import numpy as np
import data_transforms
import data_iterators
import pathfinder
import lasagne as nn
from collections import OrderedDict, namedtuple
from functools import partial
import lasagne.layers.dnn as dnn
import lasagne
import theano.tensor as T
import utils
restart_from_save = False
rng = np.random.RandomState(33)
# transformations
p_transform = {'patch_size': (48, 48, 48),
'mm_patch_size': (48, 48, 48),
'pixel_spacing': (1., 1., 1.)
}
p_transform_augment = {
'translation_range_z': [-3, 3],
'translation_range_y': [-3, 3],
'translation_range_x': [-3, 3],
'rotation_range_z': [-180, 180],
'rotation_range_y': [-180, 180],
'rotation_range_x': [-180, 180]
}
positive_proportion = 0.5
properties = ['diameter', 'calcification', 'lobulation', 'malignancy', 'margin', 'sphericity',
'spiculation', 'texture']
nproperties = len(properties)
def label_prep_function(annotation,properties_included):
patch_zyxd = annotation[:4]
if patch_zyxd[-1] == 0:
if len(properties_included)>0:
return np.asarray([0] * len(properties_included), dtype='float32')
else:
return np.asarray([0] * len(properties), dtype='float32')
else:
label = []
properties_dict = annotation[-1]
if len(properties_included)>0:
for p in properties_included:
label.append(properties_dict[p]/5.0)
else:
for p in properties:
label.append(properties_dict[p])
return label
# data preparation function
def data_prep_function(data, patch_center, pixel_spacing, luna_origin, p_transform,
p_transform_augment, world_coord_system, **kwargs):
x, patch_annotation_tf = data_transforms.transform_patch3d(data=data,
luna_annotations=None,
patch_center=patch_center,
p_transform=p_transform,
p_transform_augment=p_transform_augment,
pixel_spacing=pixel_spacing,
luna_origin=luna_origin,
world_coord_system=world_coord_system)
x = data_transforms.hu2normHU(x)
return x
data_prep_function_train = partial(data_prep_function, p_transform_augment=p_transform_augment,
p_transform=p_transform, world_coord_system=True)
data_prep_function_valid = partial(data_prep_function, p_transform_augment=None,
p_transform=p_transform, world_coord_system=True)
# data iterators
batch_size = 16
nbatches_chunk = 1
chunk_size = batch_size * nbatches_chunk
train_valid_ids = utils.load_pkl(pathfinder.LUNA_VALIDATION_SPLIT_PATH)
train_pids, valid_pids = train_valid_ids['train'], train_valid_ids['valid']
train_data_iterator = data_iterators.CandidatesPropertiesLunaDataGenerator(data_path=pathfinder.LUNA_DATA_PATH,
batch_size=chunk_size,
transform_params=p_transform,
label_prep_fun=label_prep_function,
nproperties=nproperties,
data_prep_fun=data_prep_function_train,
rng=rng,
patient_ids=train_pids,
full_batch=True, random=True, infinite=True,
positive_proportion=positive_proportion,
random_negative_samples=True,
properties_included=["malignancy"])
valid_data_iterator = data_iterators.CandidatesLunaValidDataGenerator(data_path=pathfinder.LUNA_DATA_PATH,
transform_params=p_transform,
data_prep_fun=data_prep_function_valid,
patient_ids=valid_pids,
label_prep_fun=label_prep_function,
properties_included=["malignancy"])
nchunks_per_epoch = train_data_iterator.nsamples / chunk_size
max_nchunks = nchunks_per_epoch * 100
validate_every = int(5 * nchunks_per_epoch)
save_every = int(1. * nchunks_per_epoch)
learning_rate_schedule = {
0: 1e-4,
int(max_nchunks * 0.4): 6e-5,
int(max_nchunks * 0.6): 3e-5,
int(max_nchunks * 0.8): 1e-5,
int(max_nchunks * 0.9): 0.5e-5
}
# model
conv3d = partial(dnn.Conv3DDNNLayer,
filter_size=3,
pad='same',
W=nn.init.Orthogonal(),
b=nn.init.Constant(0.01),
nonlinearity=nn.nonlinearities.very_leaky_rectify)
max_pool3d = partial(dnn.MaxPool3DDNNLayer,
pool_size=2)
drop = lasagne.layers.DropoutLayer
bn = lasagne.layers.batch_norm
dense = partial(lasagne.layers.DenseLayer,
W=lasagne.init.Orthogonal('relu'),
b=lasagne.init.Constant(0.0),
nonlinearity=lasagne.nonlinearities.rectify)
def inrn_v2(lin):
n_base_filter = 32
l1 = conv3d(lin, n_base_filter, filter_size=1)
l2 = conv3d(lin, n_base_filter, filter_size=1)
l2 = conv3d(l2, n_base_filter, filter_size=3)
l3 = conv3d(lin, n_base_filter, filter_size=1)
l3 = conv3d(l3, n_base_filter, filter_size=3)
l3 = conv3d(l3, n_base_filter, filter_size=3)
l = lasagne.layers.ConcatLayer([l1, l2, l3])
l = conv3d(l, lin.output_shape[1], filter_size=1)
l = lasagne.layers.ElemwiseSumLayer([l, lin])
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify)
return l
def inrn_v2_red(lin):
# We want to reduce our total volume /4
den = 16
nom2 = 4
nom3 = 5
nom4 = 7
ins = lin.output_shape[1]
l1 = max_pool3d(lin)
l2 = conv3d(lin, ins // den * nom2, filter_size=3, stride=2)
l3 = conv3d(lin, ins // den * nom2, filter_size=1)
l3 = conv3d(l3, ins // den * nom3, filter_size=3, stride=2)
l4 = conv3d(lin, ins // den * nom2, filter_size=1)
l4 = conv3d(l4, ins // den * nom3, filter_size=3)
l4 = conv3d(l4, ins // den * nom4, filter_size=3, stride=2)
l = lasagne.layers.ConcatLayer([l1, l2, l3, l4])
return l
def feat_red(lin):
# We want to reduce the feature maps by a factor of 2
ins = lin.output_shape[1]
l = conv3d(lin, ins // 2, filter_size=1)
return l
def build_model():
l_in = nn.layers.InputLayer((None,1) + p_transform['patch_size'])
l_target = nn.layers.InputLayer((None, 1))
l = conv3d(l_in, 64)
l = inrn_v2_red(l)
l = inrn_v2(l)
l = inrn_v2_red(l)
l = inrn_v2(l)
l = inrn_v2_red(l)
l = inrn_v2_red(l)
l = dense(drop(l), 512)
l_out = nn.layers.DenseLayer(l,1,nonlinearity=nn.nonlinearities.sigmoid, W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(0))
return namedtuple('Model', ['l_in', 'l_out', 'l_target'])(l_in, l_out, l_target)
d_objectives_deterministic = {}
d_objectives = {}
def build_objective(model, deterministic=False):
predictions = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = T.flatten(nn.layers.get_output(model.l_target))
objective = lasagne.objectives.squared_error(predictions,targets)
loss = T.mean(objective)
return loss
def build_updates(train_loss, model, learning_rate):
updates = nn.updates.adam(train_loss, nn.layers.get_all_params(model.l_out, trainable=True), learning_rate)
return updates