import sys
import os
import pandas as pd
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report
# Add the '/scripts' directory to the Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../scripts')))
from model.testing import _predict
from model.testing import score_metrics
from model.testing import matrix
from model.testing import auc
from model.testing import report
# Load holdout training set
try:
data = pd.read_csv(open(os.path.join(os.path.dirname(__file__), '../data/input/test.csv'), 'r'))
except FileNotFoundError as err:
print(f'Ann error occoured: {err}')
# Test model prediction function
def test_prediction():
assert _predict(data).any().astype(int)
# Test score metrics function
def test_metrics_score():
assert score_metrics(data, accuracy_score)
# Test class matrix function
def test_class_matrix():
assert matrix(data, confusion_matrix)
# Test auc function
def test_auc():
assert auc(data)
# Test class report function
def test_class_report():
assert report(data, classification_report)