--- a +++ b/bin/oner_class.r @@ -0,0 +1,65 @@ +setwd(".") +options(stringsAsFactors = FALSE) +# library("clusterSim") + +library("OneR"); +library(class) +library(gmodels) +source("./confusion_matrix_rates.r") + +threshold <- 0.5 + +fileName <- "../data/LungCancerDataset_AllRecords_NORM_27reduced_features.csv" +prc_data_norm <- read.csv(file=fileName, head=TRUE,sep=",",stringsAsFactors=FALSE) + +cat("fileName: ", fileName, sep="") + +prc_data_norm <- prc_data_norm[sample(nrow(prc_data_norm)),] # shuffle the rows + +target_index <- dim(prc_data_norm)[2] + +training_set_perce = 80 +cat("training_set_perce = ", training_set_perce, "\n", sep="") + +# the training set is the first 60% of the whole dataset +training_set_first_index <- 1 # NEW +training_set_last_index <- round(dim(prc_data_norm)[1]*training_set_perce/100) # NEW + +# the test set is the last 40% of the whole dataset +test_set_first_index <- training_set_last_index+1 # NEW +test_set_last_index <- dim(prc_data_norm)[1] # NEW + +cat("[Creating the subsets for the values]\n") +prc_data_train <- prc_data_norm[training_set_first_index:training_set_last_index, 1:(target_index)] # NEW +prc_data_test <- prc_data_norm[test_set_first_index:test_set_last_index, 1:(target_index)] # NEW + +prc_data_test_labels <- prc_data_norm[test_set_first_index:test_set_last_index, target_index] # NEW + + +print("dim(prc_data_train)") +print(dim(prc_data_train)) + +print("dim(prc_data_test)") +print(dim(prc_data_test)) + + +# #rf_new <- randomForest(Metastasis ~ ., data=prc_data_train, importance=TRUE, proximity=TRUE) + + +# Original application of One Rule with all the dataset +prc_model_train <- OneR(prc_data_train, verbose = TRUE) + +# Generation of the CART model +# prc_model_train <- OneR(Metastasis ~ keep.side + platelet.count..PLT., method="class", data=prc_data_train); + +summary(prc_model_train) +prediction <- predict(prc_model_train, prc_data_test) +# eval_model(prediction, prc_data_test) + +prediction_binary <- as.numeric(prediction) -1 +prc_data_test_PRED_binary <- data.frame(prediction) + +confusion_matrix_rates(prc_data_test_labels, prediction_binary, "@@@ Test set @@@") + + +