Diff of /train_fpred_patch.py [000000] .. [70b6b3]

Switch to unified view

a b/train_fpred_patch.py
1
import cPickle as pickle
2
import string
3
import sys
4
import time
5
from itertools import izip
6
import lasagne as nn
7
import numpy as np
8
nn.random.set_rng(np.random.RandomState(317070))
9
import theano
10
from datetime import datetime, timedelta
11
import utils
12
import logger
13
import theano.tensor as T
14
import buffering
15
from configuration import config, set_configuration
16
import pathfinder
17
18
theano.config.warn_float64 = 'raise'
19
20
if len(sys.argv) < 2:
21
    sys.exit("Usage: train.py <configuration_name>")
22
23
config_name = sys.argv[1]
24
set_configuration('configs_fpred_patch', config_name)
25
expid = utils.generate_expid(config_name)
26
print
27
print "Experiment ID: %s" % expid
28
print
29
30
31
32
33
# metadata
34
metadata_dir = utils.get_dir_path('models', pathfinder.METADATA_PATH)
35
metadata_path = metadata_dir + '/%s.pkl' % expid
36
37
# logs
38
logs_dir = utils.get_dir_path('logs', pathfinder.METADATA_PATH)
39
sys.stdout = logger.Logger(logs_dir + '/%s.log' % expid)
40
sys.stderr = sys.stdout
41
42
print 'Build model'
43
model = config().build_model()
44
all_layers = nn.layers.get_all_layers(model.l_out)
45
all_params = nn.layers.get_all_params(model.l_out)
46
num_params = nn.layers.count_params(model.l_out)
47
print '  number of parameters: %d' % num_params
48
print string.ljust('  layer output shapes:', 36),
49
print string.ljust('#params:', 10),
50
print 'output shape:'
51
for layer in all_layers:
52
    name = string.ljust(layer.__class__.__name__, 32)
53
    num_param = sum([np.prod(p.get_value().shape) for p in layer.get_params()])
54
    num_param = string.ljust(num_param.__str__(), 10)
55
    print '    %s %s %s' % (name, num_param, layer.output_shape)
56
57
train_loss = config().build_objective(model, deterministic=False)
58
valid_loss = config().build_objective(model, deterministic=True)
59
60
learning_rate_schedule = config().learning_rate_schedule
61
learning_rate = theano.shared(np.float32(learning_rate_schedule[0]))
62
updates = config().build_updates(train_loss, model, learning_rate)
63
64
x_shared = nn.utils.shared_empty(dim=len(model.l_in.shape))
65
y_shared = nn.utils.shared_empty(dim=len(model.l_target.shape))
66
67
idx = T.lscalar('idx')
68
givens_train = {}
69
givens_train[model.l_in.input_var] = x_shared[idx * config().batch_size:(idx + 1) * config().batch_size]
70
givens_train[model.l_target.input_var] = y_shared[idx * config().batch_size:(idx + 1) * config().batch_size]
71
72
givens_valid = {}
73
givens_valid[model.l_in.input_var] = x_shared
74
givens_valid[model.l_target.input_var] = y_shared
75
76
# theano functions
77
iter_train = theano.function([idx], train_loss, givens=givens_train, updates=updates)
78
iter_validate = theano.function([], valid_loss, givens=givens_valid)
79
80
if config().restart_from_save:
81
    print 'Load model parameters for resuming'
82
    resume_metadata = utils.load_pkl(config().restart_from_save)
83
    nn.layers.set_all_param_values(model.l_out, resume_metadata['param_values'])
84
    start_chunk_idx = resume_metadata['chunks_since_start'] + 1
85
    chunk_idxs = range(start_chunk_idx, config().max_nchunks)
86
87
    lr = np.float32(utils.current_learning_rate(learning_rate_schedule, start_chunk_idx))
88
    print '  setting learning rate to %.7f' % lr
89
    learning_rate.set_value(lr)
90
    losses_eval_train = resume_metadata['losses_eval_train']
91
    losses_eval_valid = resume_metadata['losses_eval_valid']
92
else:
93
    chunk_idxs = range(config().max_nchunks)
94
    losses_eval_train = []
95
    losses_eval_valid = []
96
    start_chunk_idx = 0
97
98
train_data_iterator = config().train_data_iterator
99
valid_data_iterator = config().valid_data_iterator
100
101
print
102
print 'Data'
103
print 'n train: %d' % train_data_iterator.nsamples
104
print 'n validation: %d' % valid_data_iterator.nsamples
105
print 'n chunks per epoch', config().nchunks_per_epoch
106
107
print
108
print 'Train model'
109
chunk_idx = 0
110
start_time = time.time()
111
prev_time = start_time
112
tmp_losses_train = []
113
losses_train_print = []
114
115
# use buffering.buffered_gen_threaded()
116
for chunk_idx, (x_chunk_train, y_chunk_train, id_train) in izip(chunk_idxs, buffering.buffered_gen_threaded(
117
        train_data_iterator.generate())):
118
    if chunk_idx in learning_rate_schedule:
119
        lr = np.float32(learning_rate_schedule[chunk_idx])
120
        print '  setting learning rate to %.7f' % lr
121
        print
122
        learning_rate.set_value(lr)
123
124
    # load chunk to GPU
125
    x_shared.set_value(x_chunk_train)
126
    y_shared.set_value(y_chunk_train)
127
128
    # make nbatches_chunk iterations
129
    for b in xrange(config().nbatches_chunk):
130
        loss = iter_train(b)
131
        # print loss
132
        tmp_losses_train.append(loss)
133
        losses_train_print.append(loss)
134
135
    if (chunk_idx + 1) % 10 == 0:
136
        print 'Chunk %d/%d' % (chunk_idx + 1, config().max_nchunks), np.mean(losses_train_print)
137
        losses_train_print = []
138
139
    if ((chunk_idx + 1) % config().validate_every) == 0:
140
        print
141
        print 'Chunk %d/%d' % (chunk_idx + 1, config().max_nchunks)
142
        # calculate mean train loss since the last validation phase
143
        mean_train_loss = np.mean(tmp_losses_train)
144
        print 'Mean train loss: %7f' % mean_train_loss
145
        losses_eval_train.append(mean_train_loss)
146
        tmp_losses_train = []
147
148
        # load validation data to GPU
149
        tmp_losses_valid = []
150
        for i, (x_chunk_valid, y_chunk_valid, ids_batch) in enumerate(
151
                buffering.buffered_gen_threaded(valid_data_iterator.generate(),
152
                                                buffer_size=2)):
153
            x_shared.set_value(x_chunk_valid)
154
            y_shared.set_value(y_chunk_valid)
155
            l_valid = iter_validate()
156
            print i, l_valid
157
            tmp_losses_valid.append(l_valid)
158
159
        # calculate validation loss across validation set
160
        valid_loss = np.mean(tmp_losses_valid)
161
        print 'Validation loss: ', valid_loss
162
        losses_eval_valid.append(valid_loss)
163
164
        now = time.time()
165
        time_since_start = now - start_time
166
        time_since_prev = now - prev_time
167
        prev_time = now
168
        est_time_left = time_since_start * (config().max_nchunks - chunk_idx + 1.) / (chunk_idx + 1. - start_chunk_idx)
169
        eta = datetime.now() + timedelta(seconds=est_time_left)
170
        eta_str = eta.strftime("%c")
171
        print "  %s since start (%.2f s)" % (utils.hms(time_since_start), time_since_prev)
172
        print "  estimated %s to go (ETA: %s)" % (utils.hms(est_time_left), eta_str)
173
        print
174
175
    if ((chunk_idx + 1) % config().save_every) == 0:
176
        print
177
        print 'Chunk %d/%d' % (chunk_idx + 1, config().max_nchunks)
178
        print 'Saving metadata, parameters'
179
180
        with open(metadata_path, 'w') as f:
181
            pickle.dump({
182
                'configuration_file': config_name,
183
                'git_revision_hash': utils.get_git_revision_hash(),
184
                'experiment_id': expid,
185
                'chunks_since_start': chunk_idx,
186
                'losses_eval_train': losses_eval_train,
187
                'losses_eval_valid': losses_eval_valid,
188
                'param_values': nn.layers.get_all_param_values(model.l_out)
189
            }, f, pickle.HIGHEST_PROTOCOL)
190
            print '  saved to %s' % metadata_path
191
            print