--- a +++ b/README.md @@ -0,0 +1,46 @@ +# Computational prediction of metastasis of lung cancer patients from clinical features +Machine learning prediction of lung cancer metastasis from clinical data patients + +First step: mapping of the feature values and normalization into the [0; 1] interval for each feature + +`Rscript normalization.r` + +Machine learning methods, instructions on Linux Ubuntu: + +linear regression + +`/usr/bin/Rscript lin_reg.r` + +k-nearest neighbors + +`/usr/bin/Rscript knn.r` + +support vector machines + +`/usr/bin/Rscript svm.r` + +decision tree + +`/usr/bin/Rscript cart.r` + +one rule + +`/usr/bin/Rscript oner_class.r` + +naive bayes + +`/usr/bin/Rscript naive_bayes.r` + +random forest classification (top method) + +`/usr/bin/Rscript random_forest_class.r` + +deep neural network + +`th ann_script_val.lua` + +## Paper + Chip M. Lynch, Victor H. van Berkel, Hermann B. Frieboes. ["Application of unsupervised analysis techniques to lung cancer patient data"](https://doi.org/10.1371/journal.pone.0184370). PLoS ONE 12(9): e0184370, 2017. + +## Question on Medical Science Stack Exchange +[Can tumor size (T) and presence of cancer in the lymph nodes (N) in patients with lung cancer be identified on the first visit?](https://medicalsciences.stackexchange.com/questions/18040/can-tumor-size-t-and-presence-of-cancer-in-the-lymph-nodes-n-in-patients-wit)