Diff of /train_props_patch.py [000000] .. [70b6b3]

Switch to unified view

a b/train_props_patch.py
1
import cPickle as pickle
2
import string
3
import sys
4
import time
5
from itertools import izip
6
import lasagne as nn
7
import numpy as np
8
import theano
9
from datetime import datetime, timedelta
10
import utils
11
import logger
12
import theano.tensor as T
13
import buffering
14
from configuration import config, set_configuration
15
import pathfinder
16
17
nn.random.set_rng(np.random.RandomState(317070))
18
theano.config.warn_float64 = 'raise'
19
20
if len(sys.argv) < 2:
21
    sys.exit("Usage: train.py <configuration_name>")
22
23
config_name = sys.argv[1]
24
set_configuration('configs_luna_props_patch', config_name)
25
expid = utils.generate_expid(config_name)
26
print
27
print "Experiment ID: %s" % expid
28
print
29
30
# metadata
31
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
32
metadata_path = metadata_dir + '/%s.pkl' % expid
33
34
# logs
35
logs_dir = utils.get_dir_path('logs', pathfinder.METADATA_PATH)
36
sys.stdout = logger.Logger(logs_dir + '/%s.log' % expid)
37
sys.stderr = sys.stdout
38
39
print 'Build model'
40
model = config().build_model()
41
all_layers = nn.layers.get_all_layers(model.l_out)
42
all_params = nn.layers.get_all_params(model.l_out)
43
num_params = nn.layers.count_params(model.l_out)
44
print '  number of parameters: %d' % num_params
45
print string.ljust('  layer output shapes:', 36),
46
print string.ljust('#params:', 10),
47
print 'output shape:'
48
for layer in all_layers:
49
    name = string.ljust(layer.__class__.__name__, 32)
50
    num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
51
    num_param = string.ljust(num_param.__str__(), 10)
52
    print '    %s %s %s' % (name, num_param, layer.output_shape)
53
54
train_loss = config().build_objective(model, deterministic=False)
55
valid_loss = config().build_objective(model, deterministic=True)
56
57
learning_rate_schedule = config().learning_rate_schedule
58
learning_rate = theano.shared(np.float32(learning_rate_schedule[0]))
59
updates = config().build_updates(train_loss, model, learning_rate)
60
61
x_shared = nn.utils.shared_empty(dim=len(model.l_in.shape))
62
y_shared = nn.utils.shared_empty(dim=len(model.l_target.shape))
63
64
idx = T.lscalar('idx')
65
givens_train = {}
66
givens_train[model.l_in.input_var] = x_shared[idx * config().batch_size:(idx + 1) * config().batch_size]
67
givens_train[model.l_target.input_var] = y_shared[idx * config().batch_size:(idx + 1) * config().batch_size]
68
69
givens_valid = {}
70
givens_valid[model.l_in.input_var] = x_shared
71
givens_valid[model.l_target.input_var] = y_shared
72
73
# theano functions
74
iter_train = theano.function([idx], train_loss, givens=givens_train, updates=updates)
75
iter_validate = theano.function([], valid_loss, givens=givens_valid)
76
77
if config().restart_from_save:
78
    print 'Load model parameters for resuming'
79
    resume_metadata = utils.load_pkl(config().restart_from_save)
80
    nn.layers.set_all_param_values(model.l_out, resume_metadata['param_values'])
81
    start_chunk_idx = resume_metadata['chunks_since_start'] + 1
82
    chunk_idxs = range(start_chunk_idx, config().max_nchunks)
83
84
    lr = np.float32(utils.current_learning_rate(learning_rate_schedule, start_chunk_idx))
85
    print '  setting learning rate to %.7f' % lr
86
    learning_rate.set_value(lr)
87
    losses_eval_train = resume_metadata['losses_eval_train']
88
    losses_eval_valid = resume_metadata['losses_eval_valid']
89
else:
90
    chunk_idxs = range(config().max_nchunks)
91
    losses_eval_train = []
92
    losses_eval_valid = []
93
    start_chunk_idx = 0
94
95
train_data_iterator = config().train_data_iterator
96
valid_data_iterator = config().valid_data_iterator
97
98
print
99
print 'Data'
100
print 'n train: %d' % train_data_iterator.nsamples
101
print 'n validation: %d' % valid_data_iterator.nsamples
102
print 'n chunks per epoch', config().nchunks_per_epoch
103
104
print
105
print 'Train model'
106
chunk_idx = 0
107
start_time = time.time()
108
prev_time = start_time
109
tmp_losses_train = []
110
losses_train_print = []
111
112
# use buffering.buffered_gen_threaded()
113
for chunk_idx, (x_chunk_train, y_chunk_train, id_train) in izip(chunk_idxs, buffering.buffered_gen_threaded(
114
        train_data_iterator.generate())):
115
    if chunk_idx in learning_rate_schedule:
116
        lr = np.float32(learning_rate_schedule[chunk_idx])
117
        print '  setting learning rate to %.7f' % lr
118
        print
119
        learning_rate.set_value(lr)
120
121
    # load chunk to GPU
122
    x_shared.set_value(x_chunk_train)
123
    y_shared.set_value(y_chunk_train)
124
125
    # make nbatches_chunk iterations
126
    for b in xrange(config().nbatches_chunk):
127
        loss = iter_train(b)
128
        # print loss
129
        tmp_losses_train.append(loss)
130
        losses_train_print.append(loss)
131
132
    if (chunk_idx + 1) % 10 == 0:
133
        print 'Chunk %d/%d' % (chunk_idx + 1, config().max_nchunks), np.mean(losses_train_print)
134
        losses_train_print = []
135
136
    if ((chunk_idx + 1) % config().validate_every) == 0:
137
        print
138
        print 'Chunk %d/%d' % (chunk_idx + 1, config().max_nchunks)
139
        # calculate mean train loss since the last validation phase
140
        mean_train_loss = np.mean(tmp_losses_train)
141
        print 'Mean train loss: %7f' % mean_train_loss
142
        losses_eval_train.append(mean_train_loss)
143
        tmp_losses_train = []
144
145
        # load validation data to GPU
146
        tmp_losses_valid = []
147
        for i, (x_chunk_valid, y_chunk_valid, ids_batch) in enumerate(
148
                buffering.buffered_gen_threaded(valid_data_iterator.generate(),
149
                                                buffer_size=2)):
150
            x_shared.set_value(x_chunk_valid)
151
            y_shared.set_value(y_chunk_valid)
152
            l_valid = iter_validate()
153
            print i, l_valid
154
            tmp_losses_valid.append(l_valid)
155
156
        # calculate validation loss across validation set
157
        valid_loss = np.mean(tmp_losses_valid)
158
        print 'Validation loss: ', valid_loss
159
        losses_eval_valid.append(valid_loss)
160
161
        now = time.time()
162
        time_since_start = now - start_time
163
        time_since_prev = now - prev_time
164
        prev_time = now
165
        est_time_left = time_since_start * (config().max_nchunks - chunk_idx + 1.) / (chunk_idx + 1. - start_chunk_idx)
166
        eta = datetime.now() + timedelta(seconds=est_time_left)
167
        eta_str = eta.strftime("%c")
168
        print "  %s since start (%.2f s)" % (utils.hms(time_since_start), time_since_prev)
169
        print "  estimated %s to go (ETA: %s)" % (utils.hms(est_time_left), eta_str)
170
        print
171
172
    if ((chunk_idx + 1) % config().save_every) == 0:
173
        print
174
        print 'Chunk %d/%d' % (chunk_idx + 1, config().max_nchunks)
175
        print 'Saving metadata, parameters'
176
177
        with open(metadata_path, 'w') as f:
178
            pickle.dump({
179
                'configuration_file': config_name,
180
                'git_revision_hash': utils.get_git_revision_hash(),
181
                'experiment_id': expid,
182
                'chunks_since_start': chunk_idx,
183
                'losses_eval_train': losses_eval_train,
184
                'losses_eval_valid': losses_eval_valid,
185
                'param_values': nn.layers.get_all_param_values(model.l_out)
186
            }, f, pickle.HIGHEST_PROTOCOL)
187
            print '  saved to %s' % metadata_path
188
            print