Diff of /bin/oner_class.r [000000] .. [868c5d]

Switch to unified view

a b/bin/oner_class.r
1
setwd(".")
2
options(stringsAsFactors = FALSE)
3
# library("clusterSim")
4
5
library("OneR");
6
library(class)
7
library(gmodels)
8
source("./confusion_matrix_rates.r")
9
10
threshold <- 0.5
11
12
fileName <- "../data/LungCancerDataset_AllRecords_NORM_27reduced_features.csv"
13
prc_data_norm <- read.csv(file=fileName, head=TRUE,sep=",",stringsAsFactors=FALSE)
14
15
cat("fileName: ", fileName, sep="")
16
17
prc_data_norm <- prc_data_norm[sample(nrow(prc_data_norm)),] # shuffle the rows
18
19
target_index <- dim(prc_data_norm)[2]
20
21
training_set_perce = 80
22
cat("training_set_perce = ", training_set_perce, "\n", sep="")
23
24
# the training set is the first 60% of the whole dataset
25
training_set_first_index <- 1 # NEW
26
training_set_last_index <- round(dim(prc_data_norm)[1]*training_set_perce/100) # NEW
27
28
# the test set is the last 40% of the whole dataset
29
test_set_first_index <- training_set_last_index+1 # NEW
30
test_set_last_index <- dim(prc_data_norm)[1] # NEW
31
32
cat("[Creating the subsets for the values]\n")
33
prc_data_train <- prc_data_norm[training_set_first_index:training_set_last_index, 1:(target_index)] # NEW
34
prc_data_test <- prc_data_norm[test_set_first_index:test_set_last_index, 1:(target_index)] # NEW
35
36
prc_data_test_labels  <- prc_data_norm[test_set_first_index:test_set_last_index, target_index]   # NEW
37
38
39
print("dim(prc_data_train)")
40
print(dim(prc_data_train))
41
42
print("dim(prc_data_test)")
43
print(dim(prc_data_test))
44
45
46
# #rf_new <- randomForest(Metastasis ~ ., data=prc_data_train, importance=TRUE, proximity=TRUE)
47
48
49
# Original application of One Rule with all the dataset
50
prc_model_train <- OneR(prc_data_train, verbose = TRUE)
51
52
# Generation of the CART model
53
# prc_model_train <- OneR(Metastasis ~ keep.side + platelet.count..PLT., method="class", data=prc_data_train);
54
55
summary(prc_model_train)
56
prediction <- predict(prc_model_train, prc_data_test)
57
# eval_model(prediction, prc_data_test)
58
59
prediction_binary <- as.numeric(prediction) -1
60
prc_data_test_PRED_binary <- data.frame(prediction)
61
62
confusion_matrix_rates(prc_data_test_labels, prediction_binary, "@@@ Test set @@@")
63
64
65