88 lines (87 with data), 2.1 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from time import time \n",
"import warnings\n",
"import pandas as pd\n",
"import joblib\n",
"\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prediction: 99% - Benign\n",
"Prediction Speed: 0.003\n"
]
}
],
"source": [
"# Load trained model\n",
"model = joblib.load('../../../models/gradient_boosting.joblib')\n",
"\n",
"'''\n",
"GENDER: (1 - male, 2 - female)\n",
"AGE: any\n",
"SMOKING: (1 - no, 2 - yes)\n",
"YELLOW_FINGERS: (1 - no, 2 - yes)\n",
"FATIGUE: (1 - no, 2 - yes)\n",
"WHEEZING: (1 - no, 2 - yes)\n",
"COUGHING: (1 - no, 2 - yes)\n",
"SHORTNESS OF BREATH: (1 - no, 2 - yes)\n",
"SWALLOWING DIFFICULTY: (1 - no, 2 - yes)\n",
"CHEST PAIN: (1 - no, 2 - yes)\n",
"CHRONIC DISEASE: (1 - no, 2 - yes)\n",
"\n",
"'''\n",
"\n",
"new_data = [1,24,1,1,2,1,1,2,1,1,1] # My health status\n",
"\n",
"timer = time()\n",
"\n",
"pred = model.predict([new_data])[0] # Predict new data\n",
"proba = f'{(model.predict_proba([new_data])[0][pred] * 100):.0f}%' # Get the prediction outcome\n",
"\n",
"if pred == 1:\n",
" print(f'Prediction: {proba} - Affected')\n",
"else:\n",
" print(f'Prediction: {proba} - Benign')\n",
"\n",
"print(f'Prediction Speed: {(time() - timer):.3f}')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}