import sys
import lasagne as nn
import numpy as np
import theano
import os
import pathfinder
import utils
from configuration import config, set_configuration
from utils_plots import plot_slice_3d_3
import theano.tensor as T
import utils_lung
import blobs_detection
import logger
from collections import defaultdict
theano.config.warn_float64 = 'raise'
if len(sys.argv) < 2:
sys.exit("Usage: test_luna_scan.py <configuration_name>")
config_name = sys.argv[1]
set_configuration('configs_fpred_scan', config_name)
tta = sys.argv[2] if len(sys.argv) == 3 else None
# predictions path
predictions_dir = utils.get_dir_path('model-predictions', pathfinder.METADATA_PATH)
outputs_path = predictions_dir + '/%s' % config_name
utils.auto_make_dir(outputs_path)
# logs
logs_dir = utils.get_dir_path('logs', pathfinder.METADATA_PATH)
sys.stdout = logger.Logger(logs_dir + '/%s.log' % config_name)
sys.stderr = sys.stdout
# builds model and sets its parameters
model = config().build_model()
x_shared = nn.utils.shared_empty(dim=len(model.l_in.shape))
givens_valid = {}
givens_valid[model.l_in.input_var] = x_shared
get_predictions_patch = theano.function([],
nn.layers.get_output(model.l_out, deterministic=True),
givens=givens_valid,
on_unused_input='ignore')
if tta == 'tta':
data_iterator = config().tt_data_iterator
#existing_preds = [f.rsplit('.') for f in os.listdir(outputs_path)]
#print existing_preds
print
print 'Data'
print 'n samples: %d' % data_iterator.nsamples
prev_pid = None
candidates = []
patients_count = 0
for n, (x, candidate_zyxd, pid) in enumerate(data_iterator.generate()):
if pid != prev_pid and prev_pid is not None:
print patients_count, prev_pid, len(candidates)
candidates = np.asarray(candidates)
a = np.asarray(sorted(candidates, key=lambda x: x[-1], reverse=True))
utils.save_pkl(a, outputs_path + '/%s.pkl' % prev_pid)
print 'saved predictions'
patients_count += 1
candidates = []
preds = []
for bidx, pos in enumerate(range(0,x.shape[0],16)):
print bidx
x_batch = x[pos:pos+16]
x_shared.set_value(x)
predictions = get_predictions_patch()
predictions = predictions[:, 1] if predictions.shape[-1] == 2 else predictions
#print "predictions", predictions
preds.append(predictions)
preds = np.concatenate(preds)
pred = np.average(preds)
candidate_zyxdp = np.append(candidate_zyxd, [[pred]])
candidates.append(candidate_zyxdp)
prev_pid = pid
# save the last one
print patients_count, prev_pid, len(candidates)
candidates = np.asarray(candidates)
a = np.asarray(sorted(candidates, key=lambda x: x[-1], reverse=True))
utils.save_pkl(a, outputs_path + '/%s.pkl' % prev_pid)
print 'saved predictions'
else:
data_iterator = config().data_iterator
#existing_preds = [f.rsplit('.') for f in os.listdir(outputs_path)]
#print existing_preds
print
print 'Data'
print 'n samples: %d' % data_iterator.nsamples
prev_pid = None
candidates = []
patients_count = 0
for n, (x, candidate_zyxd, id) in enumerate(data_iterator.generate()):
pid = id[0]
if pid != prev_pid and prev_pid is not None:
print patients_count, prev_pid, len(candidates)
candidates = np.asarray(candidates)
a = np.asarray(sorted(candidates, key=lambda x: x[-1], reverse=True))
utils.save_pkl(a, outputs_path + '/%s.pkl' % prev_pid)
print 'saved predictions'
patients_count += 1
candidates = []
x_shared.set_value(x)
predictions = get_predictions_patch()
p1 = predictions[0][1]
candidate_zyxdp = np.append(candidate_zyxd, [[p1]])
candidates.append(candidate_zyxdp)
prev_pid = pid
# save the last one
print patients_count, prev_pid, len(candidates)
candidates = np.asarray(candidates)
a = np.asarray(sorted(candidates, key=lambda x: x[-1], reverse=True))
utils.save_pkl(a, outputs_path + '/%s.pkl' % prev_pid)
print 'saved predictions'