[39fb2b]: / preprocess / prepare-data-2d.py

Download this file

189 lines (153 with data), 8.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os, shutil, sys
from pathlib import Path
import numpy as np
import pandas as pd
from tqdm import tqdm
import re
from PIL import Image
sys.path.append("./")
from preprocessingutils import pwr_transform
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--out-dir', default='', help='place to put the slices (leave empty for default)')
parser.add_argument('--in-dir', default='', help='input directory (leave empty for default)')
parser.add_argument('--min-size', default=20, type=int, help='minimal size of noduls in mm')
parser.add_argument('--splits', default='train,valid', help='which spits to create, separate with ,')
parser.add_argument('--manual-seed', default=12345, help='seed for generating splits')
parser.add_argument('--silent', action='store_false', dest='verbose', help='dont print stuff')
parser.add_argument('--valid_min', default=int(1000), type=int, help='minimal number of validation and test imgs, otherwise do 20%')
parser.add_argument('--no-imgs', action='store_false', dest='copy_imgs', help='dont copy, only update dataframe')
parser.add_argument('--out-size', default=70, type=int, help='out size, uses center crop, if None, no resizing will be done')
parser.add_argument('--test', action='store_true', help='do only a few imgs for testing the code')
parser.set_defaults(verbose=True, copy_imgs=True, test=False)
def get_center_crop_bbox(in_size, out_size):
"""
get bounding box for center crop
in_size is (width, height for PIL.Image)
"""
center = np.array(in_size) / 2
left = int(center[0] - out_size / 2)
right = int(left + out_size)
upper = int(center[0] - out_size / 2)
lower = int(upper + out_size)
return (left, upper, right, lower)
def main(args):
# find location for resources
resourcedir = Path.cwd().parent / 'resources'
# load dataframe with annotation data per nodule, made in the step 'lidc-preprocessing'
df_ann = pd.read_csv(resourcedir / "annotation_df.csv")
# show source files
imgs = os.listdir(os.path.join(args.in_dir, "imgs"))
imgs = [x for x in imgs if x.endswith(".png")]
if args.verbose:
print(f"found {len(imgs)} files")
# img files are like 0001n01a2s086.png
# imgs = imgs[:10]
pids = [x.split("n")[0] for x in imgs]
nods = [re.search(r"(?<=n)\d+", x).group() for x in imgs]
anns = [re.search(r"(?<=a)\d", x).group() for x in imgs]
zvals = [re.search(r"(?<=s)\d+", x).group() for x in imgs]
ann_ids = [x.split("s")[0] for x in imgs]
nod_ids = [x.split("a")[0] for x in imgs]
slice_ids = [x.split(".png")[0] for x in imgs]
nodule_slice_ids = [f"{nod_id}s{zval}" for nod_id, zval in zip(nod_ids, zvals)]
slice_df = pd.DataFrame({
'in_name': imgs,
'pid': pids,
'nodule_idx': nods,
"annotation_idx": anns,
"annotation_id": ann_ids,
"nodule_id": nod_ids,
"zval": zvals,
"slice_id": slice_ids,
"nodule_slice_id": nodule_slice_ids
})
# add max number of annotations per nodule
annotation_counts = df_ann.groupby('nodule_id').nodule_id.count().reset_index(name="annotation_count")
slice_df = pd.merge(slice_df, annotation_counts, on="nodule_id")
max_annotation_count_pid = slice_df.groupby("pid").annotation_count.max().reset_index(name='max_ann_count_per_pid')
slice_df = pd.merge(slice_df, max_annotation_count_pid, on="pid")
slice_counts = slice_df.groupby(["nodule_id", "zval"]).size().reset_index(name="slice_count")
slice_df = pd.merge(slice_df, slice_counts, on=["nodule_id", "zval"])
slice_df["all_anns_agree"] = slice_df.slice_count == slice_df.max_ann_count_per_pid
slice_df.to_csv(resourcedir / "slice_df.csv", index=False)
# keep only those slices where all annotators included the slice in their segmentation
df = slice_df[(slice_df.all_anns_agree)]
# import measurements
measurements = pd.read_csv(os.path.join(args.in_dir, "measurements.csv"))
df = pd.merge(df, measurements, left_on="in_name", right_on="name")
# keep only slices greater than the cutoff
df = df[df["size"] > args.min_size]
print(f"number of slices left: {len(df)}")
slices_per_pid = len(df) / len(df.pid.unique())
# divide by 4 because only 1 of the annotations gets selected
slices_per_nodule = (len(df) / len(df.nodule_id.unique())) / 4
np.random.seed(args.manual_seed)
VALID_PROP = 0.3
TEST_PROP = 0.0
df["uid"] = df.nodule_id
# df.set_index("slice_id", drop=False, inplace=True)
uids = df['uid'].unique().tolist()
# valid_size = int(min(args.valid_min, int(len(uids) * VALID_PROP * slices_per_pid / 4)) / (slices_per_pid / 4))
# test_size = int(min(args.valid_min, int(len(uids) * TEST_PROP * slices_per_pid / 4)) / (slices_per_pid / 4))
valid_size = int(min(args.valid_min, int(len(uids) * VALID_PROP * slices_per_nodule)) / (slices_per_nodule))
test_size = int(min(args.valid_min, int(len(uids) * TEST_PROP * slices_per_nodule)) / (slices_per_nodule))
test_uids = list(np.random.choice(uids, replace = False, size = test_size))
valid_uids = list(np.random.choice(list(set(uids) - set(test_uids)), size = valid_size))
train_uids = list(set(uids) - (set(valid_uids + test_uids)))
split_dict = dict(zip(train_uids + valid_uids + test_uids,
["train"] *len(train_uids) + ["valid"]*len(valid_uids) + ["test"] * len(test_uids)))
df["split"] = df.uid.map(split_dict)
# normalize continuous variables
cont_vars = ["size", "variance", "min", "max", "mean"]
train_idxs = np.where(df.uid.isin(train_uids))
df[cont_vars] = df[cont_vars].apply(pwr_transform, train_ids=train_idxs)
# average measurements over annotations, pick single slice per measurement
df = df.groupby("nodule_slice_id").agg({
'size': 'mean',
'variance': 'mean',
"min": 'mean',
"max": 'mean',
"mean": 'mean',
'in_name': 'first',
'split': 'first',
})
df["name"] = df.in_name.apply(lambda x: os.path.join("imgs", x))
if args.test:
df = df.iloc[:10,]
if args.out_size:
print("resizing and saving images")
# create output directories
for split in args.splits.split(","):
for subdir in ["imgs", "masks"]:
if not os.path.isdir(os.path.join(args.out_dir, split, subdir)):
os.makedirs(os.path.join(args.out_dir, split, subdir))
# crop and copy images
for slice_id, row in tqdm(df.iterrows()):
img = Image.open(os.path.join(args.in_dir, 'imgs', row['in_name']), 'r')
img_crop = img.crop(get_center_crop_bbox(img.size, args.out_size))
img_crop.save(os.path.join(args.out_dir, row["split"], "imgs", row["in_name"]))
mask = Image.open(os.path.join(args.in_dir, 'masks', row['in_name']), 'r')
mask_crop = mask.crop(get_center_crop_bbox(mask.size, args.out_size))
mask_crop.save(os.path.join(args.out_dir, row["split"], "masks", row["in_name"]))
else:
if args.copy_imgs:
print("copying images")
for split in args.splits.split(","):
for subdir in ["imgs", "masks"]:
if not os.path.isdir(os.path.join(args.out_dir, split, subdir)):
os.makedirs(os.path.join(args.out_dir, split, subdir))
for slice_id, row in tqdm(df.iterrows()):
shutil.copy(os.path.join(args.in_dir, 'imgs', row["in_name"]),
os.path.join(args.out_dir, row["split"], "imgs", row["in_name"]))
shutil.copy(os.path.join(args.in_dir, 'masks', row["in_name"]),
os.path.join(args.out_dir, row["split"], 'masks', row["in_name"]))
df.to_csv(os.path.join(args.out_dir, "labels.csv"), index=False)
print(df.split.value_counts())
if __name__ == "__main__":
args = parser.parse_args()
if args.out_dir == '':
args.out_dir = (Path.cwd().parent) / 'data' / 'slices'
if args.in_dir == '':
args.in_dir = (Path.cwd().parent) / 'data' / 'nodules2d'
main(args)