--- a +++ b/model_configuration.py @@ -0,0 +1,107 @@ +from model_definition.baseline import baseline_config +from model_definition.additional_layers import additional_layers_config +from model_definition.default import default_config + + +class ModelConfig(object): + def __init__(self, conv_layers_num, fc_layers_num, config_dict): + self._weights = config_dict['weights'] + self._biases = config_dict['biases'] + self._fc_layers_with_dropout = [] + self._conv_layers_num = conv_layers_num + self._fc_layers_num = fc_layers_num + self._config_dict = config_dict + + def get_fc_weights(self): + return self._weights[self._conv_layers_num:] + + def get_fc_biases(self): + return self._biases[self._conv_layers_num:] + + def get_conv_weights(self): + return self._weights[0:self._conv_layers_num] + + def get_conv_biases(self): + return self._biases[0:self._conv_layers_num] + + def get_strides(self): + return self._config_dict['strides'] + + def get_pool_strides(self): + return self._config_dict['pool_strides'] + + def get_pool_windows(self): + return self._config_dict['pool_windows'] + + def has_fc_dropout(self, index): + return index in self._fc_layers_with_dropout + + def has_dropout_after_convolutions(self): + return False + + def with_l2_norm(self): + return False + + +class BaselineConfig(ModelConfig): + def __init__(self, conv_layers_num=3, fc_layers_num=2, + config_dict=baseline_config): + super(BaselineConfig, self).__init__(conv_layers_num, + fc_layers_num, + config_dict) + + +class NoRegularizationConfig(ModelConfig): + def __init__(self, conv_layers_num=4, fc_layers_num=3, + config_dict=additional_layers_config): + super(NoRegularizationConfig, self).__init__( + conv_layers_num, fc_layers_num, config_dict) + + +# Three different regularization options used for +# building the network configuration +class OneDropoutRegularizationConfig(NoRegularizationConfig): + def __init__(self, conv_layers_num=4, fc_layers_num=3, + config_dict=additional_layers_config): + super(OneDropoutRegularizationConfig, self).__init__( + conv_layers_num, fc_layers_num, config_dict) + # Dropout on second fully connected layers, zero based indexing + self._fc_layers_with_dropout = [1] + + +class DropoutAfterConvolutionsConfig(OneDropoutRegularizationConfig): + def __init__(self, conv_layers_num=4, fc_layers_num=3, + config_dict=additional_layers_config): + super(DropoutAfterConvolutionsConfig, self).__init__( + conv_layers_num, fc_layers_num, config_dict) + + def has_dropout_after_convolutions(self): + return True + + +class DropoutsWithL2RegularizationConfig(DropoutAfterConvolutionsConfig): + def __init__(self, conv_layers_num=4, fc_layers_num=3, + config_dict=additional_layers_config): + super(DropoutsWithL2RegularizationConfig, self).__init__( + conv_layers_num, fc_layers_num, config_dict) + + def with_l2_norm(self): + return True + + +# With regularization - 2 dropouts and L2 norm +# filters and strides adopted to handle more slices with the same +# network depth +class DefaultConfig(ModelConfig): + def __init__(self, conv_layers_num=4, fc_layers_num=3, + config_dict=default_config): + super(DefaultConfig, self).__init__(conv_layers_num, + fc_layers_num, + config_dict) + self._fc_layers_with_dropout = [1] + + def has_dropout_after_convolutions(self): + return True + + def with_l2_norm(self): + return True \ No newline at end of file