|
a |
|
b/notebooks/data/preparation.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 6, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"from sklearn.model_selection import train_test_split\n", |
|
|
10 |
"import pandas as pd" |
|
|
11 |
] |
|
|
12 |
}, |
|
|
13 |
{ |
|
|
14 |
"cell_type": "code", |
|
|
15 |
"execution_count": 7, |
|
|
16 |
"metadata": {}, |
|
|
17 |
"outputs": [], |
|
|
18 |
"source": [ |
|
|
19 |
"# Load processed datasets\n", |
|
|
20 |
"original = pd.read_csv(\"../../data/processed/original.csv\")\n", |
|
|
21 |
"synthetic = pd.read_csv(\"../../data/processed/synthetic.csv\")\n", |
|
|
22 |
"\n", |
|
|
23 |
"# mix both original and synthetic sets\n", |
|
|
24 |
"data = pd.concat([original, synthetic], keys=[1, 2]).drop_duplicates().dropna()" |
|
|
25 |
] |
|
|
26 |
}, |
|
|
27 |
{ |
|
|
28 |
"cell_type": "code", |
|
|
29 |
"execution_count": 8, |
|
|
30 |
"metadata": {}, |
|
|
31 |
"outputs": [], |
|
|
32 |
"source": [ |
|
|
33 |
"# Select relevant feature\n", |
|
|
34 |
"feature = data[['GENDER', 'AGE', 'SMOKING', 'YELLOW_FINGERS', 'FATIGUE', 'WHEEZING', 'COUGHING', 'SHORTNESS OF BREATH', 'SWALLOWING DIFFICULTY', 'CHEST PAIN', 'CHRONIC DISEASE']]\n", |
|
|
35 |
"label = data['LUNG_CANCER']\n", |
|
|
36 |
"\n", |
|
|
37 |
"data = pd.concat([feature, label], axis=1).drop_duplicates().dropna()" |
|
|
38 |
] |
|
|
39 |
}, |
|
|
40 |
{ |
|
|
41 |
"cell_type": "code", |
|
|
42 |
"execution_count": 9, |
|
|
43 |
"metadata": {}, |
|
|
44 |
"outputs": [], |
|
|
45 |
"source": [ |
|
|
46 |
"feature = data.drop('LUNG_CANCER', axis='columns')\n", |
|
|
47 |
"label = data['LUNG_CANCER']" |
|
|
48 |
] |
|
|
49 |
}, |
|
|
50 |
{ |
|
|
51 |
"cell_type": "code", |
|
|
52 |
"execution_count": 10, |
|
|
53 |
"metadata": {}, |
|
|
54 |
"outputs": [ |
|
|
55 |
{ |
|
|
56 |
"name": "stdout", |
|
|
57 |
"output_type": "stream", |
|
|
58 |
"text": [ |
|
|
59 |
"Training set: (353, 11)\n", |
|
|
60 |
"Testing set: (89, 11)\n" |
|
|
61 |
] |
|
|
62 |
} |
|
|
63 |
], |
|
|
64 |
"source": [ |
|
|
65 |
"# Split train/test holdout sets\n", |
|
|
66 |
"X_train, X_test, y_train, y_test = train_test_split(feature, label, test_size=0.2, random_state=42, stratify=label)\n", |
|
|
67 |
"\n", |
|
|
68 |
"print(f\"Training set: {X_train.shape}\")\n", |
|
|
69 |
"print(f\"Testing set: {X_test.shape}\")\n", |
|
|
70 |
"\n", |
|
|
71 |
"train_data = pd.concat([X_train, y_train], axis=1)\n", |
|
|
72 |
"test_data = pd.concat([X_test , y_test], axis=1)\n", |
|
|
73 |
"\n", |
|
|
74 |
"train_data.to_csv('../../data/input/train.csv', index=False)\n", |
|
|
75 |
"test_data.to_csv('../../data/input/test.csv', index=False)\n" |
|
|
76 |
] |
|
|
77 |
} |
|
|
78 |
], |
|
|
79 |
"metadata": { |
|
|
80 |
"kernelspec": { |
|
|
81 |
"display_name": "Python 3", |
|
|
82 |
"language": "python", |
|
|
83 |
"name": "python3" |
|
|
84 |
}, |
|
|
85 |
"language_info": { |
|
|
86 |
"codemirror_mode": { |
|
|
87 |
"name": "ipython", |
|
|
88 |
"version": 3 |
|
|
89 |
}, |
|
|
90 |
"file_extension": ".py", |
|
|
91 |
"mimetype": "text/x-python", |
|
|
92 |
"name": "python", |
|
|
93 |
"nbconvert_exporter": "python", |
|
|
94 |
"pygments_lexer": "ipython3", |
|
|
95 |
"version": "3.12.2" |
|
|
96 |
} |
|
|
97 |
}, |
|
|
98 |
"nbformat": 4, |
|
|
99 |
"nbformat_minor": 2 |
|
|
100 |
} |