|
a |
|
b/bin/lin_reg.r |
|
|
1 |
#!/usr/bin/env Rscript |
|
|
2 |
|
|
|
3 |
|
|
|
4 |
setwd(".") |
|
|
5 |
options(stringsAsFactors = FALSE) |
|
|
6 |
# library("clusterSim") |
|
|
7 |
library("e1071") |
|
|
8 |
library("PRROC") |
|
|
9 |
tau = 0.5 |
|
|
10 |
|
|
|
11 |
source("./confusion_matrix_rates.r") |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
cancer_data_norm <- read.csv(file="../data/LungCancerDataset_AllRecords_NORM_27reduced_features.csv",head=TRUE,sep=",",stringsAsFactors=FALSE) |
|
|
15 |
|
|
|
16 |
cancer_data_norm <- cancer_data_norm[sample(nrow(cancer_data_norm)),] # shuffle the rows |
|
|
17 |
|
|
|
18 |
target_index <- dim(cancer_data_norm)[2] |
|
|
19 |
|
|
|
20 |
training_set_perce <- 80 |
|
|
21 |
|
|
|
22 |
cat("training_set_perce = ", training_set_perce, "%\n", sep="") |
|
|
23 |
|
|
|
24 |
# the training set is the first training_set_perce% of the whole dataset |
|
|
25 |
training_set_first_index <- 1 # NEW |
|
|
26 |
training_set_last_index <- round(dim(cancer_data_norm)[1]*training_set_perce/100) # NEW |
|
|
27 |
|
|
|
28 |
# the test set is the last 20% of the whole dataset |
|
|
29 |
test_set_first_index <- round(dim(cancer_data_norm)[1]*training_set_perce/100)+1 # NEW |
|
|
30 |
test_set_last_index <- dim(cancer_data_norm)[1] # NEW |
|
|
31 |
|
|
|
32 |
cat("[Creating the subsets for the values]\n") |
|
|
33 |
prc_data_train <- cancer_data_norm[training_set_first_index:training_set_last_index, 1:(target_index-1)] # NEW |
|
|
34 |
prc_data_test <- cancer_data_norm[test_set_first_index:test_set_last_index, 1:(target_index-1)] # NEW |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
cat("[Creating the subsets for the labels \"1\"-\"0\"]\n") |
|
|
38 |
prc_data_train_labels <- cancer_data_norm[training_set_first_index:training_set_last_index, target_index] # NEW |
|
|
39 |
prc_data_test_labels <- cancer_data_norm[test_set_first_index:test_set_last_index, target_index] # NEW |
|
|
40 |
|
|
|
41 |
library(class) |
|
|
42 |
library(gmodels) |
|
|
43 |
|
|
|
44 |
# apply k-NN with k_best to the test set |
|
|
45 |
|
|
|
46 |
cat("\n[Training the linear regression model on training set & applying the linear regression to test set]\n", sep="") |
|
|
47 |
|
|
|
48 |
lin_reg_model_new <- lm(prc_data_train_labels ~ ., data=prc_data_train) |
|
|
49 |
prc_data_test_pred <- predict(lin_reg_model_new, prc_data_test) |
|
|
50 |
|
|
|
51 |
prc_data_test_pred_bin <- as.numeric(prc_data_test_pred) |
|
|
52 |
prc_data_test_pred_bin[prc_data_test_pred_bin>=tau]<-1 |
|
|
53 |
prc_data_test_pred_bin[prc_data_test_pred_bin<tau]<-0 |
|
|
54 |
|
|
|
55 |
confusion_matrix_rates(prc_data_test_labels, prc_data_test_pred_bin, "@@@ Test set @@@") |
|
|
56 |
|
|
|
57 |
|