|
a |
|
b/preprocess/preprocessingutils.py |
|
|
1 |
import os |
|
|
2 |
import numpy as np |
|
|
3 |
import pandas as pd |
|
|
4 |
import pylidc as pl |
|
|
5 |
import pydicom |
|
|
6 |
import pickle |
|
|
7 |
from sklearn.preprocessing import PowerTransformer |
|
|
8 |
|
|
|
9 |
def annotation_to_dict(ann): |
|
|
10 |
''' |
|
|
11 |
Flattens annotations into a single row pandas DataFrame |
|
|
12 |
''' |
|
|
13 |
|
|
|
14 |
d = { |
|
|
15 |
'patient_id': ann.scan.patient_id, |
|
|
16 |
'nodule_id_lidc': ann._nodule_id, |
|
|
17 |
'annotation_id_lidc': ann.id, |
|
|
18 |
'scan_id': ann.scan_id, |
|
|
19 |
'volume': ann.volume, |
|
|
20 |
'surface_area': ann.surface_area, |
|
|
21 |
'diameter': ann.diameter |
|
|
22 |
} |
|
|
23 |
feature_names = ['sublety', 'internalstructure', 'calcification', |
|
|
24 |
'sphericity', 'margin', 'lobulation', 'spiculation', |
|
|
25 |
'texture', 'malignancy'] |
|
|
26 |
for feature, value in zip(feature_names, ann.feature_vals()): |
|
|
27 |
d[feature] = value |
|
|
28 |
return d |
|
|
29 |
|
|
|
30 |
def annotation_to_df(ann): |
|
|
31 |
try: |
|
|
32 |
d = annotation_to_dict(ann) |
|
|
33 |
d = {k: [v] for k, v in d.items()} |
|
|
34 |
df = pd.DataFrame.from_dict(d) |
|
|
35 |
except: |
|
|
36 |
df = None |
|
|
37 |
return df |
|
|
38 |
|
|
|
39 |
def annotation_list_to_df(anns): |
|
|
40 |
assert isinstance(anns, list) |
|
|
41 |
dfs = [] |
|
|
42 |
for ann in anns: |
|
|
43 |
dfs.append(annotation_to_df(ann)) |
|
|
44 |
df = pd.concat(dfs, ignore_index=True) |
|
|
45 |
df["annotation_idx"] = range(1, df.shape[0]+1) |
|
|
46 |
return df |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
def get_intercept_and_slope(scan): |
|
|
50 |
''' |
|
|
51 |
scan is the results of a pydicom query |
|
|
52 |
returns the intercept and slope |
|
|
53 |
adapted from https://www.kaggle.com/gzuidhof/full-preprocessing-tutorial |
|
|
54 |
''' |
|
|
55 |
dcm_path = scan.get_path_to_dicom_files() |
|
|
56 |
dcm_files = [x for x in os.listdir(dcm_path) if x.endswith(".dcm")] |
|
|
57 |
slice0 = pydicom.read_file(os.path.join(dcm_path, dcm_files[0]), stop_before_pixels=True) |
|
|
58 |
intercept = slice0.RescaleIntercept |
|
|
59 |
slope = slice0.RescaleSlope |
|
|
60 |
return intercept, slope |
|
|
61 |
|
|
|
62 |
def resample_and_crop_annotation(ann_id, ann, nodule_path, mask_path=None, scan=None, size_mm = 50, export_mask = True): |
|
|
63 |
''' |
|
|
64 |
take an annotation, crop and resample |
|
|
65 |
size is the length of the sides of the resulting cube in millimeters |
|
|
66 |
''' |
|
|
67 |
if scan is None: |
|
|
68 |
scan = ann.scan |
|
|
69 |
intercept, slope = get_intercept_and_slope(scan) |
|
|
70 |
try: |
|
|
71 |
vol, mask = ann.uniform_cubic_resample(side_length = size_mm, verbose = True) |
|
|
72 |
if slope != 1: |
|
|
73 |
vol = slope * vol.astype(np.float64) |
|
|
74 |
|
|
|
75 |
vol = vol.astype(np.int16) |
|
|
76 |
vol += np.int16(intercept) |
|
|
77 |
|
|
|
78 |
np.save(os.path.join(nodule_path, ann_id+".npy"), vol) |
|
|
79 |
if export_mask: |
|
|
80 |
assert mask_path != None |
|
|
81 |
np.save(os.path.join(mask_path, ann_id+".npy"), mask) |
|
|
82 |
print("") |
|
|
83 |
except: |
|
|
84 |
print("-failed") |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
def crop_nodule_tight_z(ann, volume=None, scan=None, scan_spacing=None, out_size_cm = 5): |
|
|
88 |
""" |
|
|
89 |
Get nodule cropped tightly in z direction, but of minimum dimension in xy plane |
|
|
90 |
""" |
|
|
91 |
# print(f"trying to crop") |
|
|
92 |
if volume is None: |
|
|
93 |
if scan is None: |
|
|
94 |
scan = ann.scan |
|
|
95 |
volume = scan.to_volume() |
|
|
96 |
if scan_spacing is None: |
|
|
97 |
scan_spacing = scan.pixel_spacing |
|
|
98 |
# print(f"scan_spacing: {scan_spacing}") |
|
|
99 |
padding = get_padding_tight_z(ann, scan_spacing=scan_spacing, out_size_cm=out_size_cm) |
|
|
100 |
# print(f"padding: {padding}") |
|
|
101 |
|
|
|
102 |
mask = ann.boolean_mask(pad=padding) |
|
|
103 |
bbox = ann.bbox(pad=padding) |
|
|
104 |
zvals= ann.contour_slice_indices |
|
|
105 |
arr = volume[bbox] |
|
|
106 |
|
|
|
107 |
return arr, mask, zvals |
|
|
108 |
|
|
|
109 |
def get_padding_tight_z(ann, scan=None, scan_spacing=None, out_size_cm = None): |
|
|
110 |
""" |
|
|
111 |
Get bbox dimensions base on a minimal size, restricting to no padding in z direction |
|
|
112 |
""" |
|
|
113 |
if scan_spacing is None: |
|
|
114 |
if scan is None: |
|
|
115 |
scan_spacing = ann.scan.pixel_spacing |
|
|
116 |
else: |
|
|
117 |
scan_spacing = scan.pixel_spacing |
|
|
118 |
# return tight bounding box |
|
|
119 |
if out_size_cm is None: |
|
|
120 |
padding = [(int(0), int(0))] * 3 |
|
|
121 |
else: |
|
|
122 |
# if len(out_size_cm == 3): |
|
|
123 |
# if out_size_cm[2] is None: |
|
|
124 |
# padding_z = (0,0) |
|
|
125 |
out_shape = (np.ceil((out_size_cm * 10) / scan_spacing) * np.ones((2,))).astype(int) |
|
|
126 |
|
|
|
127 |
bb_mat = ann.bbox_matrix() |
|
|
128 |
bb_shape = bb_mat[:,1] - bb_mat[:,0] |
|
|
129 |
|
|
|
130 |
paddings = out_shape - bb_shape[:2] |
|
|
131 |
|
|
|
132 |
# print(f"paddings: {paddings}") |
|
|
133 |
|
|
|
134 |
padding_x = (int(np.ceil(paddings[0] / 2)), int(np.floor(paddings[0] / 2))) |
|
|
135 |
padding_y = (int(np.ceil(paddings[1] / 2)), int(np.floor(paddings[1] / 2))) |
|
|
136 |
|
|
|
137 |
padding = [padding_x, padding_y, (int(0),int(0))] |
|
|
138 |
|
|
|
139 |
return padding |
|
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
|
143 |
def normalize(x, window = None, level = None, in_min = -1000.0, in_max = 600.0, center=0.0): |
|
|
144 |
""" |
|
|
145 |
Normalize array to values between 0 and 1, possibly clipping |
|
|
146 |
""" |
|
|
147 |
assert type(x) is np.ndarray |
|
|
148 |
|
|
|
149 |
if (not window is None) & (not level is None) : |
|
|
150 |
in_min = level - (window / 2) |
|
|
151 |
in_max = level + (window / 2) |
|
|
152 |
|
|
|
153 |
x = x - in_min # add zero point |
|
|
154 |
x = x / (in_max - in_min) # scale to unit |
|
|
155 |
x = x + center # adjust white-balance |
|
|
156 |
x = np.clip(x, 0.0, 1.0) # clip to (0,1) |
|
|
157 |
return x |
|
|
158 |
|
|
|
159 |
def normalized_to_8bit(x): |
|
|
160 |
assert ((x.min() >= 0) & (x.max() <= 1)) |
|
|
161 |
x = (255 * x) |
|
|
162 |
return x.astype(np.uint8) |
|
|
163 |
|
|
|
164 |
def normalize_to_8bit(x, *args, **kwargs): |
|
|
165 |
return normalized_to_8bit(normalize(x, *args, **kwargs)) |
|
|
166 |
|
|
|
167 |
def pwr_transform(x, train_ids=None): |
|
|
168 |
x = np.array(x).reshape(-1,1) |
|
|
169 |
pt = PowerTransformer(method="yeo-johnson") |
|
|
170 |
if train_ids is None: |
|
|
171 |
pt.fit(x) |
|
|
172 |
else: |
|
|
173 |
pt.fit(x[train_ids]) |
|
|
174 |
y = pt.transform(x) |
|
|
175 |
return np.squeeze(y) |