[39fb2b]: / train.py

Download this file

574 lines (474 with data), 26.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
"""Train the model"""
import argparse
import logging
import os, shutil
import numpy as np
import pandas as pd
from sklearn.utils.class_weight import compute_class_weight
import torch
import torch.optim as optim
import torchvision.models as models
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
# from torchsummary import summary
import utils
import json
import model.net as net
import model.data_loader as data_loader
from evaluate import evaluate
parser = argparse.ArgumentParser()
parser.add_argument('--data-dir', default='data', help="Directory containing the dataset")
parser.add_argument('--model-dir', default='experiments', help="Directory containing params.json")
parser.add_argument('--setting-dir', default='settings', help="Directory with different settings")
parser.add_argument('--setting', default='collider-prognosticfactor', help="Directory contain setting.json, experimental setting, data-generation, regression model etc")
parser.add_argument('--fase', default='xybn', help='fase of training model, see manuscript for details. x, y, xy, bn, or feature')
parser.add_argument('--experiment', default='', help="Manual name for experiment for logging, will be subdir of setting")
parser.add_argument('--restore-file', default=None,
help="Optional, name of the file in --model_dir containing weights to reload before \
training") # 'best' or 'train'
parser.add_argument('--restore-last', action='store_true', help="continue a last run")
parser.add_argument('--restore-warm', action='store_true', help="continue on the run called 'warm-start.pth'")
parser.add_argument('--use-last', action="store_true", help="use last state dict instead of 'best' (use for early stopping manually)")
parser.add_argument('--cold-start', action='store_true', help="ignore previous state dicts (weights), even if they exist")
parser.add_argument('--warm-start', dest='cold_start', action='store_false', help="start from previous state dict")
parser.add_argument('--disable-cuda', action='store_true', help="Disable Cuda")
parser.add_argument('--no-parallel', action="store_false", help="no multiple GPU", dest="parallel")
parser.add_argument('--parallel', action="store_true", help="multiple GPU", dest="parallel")
parser.add_argument('--gpu', default=0, type=int, help='if not running in parallel (=all gpus), only use this gpu')
parser.add_argument('--intercept', action="store_true", help="dummy run for getting intercept baseline results")
# parser.add_argument('--visdom', action='store_true', help='generate plots with visdom')
# parser.add_argument('--novisdom', dest='visdom', action='store_false', help='dont plot with visdom')
parser.add_argument('--monitor-grads', action='store_true', help='keep track of mean norm of gradients')
parser.set_defaults(parallel=False, cold_start=True, use_last=False, intercept=False, restore_last=False, save_preds=False,
monitor_grads=False, restore_warm=False
# visdom=False
)
def train(model, optimizer, loss_fn, dataloader, metrics, params, setting, writer=None, epoch=None):
"""Train the model on `num_steps` batches
Args:
model: (torch.nn.Module) the neural network
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
num_steps: (int) number of batches to train on, each of size params.batch_size
"""
global train_tensor_keys, logdir
# set model to training mode
model.train()
# summary for current training loop and a running average object for loss
summ = []
loss_avg = utils.RunningAverage()
# create storate for tensors for OLS after minibatches
ts = []
Xs = []
Xtrues = []
Ys = []
Xhats = []
Yhats = []
Zhats = []
# Use tqdm for progress bar
with tqdm(total=len(dataloader)) as progress_bar:
for i, batch in enumerate(dataloader):
summary_batch = {}
# put batch on cuda
batch = {k: v.to(params.device) for k, v in batch.items()}
if not (setting.covar_mode and epoch > params.suppress_t_epochs):
batch["t"] = torch.zeros_like(batch['t'])
Xs.append(batch['x'].detach().cpu())
Xtrues.append(batch['x_true'].detach().cpu())
# compute model output and loss
output_batch = model(batch['image'], batch['t'].view(-1,1), epoch)
Yhats.append(output_batch['y'].detach().cpu())
# calculate loss
if args.fase == "feature":
# calculate loss for z directly, to get clear how well this can be measured
loss_fn_z = torch.nn.MSELoss()
loss_z = loss_fn_z(output_batch["y"].squeeze(), batch["z"])
loss = loss_z
summary_batch["loss_z"] = loss_z.item()
else:
loss_fn_y = torch.nn.MSELoss()
loss_y = loss_fn_y(output_batch["y"].squeeze(), batch["y"])
loss = loss_y
summary_batch["loss_y"] = loss_y.item()
# calculate loss for colllider x
loss_fn_x = torch.nn.MSELoss()
loss_x = loss_fn_x(output_batch["bnx"].squeeze(), batch["x"])
summary_batch["loss_x"] = loss_x.item()
if not params.alpha == 1:
# possibly weigh down contribution of estimating x
loss_x *= params.alpha
summary_batch["loss_x_weighted"] = loss_x.item()
# add x loss to total loss
loss += loss_x
# add least squares regression on final layer
if params.do_least_squares:
X = batch["x"].view(-1,1)
t = batch["t"].view(-1,1)
Z = output_batch["bnz"]
if Z.ndimension() == 1:
Z.unsqueeze_(1)
Xhat = output_batch["bnx"]
# add intercept
Zi = torch.cat([torch.ones_like(t), Z], 1)
# add treatment info
Zt = torch.cat([Zi, t], 1)
Y = batch["y"].view(-1,1)
# regress y on final layer, without x
betas_y = net.cholesky_least_squares(Zt, Y, intercept=False)
y_hat = Zt.matmul(betas_y).view(-1,1)
mse_y = ((Y - y_hat)**2).mean()
summary_batch["regr_b_t"] = betas_y[-1].item()
summary_batch["regr_loss_y"] = mse_y.item()
# regress x on final layer without x
betas_x = net.cholesky_least_squares(Zi, Xhat, intercept=False)
x_hat = Zi.matmul(betas_x).view(-1,1)
mse_x = ((Xhat - x_hat)**2).mean()
# store all tensors for single pass after epoch
Xhats.append(Xhat.detach().cpu())
Zhats.append(Z.detach().cpu())
ts.append(t.detach().cpu())
Ys.append(Y.detach().cpu())
summary_batch["regr_loss_x"] = mse_x.item()
# add loss_bn only after n epochs
if params.bottleneck_loss and epoch > params.bn_loss_lag_epochs:
# only add to loss when bigger than margin
if params.bn_loss_margin_type == "dynamic-mean":
# for each batch, calculate loss of just using mean for predicting x
mse_x_mean = ((X - X.mean())**2).mean()
loss_bn = torch.max(torch.zeros_like(mse_x), mse_x_mean - mse_x)
elif params.bn_loss_margin_type == "fixed":
mse_diff = params.bn_loss_margin - mse_x
loss_bn = torch.max(torch.zeros_like(mse_x), mse_diff)
else:
raise NotImplementedError(f'bottleneck loss margin type not implemented: {params.bn_loss_margin_type}')
# possibly reweigh bottleneck loss and add to total loss
summary_batch["loss_bn"] = loss_bn.item()
# note is this double?
if loss_bn > params.bn_loss_margin:
loss_bn *= params.bottleneck_loss_wt
loss += loss_bn
# perform parameter update
optimizer.zero_grad()
loss.backward()
optimizer.step()
summary_batch['loss'] = loss.item()
summ.append(summary_batch)
# if necessary, write out tensors
if params.monitor_train_tensors and (epoch % params.save_summary_steps == 0):
tensors = {}
for tensor_key in train_tensor_keys:
if tensor_key in batch.keys():
tensors[tensor_key] = batch[tensor_key].squeeze().numpy()
elif tensor_key.endswith("hat"):
tensor_key = tensor_key.split("_")[0]
if tensor_key in output_batch.keys():
tensors[tensor_key+"_hat"] = output_batch[tensor_key].detach().cpu().squeeze().numpy()
else:
assert False, f"key not found: {tensor_key}"
# print(tensors)
df = pd.DataFrame.from_dict(tensors, orient='columns')
df["epoch"] = epoch
with open(os.path.join(logdir, 'train-tensors.csv'), 'a') as f:
df[["epoch"]+train_tensor_keys].to_csv(f, header=False)
# update the average loss
loss_avg.update(loss.item())
progress_bar.set_postfix(loss='{:05.3f}'.format(loss_avg()))
progress_bar.update()
# visualize gradients
if epoch % params.save_summary_steps == 0 and args.monitor_grads:
abs_gradients = {}
for name, param in model.named_parameters():
try: # patch here, there were names / params that were 'none'
abs_gradients[name] = np.abs(param.grad.cpu().numpy()).mean()
writer.add_histogram("grad-"+name, param.grad, epoch)
writer.add_scalars("mean-abs-gradients", abs_gradients, epoch)
except:
pass
# compute mean of all metrics in summary
metrics_mean = {metric:np.nanmean([x[metric] for x in summ]) for metric in summ[0]}
# collect tensors
Xhat = torch.cat(Xhats,0).view(-1,1)
Yhat = torch.cat(Yhats,0).view(-1,1)
Zhat = torch.cat(Zhats,0)
t = torch.cat(ts,0)
X = torch.cat(Xs,0)
Xtrue= torch.cat(Xtrues,0)
Y = torch.cat(Ys,0)
if params.do_least_squares:
# after the minibatches, do a single OLS on the whole data
Zi = torch.cat([torch.ones_like(t), Zhat], 1)
# add treatment info
Zt = torch.cat([Zi, t], 1)
# add x for biased version
XZt = torch.cat([torch.ones_like(t), Xhat, Zhat, t], 1)
betas_y_bias = net.cholesky_least_squares(XZt, Y, intercept=False)
betas_y_causal = net.cholesky_least_squares(Zt, Y, intercept=False)
model.betas_bias = betas_y_bias
model.betas_causal = betas_y_causal
metrics_mean["regr_bias_coef_t"] = betas_y_bias.squeeze()[-1]
metrics_mean["regr_bias_coef_z"] = betas_y_bias.squeeze()[-2]
metrics_mean["regr_causal_coef_t"] = betas_y_causal.squeeze()[-1]
metrics_mean["regr_causal_coef_z"] = betas_y_causal.squeeze()[-2]
# create some plots
xx_scatter = net.make_scatter_plot(X.numpy(), Xhat.numpy(), xlabel='x', ylabel='xhat')
xtruex_scatter= net.make_scatter_plot(Xtrue.numpy(), Xhat.numpy(), xlabel='xtrue', ylabel='xhat')
xyhat_scatter = net.make_scatter_plot(X.numpy(), Yhat.numpy(), c=t.numpy(), xlabel='x', ylabel='yhat')
yy_scatter = net.make_scatter_plot(Y.numpy(), Yhat.numpy(), c=t.numpy(), xlabel='y', ylabel='yhat')
writer.add_figure('x-xhat/train', xx_scatter, epoch+1)
writer.add_figure('xtrue-xhat/train', xtruex_scatter, epoch+1)
writer.add_figure('x-yhat/train', xyhat_scatter, epoch+1)
writer.add_figure('y-yhat/train', yy_scatter, epoch+1)
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in metrics_mean.items())
logging.info("- Train metrics: " + metrics_string)
return metrics_mean
def train_and_evaluate(model, train_dataloader, val_dataloader, optimizer, loss_fn, metrics, params, setting, args,
writer=None, logdir=None, restore_file=None):
"""Train the model and evaluate every epoch.
Args:
model: (torch.nn.Module) the neural network
train_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data
val_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches validation data
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
metrics: (dict) a dictionary of functions that compute a metric using mnisthe output and labels of each batch
params: (Params) hyperparameters
model_dir: (string) directory containing config, weights and log
restore_file: (string) optional- name of file to restore from (withoutmnistits extension .pth.tar)
covar_mode: (bool) does the data-loader give back covariates / additional data
"""
# setup directories for data
setting_home = setting.home
if not args.fase == "feature":
data_dir = os.path.join(setting_home, "data")
else:
if setting.mode3d:
data_dir = "data"
else:
data_dir = "slices"
covar_mode = setting.covar_mode
x_frozen = False
best_val_metric = 0.0
if "loss" in setting.metrics[0]:
best_val_metric = 1.0e6
val_preds = np.zeros((len(val_dataloader.dataset), params.num_epochs))
for epoch in range(params.num_epochs):
# Run one epoch
logging.info(f"Epoch {epoch+1}/{params.num_epochs}; setting: {args.setting}, fase {args.fase}, experiment: {args.experiment}")
# compute number of batches in one epoch (one full pass over the training set)
train_metrics = train(model, optimizer, loss_fn, train_dataloader, metrics, params, setting, writer, epoch)
print(train_metrics)
for metric_name in train_metrics.keys():
metric_vals = {'train': train_metrics[metric_name]}
writer.add_scalars(metric_name, metric_vals, epoch+1)
# for name, param in model.named_parameters():
# writer.add_histogram(name, param.clone().cpu().data.numpy(), epoch+1)
if epoch % params.save_summary_steps == 0:
# Evaluate for one epoch on validation set
valid_metrics, outtensors = evaluate(model, loss_fn, val_dataloader, metrics, params, setting, epoch, writer)
valid_metrics["intercept"] = model.regressor.fc.bias.detach().cpu().numpy()
print(valid_metrics)
for name, module in model.regressor.named_children():
if name == "t":
valid_metrics["b_t"] = module.weight.detach().cpu().numpy()
elif name == "zt":
weights = module.weight.detach().cpu().squeeze().numpy().reshape(-1)
for i, weight in enumerate(weights):
valid_metrics["b_zt"+str(i)] = weight
else:
pass
for metric_name in valid_metrics.keys():
metric_vals = {'valid': valid_metrics[metric_name]}
writer.add_scalars(metric_name, metric_vals, epoch+1)
# create plots
val_df = val_dataloader.dataset.df
xx_scatter = net.make_scatter_plot(val_df.x.values, outtensors['xhat'], xlabel='x', ylabel='xhat')
xtruex_scatter= net.make_scatter_plot(val_df.x_true.values, outtensors['xhat'], xlabel='x', ylabel='xhat')
xyhat_scatter = net.make_scatter_plot(val_df.x.values, outtensors['predictions'], c=val_df.t, xlabel='x', ylabel='yhat')
zyhat_scatter = net.make_scatter_plot(val_df.z.values, outtensors['predictions'], c=val_df.t, xlabel='z', ylabel='yhat')
yy_scatter = net.make_scatter_plot(val_df.y.values, outtensors['predictions'], c=val_df.t, xlabel='yhat', ylabel='y')
writer.add_figure('x-xhat/valid', xx_scatter, epoch+1)
writer.add_figure('xtrue-xhat/valid', xtruex_scatter, epoch+1)
writer.add_figure('x-yhat/valid', xyhat_scatter, epoch+1)
writer.add_figure('z-yhat/valid', zyhat_scatter, epoch+1)
writer.add_figure('y-yhat/valid', yy_scatter, epoch+1)
if params.save_preds:
# writer.add_histogram("predictions", preds)
if setting.num_classes == 1:
val_preds[:, epoch] = np.squeeze(outtensors['predictions'])
# write preds to file
pred_fname = os.path.join(setting.home, setting.fase+"-fase", "preds_val.csv")
with open(pred_fname, 'ab') as f:
np.savetxt(f, preds.T, newline="")
np.save(os.path.join(setting.home, setting.fase+"-fase", "preds.npy"), preds)
else:
val_metric = valid_metrics[setting.metrics[0]]
if "loss" in str(setting.metrics[0]):
is_best = val_metric<=best_val_metric
else:
is_best = val_metric>=best_val_metric
# Save weights
state_dict = model.state_dict()
optim_dict = optimizer.state_dict()
state = {
'epoch': epoch+1,
'state_dict': state_dict,
'optim_dict': optim_dict
}
utils.save_checkpoint(state,
is_best=is_best,
checkpoint=logdir)
# If best_eval, best_save_path
valid_metrics["epoch"] = epoch
if is_best:
logging.info("- Found new best {}: {:.3f}".format(setting.metrics[0], val_metric))
best_val_metric = val_metric
# Save best val metrics in a json file in the model directory
best_json_path = os.path.join(logdir, "metrics_val_best_weights.json")
utils.save_dict_to_json(valid_metrics, best_json_path)
# Save latest val metrics in a json file in the model directory
last_json_path = os.path.join(logdir, "metrics_val_last_weights.json")
utils.save_dict_to_json(valid_metrics, last_json_path)
# final evaluation
writer.export_scalars_to_json(os.path.join(logdir, "all_scalars.json"))
if args.save_preds:
np.save(os.path.join(setting.home, setting.fase + "-fase", "val_preds.npy"), val_preds)
if __name__ == '__main__':
# Load the parameters from json file
args = parser.parse_args()
# Load information from last setting if none provided:
last_defaults = utils.Params("last-defaults.json")
if args.setting == "":
print("using last default setting")
args.setting = last_defaults.dict["setting"]
for param, value in last_defaults.dict.items():
print("{}: {}".format(param, value))
else:
with open("last-defaults.json", "r+") as jsonFile:
defaults = json.load(jsonFile)
tmp = defaults["setting"]
defaults["setting"] = args.setting
jsonFile.seek(0) # rewind
json.dump(defaults, jsonFile)
jsonFile.truncate()
# setup visdom environment
# if args.visdom:
# from visdom import Visdom
# viz = Visdom(env=f"lidcr_{args.setting}_{args.fase}_{args.experiment}")
# load setting (data generation, regression model etc)
setting_home = os.path.join(args.setting_dir, args.setting)
setting = utils.Params(os.path.join(setting_home, "setting.json"))
setting.home = setting_home
# when not specified in call, grab model specification from setting file
if setting.cnn_model == "":
json_path = os.path.join(args.model_dir, "t-suppression", args.experiment+".json")
else:
json_path = os.path.join(args.model_dir, setting.cnn_model, 'params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
if not os.path.exists(os.path.join(setting.home, args.fase + "-fase")):
os.makedirs(os.path.join(setting.home, args.fase + "-fase"))
shutil.copy(json_path, os.path.join(setting_home, args.fase + "-fase", "params.json"))
params = utils.Params(json_path)
# covar_mode = setting.covar_mode
# mode3d = setting.mode3d
parallel = args.parallel
params.device = None
if not args.disable_cuda and torch.cuda.is_available():
params.device = torch.device('cuda')
params.cuda = True
# switch gpus for better use when running multiple experiments
if not args.parallel:
torch.cuda.set_device(int(args.gpu))
else:
params.device = torch.device('cpu')
# adapt fase
setting.fase = args.fase
setting.metrics = pd.Series(setting.metrics).drop_duplicates().tolist()
print("metrics {}:".format(setting.metrics))
# Set the random seed for reproducible experiments
torch.manual_seed(230)
if params.cuda: torch.cuda.manual_seed(230)
# Set the logger
logdir=os.path.join(setting_home, setting.fase+"-fase", "runs")
if not args.experiment == '':
logdir=os.path.join(logdir, args.experiment)
if not os.path.isdir(logdir):
os.makedirs(logdir)
# copy params as backupt to logdir
shutil.copy(json_path, os.path.join(logdir, "params.json"))
# utils.set_logger(os.path.join(args.model_dir, 'train.log'))
utils.set_logger(os.path.join(logdir, 'train.log'))
# Create the input data pipeline
logging.info("Loading the datasets...")
# fetch dataloaders
dataloaders = data_loader.fetch_dataloader(args, params, setting, ["train", "valid"])
train_dl = dataloaders['train']
valid_dl = dataloaders['valid']
if setting.num_classes > 1 and params.balance_classes:
train_labels = train_dl.dataset.df[setting.outcome[0]].values
class_weights = compute_class_weight('balanced', np.unique(train_labels), train_labels)
# valid_dl = train_dl
logging.info("- done.")
if args.intercept:
assert len(setting.outcome) == 1, "Multiple outcomes not implemented for intercept yet"
print("running intercept mode")
mu = valid_dl.dataset.df[setting.outcome].values.mean()
def new_forward(self, x, data, mu=mu):
intercept = torch.autograd.Variable(mu * torch.ones((x.shape[0],1)), requires_grad=False).to(params.device, non_blocking=True)
bn_activations = torch.autograd.Variable(torch.zeros((x.shape[0],)), requires_grad=False).to(params.device, non_blocking=True)
return {setting.outcome[0]: intercept, "bn": bn_activations}
net.Net3D.forward = new_forward
params.num_epochs = 1
setting.metrics = []
logdir = os.path.join(logdir, "intercept")
if setting.mode3d:
model = net.Net3D(params, setting).to(params.device)
else:
model = net.CausalNet(params, setting).to(params.device)
optimizers = {'sgd': optim.SGD, 'adam': optim.Adam}
if parallel:
print("parallel mode")
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
if params.momentum > 0:
optimizer = optimizers[params.optimizer](model.parameters(), lr=params.learning_rate, weight_decay=params.wd, momentum=params.momentum)
else:
optimizer = optimizers[params.optimizer](model.parameters(), lr=params.learning_rate, weight_decay=params.wd)
# if params.use_mi:
# optimizer.add_param_group({'params': mine.parameters()})
if setting.covar_mode and params.lr_t_factor != 1:
optimizer = net.speedup_t(model, params)
if args.restore_last and (not args.cold_start):
print("Loading state dict from last running setting")
utils.load_checkpoint(os.path.join(setting.home, args.fase + "-fase", "last.pth.tar"), model, strict=False)
elif args.restore_warm:
utils.load_checkpoint(os.path.join(setting.home, 'warm-start.pth.tar'), model, strict=False)
else:
pass
# fetch loss function and metrics
if setting.num_classes > 1 and params.balance_classes:
loss_fn = net.get_loss_fn(setting, weights=class_weights)
else:
loss_fn = net.get_loss_fn(setting)
# metrics = {metric:net.all_metrics[metric] for metric in setting.metrics}
metrics = None
if params.monitor_train_tensors:
print(f"Recording all train tensors")
import csv
train_tensor_keys = ['t','x', 'z', 'y', 'x_hat', 'z_hat', 'y_hat']
with open(os.path.join(logdir, 'train-tensors.csv'), 'w') as f:
writer = csv.writer(f)
writer.writerow(['epoch']+train_tensor_keys)
# Train the model
# print(model)
# print(summary(model, (3, 224, 224), batch_size=1))
logging.info("Starting training for {} epoch(s)".format(params.num_epochs))
for split, dl in dataloaders.items():
logging.info("Number of %s samples: %s" % (split, str(len(dl.dataset))))
# logging.info("Number of valid examples: {}".format(len(valid.dataset)))
with SummaryWriter(logdir) as writer:
# train(model, optimizer, loss_fn, train_dl, metrics, params)
train_and_evaluate(model, train_dl, valid_dl, optimizer, loss_fn, metrics, params, setting, args,
writer, logdir, args.restore_file)