[70b6b3]: / sandbox / test_transformations_scan.py

Download this file

173 lines (135 with data), 7.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import numpy as np
import data_transforms
import pathfinder
import utils
import utils_lung
from configuration import set_configuration, config
from utils_plots import plot_slice_3d_2, plot_2d, plot_2d_4, plot_slice_3d_3
import utils_lung
import lung_segmentation
set_configuration('configs_seg_scan', 'luna_s_local')
def test1():
image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
image_dir = image_dir + '/test_luna/'
utils.auto_make_dir(image_dir)
id2zyxd = utils_lung.read_luna_annotations(pathfinder.LUNA_LABELS_PATH)
luna_data_paths = utils_lung.get_patient_data_paths(pathfinder.LUNA_DATA_PATH)
luna_data_paths = [p for p in luna_data_paths if '.mhd' in p]
print len(luna_data_paths)
print id2zyxd.keys()
for k, p in enumerate(luna_data_paths):
img, origin, pixel_spacing = utils_lung.read_mhd(p)
img = data_transforms.hu2normHU(img)
id = os.path.basename(p).replace('.mhd', '')
for nodule_zyxd in id2zyxd.itervalues():
zyx = np.array(nodule_zyxd[:3])
voxel_coords = utils_lung.world2voxel(zyx, origin, pixel_spacing)
diameter_mm = nodule_zyxd[-1]
radius_px = diameter_mm / pixel_spacing[1] / 2.
roi_radius = (radius_px, radius_px)
slice = img[voxel_coords[0], :, :]
slice_prev = img[voxel_coords[0] - 1, :, :]
slice_next = img[voxel_coords[0] + 1, :, :]
roi_center_yx = (voxel_coords[1], voxel_coords[2])
mask = data_transforms.make_2d_mask(slice.shape, roi_center_yx, roi_radius, masked_value=0.1)
plot_2d(slice, mask, id, image_dir)
plot_2d_4(slice, slice_prev, slice_next, mask, id, image_dir)
a = [{'center': roi_center_yx, 'diameter_mm': diameter_mm}]
p_transform = {'patch_size': (256, 256),
'mm_patch_size': (360, 360)}
slice_patch, mask_patch = data_transforms.luna_transform_slice(slice, a, pixel_spacing[1:],
p_transform, None)
plot_2d(slice_patch, mask_patch, id, image_dir)
def test_luna3d():
image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
image_dir = image_dir + '/test_luna/'
utils.auto_make_dir(image_dir)
id2zyxd = utils_lung.read_luna_annotations(pathfinder.LUNA_LABELS_PATH)
luna_data_paths = utils_lung.get_patient_data_paths(pathfinder.LUNA_DATA_PATH)
luna_data_paths = [p for p in luna_data_paths if '.mhd' in p]
# luna_data_paths = [
# pathfinder.LUNA_DATA_PATH + '/1.3.6.1.4.1.14519.5.2.1.6279.6001.287966244644280690737019247886.mhd']
luna_data_paths = [
'/mnt/sda3/data/kaggle-lung/luna_test_patient/1.3.6.1.4.1.14519.5.2.1.6279.6001.943403138251347598519939390311.mhd']
for k, p in enumerate(luna_data_paths):
img, origin, pixel_spacing = utils_lung.read_mhd(p)
id = os.path.basename(p).replace('.mhd', '')
print id
annotations = id2zyxd[id]
img_out, mask, annotations_out = config().data_prep_function(img,
pixel_spacing=pixel_spacing,
luna_annotations=annotations,
luna_origin=origin)
mask[mask == 0.] = 0.1
print annotations_out
for zyxd in annotations_out:
plot_slice_3d_2(img_out, mask, 0, id, idx=zyxd)
plot_slice_3d_2(img_out, mask, 1, id, idx=zyxd)
plot_slice_3d_2(img_out, mask, 2, id, idx=zyxd)
def count_proportion():
id2zyxd = utils_lung.read_luna_annotations(pathfinder.LUNA_LABELS_PATH)
luna_data_paths = utils_lung.get_patient_data_paths(pathfinder.LUNA_DATA_PATH)
luna_data_paths = [p for p in luna_data_paths if '.mhd' in p]
n_white = 0
n_black = 0
for k, p in enumerate(luna_data_paths):
img, origin, pixel_spacing = utils_lung.read_mhd(p)
img = data_transforms.hu2normHU(img)
id = os.path.basename(p).replace('.mhd', '')
print id
annotations = id2zyxd[id]
img_out, annotations_out = data_transforms.transform_scan3d(img,
pixel_spacing=pixel_spacing,
p_transform=config().p_transform,
p_transform_augment=None,
# config().p_transform_augment,
luna_annotations=annotations,
luna_origin=origin)
mask = data_transforms.make_3d_mask_from_annotations(img_out.shape, annotations_out, shape='sphere')
n_white += np.sum(mask)
n_black += mask.shape[0] * mask.shape[1] * mask.shape[2] - np.sum(mask)
print 'white', n_white
print 'black', n_black
def test_dsb():
image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
image_dir = image_dir + '/test_1/'
utils.auto_make_dir(image_dir)
patient_data_paths = utils_lung.get_patient_data_paths(pathfinder.DATA_PATH)
print len(patient_data_paths)
patient_data_paths = [pathfinder.DATA_PATH + '/01de8323fa065a8963533c4a86f2f6c1']
for k, p in enumerate(patient_data_paths):
pid = utils_lung.extract_pid_dir(p)
# sid2data, sid2metadata = utils_lung.get_patient_data(p)
# sids_sorted = utils_lung.sort_sids_by_position(sid2metadata)
# sids_sorted_jonas = utils_lung.sort_slices_jonas(sid2metadata)
# sid2position = utils_lung.slice_location_finder(sid2metadata)
#
# jonas_slicethick = []
# for i in xrange(len(sids_sorted_jonas) - 1):
# s = np.abs(sid2position[sids_sorted_jonas[i + 1]] - sid2position[sids_sorted_jonas[i]])
# jonas_slicethick.append(s)
#
# img = np.stack([data_transforms.ct2HU(sid2data[sid], sid2metadata[sid]) for sid in sids_sorted])
# xx = (jonas_slicethick[0],
# sid2metadata[sids_sorted[0]]['PixelSpacing'][0],
# sid2metadata[sids_sorted[0]]['PixelSpacing'][1])
# pixel_spacing = np.asarray(xx)
img, pixel_spacing = utils_lung.read_dicom_scan(p)
mask = lung_segmentation.segment_HU_scan_ira(img)
print pid
print pixel_spacing
print '===================================='
img_out, transform_matrix, mask_out = data_transforms.transform_scan3d(img,
pixel_spacing=pixel_spacing,
p_transform=config().p_transform,
p_transform_augment=None,
lung_mask=mask)
for i in xrange(100, img_out.shape[0], 5):
plot_slice_3d_2(img_out, mask_out, 0, str(pid) + str(i), idx=np.array([i, 200, 200]))
plot_slice_3d_2(img_out, mask_out, 0, pid, idx=np.array(img_out.shape) / 2)
plot_slice_3d_2(mask_out, img_out, 0, pid, idx=np.array(img_out.shape) / 4)
plot_slice_3d_2(mask_out, img_out, 0, pid, idx=np.array(img_out.shape) / 8)
if __name__ == '__main__':
# test_luna3d()
test_dsb()