147 |
|
|
|
148 |
return np.stack(transformed) |
|
|
149 |
|
|
|
150 |
|
|
|
151 |
def store_patient_image(image_dir, image, patient_id): |
|
|
152 |
""" |
|
|
153 |
Serializes the patient image. |
|
|
154 |
|
|
|
155 |
Image is a 3D numpy array - array from patient slices. |
|
|
156 |
If not existing image_dir is created. |
|
|
157 |
""" |
|
|
158 |
if not os.path.exists(image_dir): |
|
|
159 |
os.makedirs(image_dir) |
|
|
160 |
|
|
|
161 |
np.savez_compressed(os.path.join(image_dir, patient_id), image) |
|
|
162 |
|
|
|
163 |
|
|
|
164 |
def load_patient_image(image_dir, patient_id): |
|
|
165 |
""" |
|
|
166 |
Load the serialized patient image. |
|
|
167 |
|
|
|
168 |
Image is a 3D array - array of patient slices, metadata, |
|
|
169 |
contained in the dicom format, is removed. |
|
|
170 |
""" |
|
|
171 |
if '.npz' not in patient_id: |
|
|
172 |
patient_id += '.npz' |
|
|
173 |
with np.load(os.path.join(image_dir, patient_id)) as data: |
|
|
174 |
return data['arr_0'] |