|
a |
|
b/bin/cart.r |
|
|
1 |
setwd(".") |
|
|
2 |
options(stringsAsFactors = FALSE) |
|
|
3 |
|
|
|
4 |
list.of.packages <- c("PRROC", "e1071", "clusterSim","rpart") |
|
|
5 |
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])] |
|
|
6 |
if(length(new.packages)) install.packages(new.packages) |
|
|
7 |
|
|
|
8 |
library("clusterSim") |
|
|
9 |
library("PRROC") |
|
|
10 |
library("e1071") |
|
|
11 |
library("rpart") |
|
|
12 |
|
|
|
13 |
source("./confusion_matrix_rates.r") |
|
|
14 |
source("./utils.r") |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
|
|
|
18 |
threshold <- 0.5 |
|
|
19 |
|
|
|
20 |
fileName <- "../data/LungCancerDataset_AllRecords_NORM_27reduced_features.csv" |
|
|
21 |
mesothelioma_datatable <- read.csv(fileName, header = TRUE, sep =","); |
|
|
22 |
|
|
|
23 |
target_index <- dim(mesothelioma_datatable)[2] |
|
|
24 |
|
|
|
25 |
cat("fileName: ", fileName, "\n", sep="") |
|
|
26 |
|
|
|
27 |
original_mesothelioma_datatable <- mesothelioma_datatable |
|
|
28 |
|
|
|
29 |
# shuffle the rows |
|
|
30 |
mesothelioma_datatable <- original_mesothelioma_datatable[sample(nrow(original_mesothelioma_datatable)),] |
|
|
31 |
|
|
|
32 |
# Allocation of the size of the training set |
|
|
33 |
perce_training_set <- 80 |
|
|
34 |
size_training_set <- round(dim(mesothelioma_datatable)[1]*(perce_training_set/100)) |
|
|
35 |
|
|
|
36 |
cat("perce_training_set = ",perce_training_set,"%", sep="") |
|
|
37 |
|
|
|
38 |
# Allocation of the training set and of the test set |
|
|
39 |
training_set <- (mesothelioma_datatable[1:size_training_set,]) |
|
|
40 |
test_set_index_start <- size_training_set+1 |
|
|
41 |
test_set_index_end <- dim(mesothelioma_datatable)[1] |
|
|
42 |
test_set <- mesothelioma_datatable[test_set_index_start:test_set_index_end,] |
|
|
43 |
|
|
|
44 |
test_labels <- mesothelioma_datatable[test_set_index_start:test_set_index_end, target_index] # NEW |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
print("dim(training_set)") |
|
|
48 |
print(dim(training_set)) |
|
|
49 |
|
|
|
50 |
print("dim(test_set)") |
|
|
51 |
print(dim(test_set)) |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
# Generation of the CART model |
|
|
55 |
# cart_model <- rpart(class.of.diagnosis ~ keep.side + platelet.count..PLT., method="class", data=training_set); |
|
|
56 |
cart_model <- rpart(Metastasis ~ ., method="class", data=training_set); |
|
|
57 |
|
|
|
58 |
pred_test_predictions <- as.numeric(predict(cart_model, test_set, typ="class"))-1 |
|
|
59 |
pred_test_set_labels <- as.numeric(test_set$Metastasis) |
|
|
60 |
|
|
|
61 |
prc_data_test_PRED_binary <- as.numeric(pred_test_predictions) |
|
|
62 |
|
|
|
63 |
prc_data_test_PRED_binary[prc_data_test_PRED_binary>=threshold]=1 |
|
|
64 |
prc_data_test_PRED_binary[prc_data_test_PRED_binary<threshold]=0 |
|
|
65 |
# mcc_outcome <- mcc(pred_test_set_labels, prc_data_test_PRED_binary) |
|
|
66 |
# confusion_matrix_rates(pred_test_set_labels, prc_data_test_PRED_binary) |
|
|
67 |
|
|
|
68 |
confusion_matrix_rates(test_labels, pred_test_predictions, "@@@ Test set @@@") |
|
|
69 |
|