[4f54f1]: / model_factory.py

Download this file

51 lines (44 with data), 2.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import config
from data_set import DataLoader
from model import Convolution3DNetwork
import patient_loader as pl
import model_configuration as mc
class ModelFactory(object):
def __init__(self, selected_model=None):
self._selected_model = selected_model or config.SELECTED_MODEL
self._with_augmentation = False
self._init_model()
def _init_model(self):
if self._selected_model == config.BASELINE:
self._image_loader = pl.MeanScansLoader()
self._network_config = mc.BaselineConfig()
elif self._selected_model == config.BASELINE_WITH_SEGMENTATION:
self._image_loader = pl.SegmentedGaussianLungsLoader()
self._network_config = mc.BaselineConfig()
elif self._selected_model == config.NO_REGULARIZATION:
self._image_loader = pl.SegmentedGaussianLungsLoader()
self._network_config = mc.NoRegularizationConfig()
elif self._selected_model == config.NO_REGULARIZATION_WATERSHED:
# segmentation algorithm has already been selected and
# changed during config setup
self._image_loader = pl.SegmentedGaussianLungsLoader()
self._network_config = mc.NoRegularizationConfig()
elif self._selected_model == config.DROPOUT_L2NORM_REGULARIZARION:
self._image_loader = pl.SegmentedGaussianLungsLoader()
self._network_config = mc.DropoutsWithL2RegularizationConfig()
elif self._selected_model == config.REGULARIZATION_MORE_SLICES:
self._image_loader = pl.SegmentedLungsScansLoader()
self._network_config = mc.DefaultConfig()
elif self._selected_model == config.WITH_DATA_AUGMENTATION:
self._image_loader = pl.SegmentedLungsScansLoader()
self._with_augmentation = True
self._network_config = mc.DefaultConfig()
else: #default case
self._image_loader = pl.SegmentedLungsScansLoader()
self._with_augmentation = True
self._network_config = mc.DefaultConfig()
def get_network_model(self):
return Convolution3DNetwork(config=self._network_config)
def get_data_loader(self):
return DataLoader(images_loader=self._image_loader,
add_transformed_positives=self._with_augmentation)