import os, shutil, sys
from pathlib import Path
import numpy as np
import pandas as pd
from tqdm import tqdm
import re
from PIL import Image
sys.path.append("./")
from preprocessingutils import pwr_transform
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--out-dir', default='', help='place to put the slices (leave empty for default)')
parser.add_argument('--in-dir', default='', help='input directory (leave empty for default)')
parser.add_argument('--min-size', default=20, type=int, help='minimal size of noduls in mm')
parser.add_argument('--splits', default='train,valid', help='which spits to create, separate with ,')
parser.add_argument('--manual-seed', default=12345, help='seed for generating splits')
parser.add_argument('--silent', action='store_false', dest='verbose', help='dont print stuff')
parser.add_argument('--valid_min', default=int(1000), type=int, help='minimal number of validation and test imgs, otherwise do 20%')
parser.add_argument('--no-imgs', action='store_false', dest='copy_imgs', help='dont copy, only update dataframe')
parser.add_argument('--out-size', default=70, type=int, help='out size, uses center crop, if None, no resizing will be done')
parser.add_argument('--test', action='store_true', help='do only a few imgs for testing the code')
parser.set_defaults(verbose=True, copy_imgs=True, test=False)
def get_center_crop_bbox(in_size, out_size):
"""
get bounding box for center crop
in_size is (width, height for PIL.Image)
"""
center = np.array(in_size) / 2
left = int(center[0] - out_size / 2)
right = int(left + out_size)
upper = int(center[0] - out_size / 2)
lower = int(upper + out_size)
return (left, upper, right, lower)
def main(args):
# find location for resources
resourcedir = Path.cwd().parent / 'resources'
# load dataframe with annotation data per nodule, made in the step 'lidc-preprocessing'
df_ann = pd.read_csv(resourcedir / "annotation_df.csv")
# show source files
imgs = os.listdir(os.path.join(args.in_dir, "imgs"))
imgs = [x for x in imgs if x.endswith(".png")]
if args.verbose:
print(f"found {len(imgs)} files")
# img files are like 0001n01a2s086.png
# imgs = imgs[:10]
pids = [x.split("n")[0] for x in imgs]
nods = [re.search(r"(?<=n)\d+", x).group() for x in imgs]
anns = [re.search(r"(?<=a)\d", x).group() for x in imgs]
zvals = [re.search(r"(?<=s)\d+", x).group() for x in imgs]
ann_ids = [x.split("s")[0] for x in imgs]
nod_ids = [x.split("a")[0] for x in imgs]
slice_ids = [x.split(".png")[0] for x in imgs]
nodule_slice_ids = [f"{nod_id}s{zval}" for nod_id, zval in zip(nod_ids, zvals)]
slice_df = pd.DataFrame({
'in_name': imgs,
'pid': pids,
'nodule_idx': nods,
"annotation_idx": anns,
"annotation_id": ann_ids,
"nodule_id": nod_ids,
"zval": zvals,
"slice_id": slice_ids,
"nodule_slice_id": nodule_slice_ids
})
# add max number of annotations per nodule
annotation_counts = df_ann.groupby('nodule_id').nodule_id.count().reset_index(name="annotation_count")
slice_df = pd.merge(slice_df, annotation_counts, on="nodule_id")
max_annotation_count_pid = slice_df.groupby("pid").annotation_count.max().reset_index(name='max_ann_count_per_pid')
slice_df = pd.merge(slice_df, max_annotation_count_pid, on="pid")
slice_counts = slice_df.groupby(["nodule_id", "zval"]).size().reset_index(name="slice_count")
slice_df = pd.merge(slice_df, slice_counts, on=["nodule_id", "zval"])
slice_df["all_anns_agree"] = slice_df.slice_count == slice_df.max_ann_count_per_pid
slice_df.to_csv(resourcedir / "slice_df.csv", index=False)
# keep only those slices where all annotators included the slice in their segmentation
df = slice_df[(slice_df.all_anns_agree)]
# import measurements
measurements = pd.read_csv(os.path.join(args.in_dir, "measurements.csv"))
df = pd.merge(df, measurements, left_on="in_name", right_on="name")
# keep only slices greater than the cutoff
df = df[df["size"] > args.min_size]
print(f"number of slices left: {len(df)}")
slices_per_pid = len(df) / len(df.pid.unique())
# divide by 4 because only 1 of the annotations gets selected
slices_per_nodule = (len(df) / len(df.nodule_id.unique())) / 4
np.random.seed(args.manual_seed)
VALID_PROP = 0.3
TEST_PROP = 0.0
df["uid"] = df.nodule_id
# df.set_index("slice_id", drop=False, inplace=True)
uids = df['uid'].unique().tolist()
# valid_size = int(min(args.valid_min, int(len(uids) * VALID_PROP * slices_per_pid / 4)) / (slices_per_pid / 4))
# test_size = int(min(args.valid_min, int(len(uids) * TEST_PROP * slices_per_pid / 4)) / (slices_per_pid / 4))
valid_size = int(min(args.valid_min, int(len(uids) * VALID_PROP * slices_per_nodule)) / (slices_per_nodule))
test_size = int(min(args.valid_min, int(len(uids) * TEST_PROP * slices_per_nodule)) / (slices_per_nodule))
test_uids = list(np.random.choice(uids, replace = False, size = test_size))
valid_uids = list(np.random.choice(list(set(uids) - set(test_uids)), size = valid_size))
train_uids = list(set(uids) - (set(valid_uids + test_uids)))
split_dict = dict(zip(train_uids + valid_uids + test_uids,
["train"] *len(train_uids) + ["valid"]*len(valid_uids) + ["test"] * len(test_uids)))
df["split"] = df.uid.map(split_dict)
# normalize continuous variables
cont_vars = ["size", "variance", "min", "max", "mean"]
train_idxs = np.where(df.uid.isin(train_uids))
df[cont_vars] = df[cont_vars].apply(pwr_transform, train_ids=train_idxs)
# average measurements over annotations, pick single slice per measurement
df = df.groupby("nodule_slice_id").agg({
'size': 'mean',
'variance': 'mean',
"min": 'mean',
"max": 'mean',
"mean": 'mean',
'in_name': 'first',
'split': 'first',
})
df["name"] = df.in_name.apply(lambda x: os.path.join("imgs", x))
if args.test:
df = df.iloc[:10,]
if args.out_size:
print("resizing and saving images")
# create output directories
for split in args.splits.split(","):
for subdir in ["imgs", "masks"]:
if not os.path.isdir(os.path.join(args.out_dir, split, subdir)):
os.makedirs(os.path.join(args.out_dir, split, subdir))
# crop and copy images
for slice_id, row in tqdm(df.iterrows()):
img = Image.open(os.path.join(args.in_dir, 'imgs', row['in_name']), 'r')
img_crop = img.crop(get_center_crop_bbox(img.size, args.out_size))
img_crop.save(os.path.join(args.out_dir, row["split"], "imgs", row["in_name"]))
mask = Image.open(os.path.join(args.in_dir, 'masks', row['in_name']), 'r')
mask_crop = mask.crop(get_center_crop_bbox(mask.size, args.out_size))
mask_crop.save(os.path.join(args.out_dir, row["split"], "masks", row["in_name"]))
else:
if args.copy_imgs:
print("copying images")
for split in args.splits.split(","):
for subdir in ["imgs", "masks"]:
if not os.path.isdir(os.path.join(args.out_dir, split, subdir)):
os.makedirs(os.path.join(args.out_dir, split, subdir))
for slice_id, row in tqdm(df.iterrows()):
shutil.copy(os.path.join(args.in_dir, 'imgs', row["in_name"]),
os.path.join(args.out_dir, row["split"], "imgs", row["in_name"]))
shutil.copy(os.path.join(args.in_dir, 'masks', row["in_name"]),
os.path.join(args.out_dir, row["split"], 'masks', row["in_name"]))
df.to_csv(os.path.join(args.out_dir, "labels.csv"), index=False)
print(df.split.value_counts())
if __name__ == "__main__":
args = parser.parse_args()
if args.out_dir == '':
args.out_dir = (Path.cwd().parent) / 'data' / 'slices'
if args.in_dir == '':
args.in_dir = (Path.cwd().parent) / 'data' / 'nodules2d'
main(args)