|
a |
|
b/README.md |
|
|
1 |
# Lung Cancer Detection - v1.1 |
|
|
2 |
|
|
|
3 |
The machine learning project pipeline for lung cancer analysis and prediction at a low cost, to assist individuals in understanding their risk of lung cancer. It also supports decision making, health awareness, based on their lifestyle habits. |
|
|
4 |
|
|
|
5 |
## Project Directory Structure |
|
|
6 |
|
|
|
7 |
``` |
|
|
8 |
lung-cancer-detection/ # Root folder. |
|
|
9 |
├── api/ # Deploying model using flask for production. |
|
|
10 |
├── data/ # Different set of dataset. |
|
|
11 |
| ├── input/ # Holdout set (training, testing). |
|
|
12 |
| ├── processed/ # cleaned set (original, synthetic). |
|
|
13 |
| ├── raw/ # un-processed set (original, synthetic). |
|
|
14 |
├── figures/ # Visualization charts. |
|
|
15 |
| ├── eda/ # Exploratory analysis chart images. |
|
|
16 |
| | ├── original/ # Chart images for original part. |
|
|
17 |
| | ├── synthetic/ # Chart images for synthetic part. |
|
|
18 |
| ├── model/ # Model evaluation chart images. |
|
|
19 |
├── models/ # Saved trained model. |
|
|
20 |
├── notebooks/ # Experimentation and analysis notebooks. |
|
|
21 |
| ├── data/ # Notebooks for processing and preparations set. |
|
|
22 |
| ├── eda/ # Exploratory analysis notebooks (original, synthetic). |
|
|
23 |
| ├── model/ # Ml notebooks experimentation |
|
|
24 |
| ├── evaluation/ # Notebook for training, validation and testing. |
|
|
25 |
| ├── inference/ # Notebook for making prediction. |
|
|
26 |
├── scripts/ # Automated python scripts. |
|
|
27 |
| ├── data/ # Scripts for processing and preparations set. |
|
|
28 |
| ├── model/ # Scripts for model training, testing & inference. |
|
|
29 |
├── tests/ # Unit testing scripts (integration, functional). |
|
|
30 |
├── .gitignore # Tells Git which files to ignore when committing your project. |
|
|
31 |
├── LICENSE # Author license. |
|
|
32 |
├── README.md # Project documentations for developers. |
|
|
33 |
├── requirements.txt # Project installation dependencies. |
|
|
34 |
``` |
|
|
35 |
|
|
|
36 |
## Model Pipeline Workflow |
|
|
37 |
|
|
|
38 |
``` |
|
|
39 |
1. **Processing** - remove missing or duplicated data, feature engineering. |
|
|
40 |
2. **Preparation** - feature selection, remove duplicated data, holdout split (train/test set). |
|
|
41 |
3. **Training + cross val** - training + validation (training set), model selection. |
|
|
42 |
4. **Testing** - model testing (test set). |
|
|
43 |
5. **Inference** - make prediction for new data. |
|
|
44 |
``` |
|
|
45 |
|
|
|
46 |
## Model Performance |
|
|
47 |
|
|
|
48 |
**Metrics** |
|
|
49 |
|
|
|
50 |
``` |
|
|
51 |
1. **Accuracy** - 93% |
|
|
52 |
2. **Precision** - 95% |
|
|
53 |
3. **Recall** - 91% |
|
|
54 |
4. **F1** - 93% |
|
|
55 |
``` |
|
|
56 |
|
|
|
57 |
**Matrix** |
|
|
58 |
|
|
|
59 |
``` |
|
|
60 |
TP: 43 - TN: 40 - FP: 2 - FN: 4 |
|
|
61 |
``` |
|
|
62 |
|
|
|
63 |
**AUC** |
|
|
64 |
|
|
|
65 |
``` |
|
|
66 |
AUC - 0.97 |
|
|
67 |
``` |
|
|
68 |
|
|
|
69 |
**Class Report** |
|
|
70 |
|
|
|
71 |
``` |
|
|
72 |
Class 0: Precision - 91%, Recall - 95%, F1 - 93% | Total - 42 |
|
|
73 |
Class 1: Precision - 96%, Recall - 91%, F1 - 93% | Total - 47 |
|
|
74 |
``` |
|
|
75 |
|
|
|
76 |
The model used was gradient boosting (GB). |
|
|
77 |
|
|
|
78 |
## Getting Started |
|
|
79 |
Install this project on your local machine and here are following steps. |
|
|
80 |
|
|
|
81 |
### Installation |
|
|
82 |
|
|
|
83 |
**Clone the Repository** |
|
|
84 |
|
|
|
85 |
``` |
|
|
86 |
$ git clone https://github.com/nordszamora/lung-cancer-detection.git |
|
|
87 |
|
|
|
88 |
$ cd lung-cancer-detection/ |
|
|
89 |
|
|
|
90 |
$ pip install -r requirements.txt |
|
|
91 |
``` |
|
|
92 |
|
|
|
93 |
### Automated Scripts |
|
|
94 |
1. **Run data scripts** |
|
|
95 |
|
|
|
96 |
``` |
|
|
97 |
$ cd scripts/ |
|
|
98 |
|
|
|
99 |
$ cd data/ |
|
|
100 |
|
|
|
101 |
$ python processing.py |
|
|
102 |
|
|
|
103 |
$ python preparation.py |
|
|
104 |
``` |
|
|
105 |
|
|
|
106 |
2. **Run model scripts** |
|
|
107 |
|
|
|
108 |
``` |
|
|
109 |
$ cd scripts/ |
|
|
110 |
|
|
|
111 |
$ cd model/ |
|
|
112 |
|
|
|
113 |
$ python training_validation.py |
|
|
114 |
|
|
|
115 |
$ python testing.py |
|
|
116 |
|
|
|
117 |
$ python inference.py |
|
|
118 |
``` |
|
|
119 |
|
|
|
120 |
### Serving Model |
|
|
121 |
|
|
|
122 |
1. **Run flask api** |
|
|
123 |
|
|
|
124 |
``` |
|
|
125 |
$ cd api/ |
|
|
126 |
|
|
|
127 |
$ python app.py |
|
|
128 |
``` |
|
|
129 |
|
|
|
130 |
2. **Test api endpoint** |
|
|
131 |
|
|
|
132 |
``` |
|
|
133 |
curl -X POST http://localhost:5000/api/v1/predict -H "Content-Type: application/json" -d '{"gender": 1, "age": 43, "smoking": 2, "yellow_skin": 2, "fatigue": 2, "wheezing": 2, "coughing": 2, "shortness_of_breath": 2, "swallowing_difficulty": 2, "chest_pain": 2, "chronic_disease": 1}' |
|
|
134 |
``` |
|
|
135 |
|
|
|
136 |
### Unit Testing |
|
|
137 |
|
|
|
138 |
**Run pytest** |
|
|
139 |
|
|
|
140 |
``` |
|
|
141 |
$ cd tests/ |
|
|
142 |
|
|
|
143 |
$ pytest |
|
|
144 |
``` |
|
|
145 |
|
|
|
146 |
#### Data source: |
|
|
147 |
See: ([kaggle](https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer)) |
|
|
148 |
|
|
|
149 |
#### Note: |
|
|
150 |
I used a SMOTE to generate a synthetic value due to poorly imbalance dataset. |
|
|
151 |
|
|
|
152 |
## License |
|
|
153 |
|
|
|
154 |
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details. |